
ADVANCED PDE II - LECTURE 10

PIETER BLUE AND OANA POCOVNICU

Warning: This is a first draft of the lecture notes and should be used with

care! Again, this lecture’s notes very closely follow C. Sogge’s “Nonlinear Wave Equations”.

1. Global existence for quasilinear equations in high dimensions with small

data

Recall � = {Γi}Ni=1, T ij =
∑n

k=0G
ik∂ku∂ju − 1

2δ
i
j

∑n
l,m=1G

lm∂lu∂mu (no u2 term) for

the wave equation,

|f |2�,k =
∑

0≤j≤k

N∑
i1=1

. . .

N∑
ij=1

|Γij . . .Γi1f |2,

‖f‖2�,k =

ˆ
Rn

|f |2�,kdnx,

E∂t,�,k[u](t) =
∑

0≤j≤k

N∑
i1=1

. . .

N∑
ij=1

E∂t [Γij . . .Γi1u](t)

C−1‖∂u‖2�,k(t) ≤ ‖E∂t,�,k[u](t) ≤ C−1‖∂u‖2�,k(t).

Theorem 1.1. Let n ≥ 4. Assume condition 2Q(R1+n), that G00 = −1, that Gjk and F

depend only on ∂u, and that F (0) = 0 and δF (0) = 0.

There is an ε > 0 such that if T > 0 and u is a solution on [0, T ]× Rn of∑
jk

Gjk(∂u)∂i∂ju = F (∂u)

and ‖u‖�,n+4(0) < ε, then u can be extended to a solution of the PDE on [0,∞)× Rn.

Lemma 1.2 (Commutators for Γα and ∂). Let u ∈ C∞c . For Γ ∈ �, |[Γ, ∂]u| ≤ |∂u|. Thus,

for α ∈ ZN ,

|Γα∂u| ≤ |∂Γαu|+ C
∑

|β|≤|α|−1

|∂Γβu|.

Proof. Each Γ has a coefficient that is at most linear in x, thus [Γ, ∂] is either zero or a

differential operator of order 0 with a constant coefficient. Thus, |[Γ, ∂]u| ≤ |∂u|.
Consider the second part of the claim.

Γα∂u = ∂Γαu+ [Γα, ∂]u

For |α| = 1, the first result implies the first. For |α| > 1, by induction, ∂ can be commuted

through Γα so that ∂ appears as the right most term, and the number of Γ’s is |α| − 1.

Thus, the second result holds. �
1



2 P. BLUE AND O. POCOVNICU

Lemma 1.3 (Derivation property of commutators). Let A, B, C be finite order differential

operators and concatenation denote compostion (e.g. BC = B ◦ C).

[A,BC] = [A,B]C +B[A,C].

Proof.

[A,BC] = ABC −BCA = ABC −BAC +BAC −BAC = [A,B]C +B[A,C].

�

Proof of global existence for quasilinear equations. The key idea of the proof is to follow

the strategy of the local well-posedness proof, but to use energies that have been strength-

ened with Γ instead of ~∂, to use the Klainerman-Sobolev inequality instead of the Sobolev

inequality, and to use the additional gain in (1 + t)−n−1/2 to get integrability for t ∈ [0,∞)

instead of merely in [0, T ] for a small T .

Step 1: Some preliminary reductions Consider |β| ≤ n+4
2 . Observe that for t ∈ R,

supx |~∂βu|(t, ~x) ≤ ‖~∂βu‖
Hb

n+2
2 c(t). Furthermore, ‖~∂βu‖

Hb
n+2
2 c(0) = ‖~∂βf‖

Hb
n+2
2 c and

d

dt
‖~∂βu‖

Hb
n+2
2 c(t)

2 ≤
ˆ ∑

γ≤n+2
2

2|~∂γ~∂βu||∂t~∂γ~∂βu|dnx,

d

dt
‖~∂βu‖

Hb
n+2
2 c(t) ≤ ‖~∂β∂tu‖Hbn+2

2 c(t)

≤ ‖∂tu‖
Hb

n+2
2 c+bn+4

2 c(t)

≤ ‖∂tu‖Hn+3(t)

≤ ‖∂tu‖�,n+3(t)

≤ ‖∂u‖�,n+3(t)

≤ ‖∂u‖�,n+4(t).

Integrating this, if ‖∂u‖�,n+4(t) is uniformly bounded in t, then supx |~∂βu|(t, ~x) is finite,

although it might grow linearly.

From the fact that translations are in �, the Klainerman-Sobolev inequality, grouping Γ

terms, and n+ 3 ≤ n+ 4, we find

sup
t,x

∑
|α|≤n+4

2

|∂~∂αu|

= sup
t,x

∑
|α|≤n+4

2

|~∂α∂u|

≤ sup
t,x

∑
|α|≤n+4

2

|Γα∂u|

≤ sup
t

∑
|α|≤n+4

2

|Γα∂u|

≤ sup
t

∑
|α|≤n+4

2

‖Γα∂u‖�,bn+2
2
c
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≤ sup
t
‖∂u‖�,n+3

≤ sup
t
‖∂u‖�,n+4.

Furthermore,

sup
t
‖∂u‖�,n+4 ≤ sup

t
CE∂t,�,n+4[u](t)1/2.

For simplicity in this proof, use the notation

E(t) = E∂t,�,n+4[u](t).

By the continuation criterion in lecture 8, it is sufficient to show that

sup
t,x

∑
|α|<1

∑
|β|≤n+4

2

|∂α~∂βu| <∞.

From the arguments in the previous paragraph, it is therefore sufficient to show that E(t)

is uniformly bounded.

Remark 1.4. This is an important trick in treating wave equations instead of Klein-Gordon

equations. For global problems it is preferable to study wave equations, since the full set

� are all symmetries for
∑

ij η
ij∂i∂ju = 0, whereas there is one fewer symmetry for the

Klein-Gordon equation.

Step 2: Set up the continuous induction on E(t) We wish to show that there is

an ε > 0 such that if E(0) ≤ ε/2, then for all t, E(t) ≤ ε. We aim to use continuous

induction/ a boot-strap argument. By standard energy estimates, E(t) is continuous in

t. If E(0) < ε/2, then clearly E(0) ≤ ε. It remains to prove that if suptE(t) ≤ 2ε, then

suptE(t) ≤ ε. In the following argument, there will be several implicit constants denoted

C, and ε will depend on these, but not on u, f , or g.

From differentiating the quasilinear wave equation, for all α

∑
ij

Gij∂i∂jΓ
αu

= [Γα,
∑
ij

Gij∂i∂j ]u+ ΓαF

= [Γα,
∑
ij

(Gij − ηij)∂i∂j ]u+ [Γα,
∑
ij

ηij∂i∂j ]u+ ΓαF

= [Γα,
∑
ij

(Gij − ηij)]∂i∂ju+
∑
ij

(Gij − ηij)[Γα, ∂i∂j ]u+ [Γα,
∑
ij

ηij∂i∂j ]u+ ΓαF.
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From the energy estimate for Γαu, we find

E(t) = E∂t,�,n+4[u](t)

= E∂t,�,n+4[u](0)

+
∑
|α|≤n+4

ˆ t

0

(
‖[Γα,

∑
ij

(Gij − ηij)]∂i∂ju‖L2

+ ‖
∑
ij

(Gij − ηij)[Γα, ∂i∂j ]u‖L2

+ ‖[Γα,
∑
ij

ηij∂i∂j ]u‖L2

+ ‖ΓαF‖L2

)
E(t)1/2dt′.

The goal now is to estimate each of the L2 terms in the previous integral by

Cε1/2(1 + t)−
n−1
2 E(t)1/2.

Consider [Γα, Gij − ηij ]∂i∂ju. Treat ∂ju as the relevant quantity instead of u and recall

that Gij − ηij is assumed to be a function of ∂u and vanishes linearly in |∂u|. Thus, there

are |α| derivatives to be distributed between Gij − ηij and ∂ju. Thus, one factor of ∂u can

have at most n+4 Γ derivatives, and all other factors can have at most bn+4
2 c Γ derivatives.

If |α| = 0, then the commutator vanishes. For 1 ≤ |α| ≤ n+4, since Gij−ηij has uniformly

bounded derivatives and at most α derivatives are applied to Gij − ηij ,

|[Γα, Gij − ηij ]∂i∂ju| ≤ C(1 + |∂u|�,bn+4
2
c)
|α||∂u|�,bn+4

2
c|∂u|�,n+4.

Thus,

‖[Γα, Gij − ηij ]∂i∂ju‖L2 ≤ C sup
x

(
(1 + |∂u|�,bn+4

2
c)
|α||∂u|�,bn+4

2
c

)
‖∂u‖�,n+4

≤ Cε1/2(1 + t)−
n−1
2 E(t)1/2.

Consider [Γα, ∂i∂j ] = ∂i[Γ
α, ∂j ] + [Γα, ∂i]∂j . [Γα, ∂i]∂ju can be expanded in terms of

(|α| − 1) Γ derivatives on ∂ju. [Γα, ∂j ] can be expanded as (|α| − 1) Γ derivatives, so ∂i
can be commuted through [Γα, ∂j ] to give at most |α| − 1 derivatives applied to ∂i, so

|∂i[Γα, ∂j ]u| ≤ |∂u|�,|α|−1. Since Gij − ηij is bounded by |∂u|,

|(Gij − ηij)[Γα, ∂i∂j ]u| ≤ C|∂u||∂u|�,n+4

‖(Gij − ηij)[Γα, ∂i∂j ]u‖L2 ≤ C‖∂u‖L∞‖∂u‖�,n+4

≤ Cε1/2(1 + t)−
n−1
2 E(t)1/2.

Consider ΓαF . Since F is a function of ∂u that vanishes quadratically, if |α| Γ derivatives

are applied, then there will be at most |α| factors of ∂u or its derivatives that are produced

by the chain rule, the one with the highest number of derivatives will have at most n + 4

Γ derivatives, and the rest will have at most bn+4
2 c Γ derivatives. Furthermore, if there are

no factors of ∂u or its derivatives, then there is a factor of F , which vanishes quadratically

in |∂u|. If there is only one factor of ∂u or its derivatives, then there will be a factor of dF ,
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which vanishes linearly. Thus, ΓαF vanishes at least quadratically in ∂u or its derivatives.

Thus,

|ΓαF | ≤ C(1 + |∂u|�,bn+4
2
c)

min(0,|α|−2)|∂u|�,bn+4
2
c|∂u|�,n+4

‖ΓαF‖ ≤ C sup
x

(
(1 + |∂u|�,bn+4

2
c)

min(0,|α|−2)|∂u|�,bn+4
2
c

)
‖∂u‖�,n+4

≤ Cε1/2(1 + t)−
n−1
2 E(t)1/2.

Finally, consider [Γα,
∑

ij η
ij∂i∂j ] can be expanded in terms of constant multiples of

Γβ
∑

ij η
ij∂i∂j with |β| ≤ |α| − 1. Since

∑
ij η

ij∂i∂ju = −
∑

ij(G
ij − ηij)∂i∂ju − F , it

follows that [Γα,
∑

ij η
ij∂i∂j ] can be expanded as constant multiples of terms of the form

Γβ
∑

ij(G
ij − ηij)∂i∂ju and ΓβF . Such terms have already been shown to have the desired

form.

We have thus shown that, under the assumption suptE(t) ≤ 2ε,

E(t) ≤ E(0) + Cε1/2
ˆ t

0
(1 + t′)−

n−1
2 E(t′)dt′.

Thus, by Gronwall’s inequality, E(t) ≤ 2E(0) ≤ ε if

Cε1/2
ˆ t

0
(1 + t′)−

n−1
2 dt′ ≤ ln 2.

ε can be chosen small enough to enforce this condition, as long as the integral is uniformly

bounded, which holds if n− 1 > 2, i.e. n ≥ 4. �

2. Derivative semilinear equations and null forms

Consider ∑
ij

ηij∂i∂ju = F (∂u),

with F smooth and satisfying, for ∂u small,

|F (∂u)| ≤ C|∂u|p.

From the smoothness of F , we may assume p is an integer.

If p = 1, then the equation may act like a linear equation, such as the Klein-Gordon

equation, and thus may have very different decay, or or even no decay. (If u satisfies the

wave equation, then v = (xi)qu satisfies the wave equation with an additional first-order

term, and, if q is large relative to (n− 1)/2, then the growth in x may ovewhelm the decay

in t, and v may grow linearly.) Thus, consider the situation for p ≥ 2.

Applying the same arguments as in the previous section, we find

E(t) ≤ E(0) +

ˆ t

0
ε
p−1
2

(
(1 + t)−

n−1
2

)p−1
E(t′)dt′,

so that Gronwall’s inequality can be applied if

1 < (p− 1)
n− 1

2
.
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This is automatically satisfied if n ≥ 4. For n = 3, this condition is satisfied for p ≥ 3.

However, this integrability condition is not satisfied for quadratic nonlinearities, with p = 2.

However, consider
∑

ij η
ij∂i∂ju = 0 with u vanishing for |~x| large when t is bounded and

u uniformly small. Let v = ln(1 + u). Thus, u = ev − 1, so

0 =
∑
ij

ηij∂i∂ju

= ev

∑
ij

ηij∂i∂jv +
∑
ij

ηij(∂iv)(∂jv)

 ,

∑
ij

ηij∂i∂jv = −
∑
ij

ηij(∂iv)(∂jv). (1)

Thus, although equation (1) appears to be a nonlinear equation with a quadratic nonlin-

earity, at least for small data, it can be transformed to the linear wave equation and has

global, decaying solutions.

In R1+3, consider

K =
∑
i

Ki∂i = (t2 + r2)∂t + 2rt∂r.

This satisfies [
∑

ij η
ij∂i∂j ,K] = 4t

∑
ij η

ij∂i∂j , so K is a symmetry of the wave equation.

The energy
´
P idνi with P i =

∑
j TjKj is not constant in time, but if we take

P̃ i =
∑
j

TjKj +
4t

2
ψ∂iψ −

1

4
(∂i4t)ψ

2,

then
∑

i ∂iP̃ i = 0, so
´
{t}×R3 P̃ idνi is constant in t, and

ˆ
{t}×R3

P̃ idνi =
1

4

ˆ
u2+|L+ψ|2 + (u2+ + u2−)

3∑
i=1

∣∣∣∣1rRiψ
∣∣∣∣2 + u2−|L−ψ|2d3x

where

L± = ∂t ± ∂r, u± = t± r,

and Ri is rotation around the xi axis. Thus, at least in some averaged sense, L+ψ and

r−1Riψ should be “good” with fast decay, like (t+ r)−1), unlike L−ψ which should be bad

with decay, like (t− r)−1.
Since ∑

ij

ηij(∂iψ)(∂jψ) = (L+ψ)(L−ψ) +

3∑
i=1

∣∣∣∣1rRiψ
∣∣∣∣2 ,

in this type of quadratic nonlinearity, it is impossible for two “bad” derivatives to combine.

This allows one to prove small data global well-posedness using estimates, rather than using

the transformation. This is convenient if there is a complicated nonlinearity that is a sum

of terms.
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Systems, with for I ∈ {1, . . . , N},∑
ij

(G1)ij∂i∂jψ
1 = F 1(ψ1, . . . , ψN ),

. . .∑
ij

(GN )ij∂i∂jψ
N = F I(ψ1, . . . , ψN ).

can be treated using energies in the same way. If n ≥ 4, then the same results hold. The

same can also be applied if n ≥ 3, GI = η for all I, and the F I are sums of terms that

vanish cubicly or are of the form

Q0(∂ψ
I , ∂ψJ) =

ij∑
(∂iψ

I)(∂jψ
J),

Qij(∂ψ
I , ∂ψJ) = (∂iψ

I)(∂jψ
J)− (∂jψ

I)(∂iψ
J).

The antisymmetry of Qij also prevents two “bad” derivatives from
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