ADVANCED PDE II - LECTURE 1

PIETER BLUE AND OANA POCOVNICU

Warning: This is a first draft of the lecture notes and should be used with care!’

1. CLASSIFICATION OF PDEs

A PDE for a function u(xi,z2,...,2,) : @ CR® — R is a relation of the form
F(z1,...,T0,u,00,4,...,00u,0% u,...) =0,
where F' depends on #i, ..., %y, u, and finitely many derivatives of u. We will sometimes

use the shorthand notation
F(Z,u, Du,...,D™u) = 0. (1.1)
The order of « PDE (1.1) is the order m of the highest derivative that occurs.

A clussical solution of a PDE (1.1) of order m is a m-times differentiable function u
satisfying (1.1).

Definition 1.1. (i) A PDE is linear if it is linear in u and its derivatives with coefficients
depending only on x,...,2,:
> aal@1,...,70)D% = f(z), (1.2)
led=m
where @ = (@1,...,ap), D* = 8¢ ...8%", and |a| = a; + - + ap. If f =0, then (1.3)
is called a homogeneous PDE. If a, are constant, then (1.3) is called a constant-coefficient
linear PDE.

(ii) A PDE of order m is called semi-linear if it is linear in the highest order derivatives

with coeflicients depending on x3,...,z, only:
> aalm1,...,20)D% + F(&,u,Du,..., D" 'u) = 0. (1.3)
|lo]=m

(iii) A PDE of order m is called gquasi-linear if it is linear in the derivatives of order m with
coefficients depending on xy,...,z, and derivatives of u of order less than m.

Z an{Z1,. s &, u, Du,..., D™ ) D" + F(Z,u, Du, .. L D™y =0. (1.4)

lel=m

(iv) A fully nonlinear PDE is a PDE for which no special structure is assumed.

'Lecture 1 was inspired by Chapter 1 in Fritz John's PDE book and by Gustav Holzegel’s lecture notes
(weeks 1 and 2). We refer the interested readers to these two sources for more details. See also Evans’ baok
(Chapter 3) and Alinhac’s book on hyperbolic PDEs (Chapters 1-3) for siightly different perspectives.
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2 P. BLUE AND O. POCOVNICU

Next, we consider a differential operator P of order m defined by
Pu(zy,...,zn,t) 1= Z GaelT1,. .., Tn, ) DY ulzy,. .., 2n,t). (1.5)
|al+é<m
The operator

Pri= Y au(&t)D"0f (1.6)
|ai4-t=m

is called the “principal part” of the differential operator P. For fixed E:',E, t, the solutions
of the polynomial equation in 7:
> aael@ )T 5Tl =0,
|erf+é=m
are denoted by —Al(:i:',t,‘f), vy =Am(Z,t,€) and A; with i = 1,...,m are called the char-

acteristic speeds of the polynomial P.

Definition 1.2. We say that the differential operator P is hyperbolic in Q C R* x R if
for all (Z,t) € Q and all £ € R”, the characteristic speeds A; (a’:‘,t,f_) are real. P is strictly
hyperbolic if they are also distinct for any & # O

M(F 1) < o0 < A 1,E).

Examples:
1). The linear advection equation:

O+ cdyu =0, z€R,e>0. (1.7)
Here, the characteristic equation is 7 4 ¢£ = 0 with the real solution T = —c£.

2). The linear wave equation on R:
tu — 02u =0, z €ER. (1.8)

The characteristic equation is in this case 72 — £2 = 0 with real solutions 7 = +£. Notice
that this equation is associated to the quadratic form 72 —£2 whose level sets are hyperbolas,
hence the term ‘hyperbolic’.

3). We would like to consider second order hyperbolic PDEs on R"™ that generalize the
linear wave equation (1.8). Namely, PDEs of the form Lu = f, where

n
L 6!‘2 +2Zbi(fi t)am,-at _Zaij(fit)aﬂhaﬂ:j +L1; (1'9)
i=1
with Lj is of order one. According to Definition 1.2, L is hyperbolic in @ ¢ R" x R if for
all (£,t) € Q and all £ € R®, the solutions —Al(:'v',t,g), —Ag (f.t,a of the characteristic
equation

242 b, )76 — Y ai(E 1EE =0

are real, or equivalently,

(b, 1) - E)* + Y aii(F, )65 = 0.
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L is strictly hyperbolic if, in addition, Aj{(s,t.£} # Ag(.f.t,{;:) for all (£,t) € Q and all
£ e R*\ {0}.

We remark that if E(;F, t) = 0, the strict hyperbolicity of L is equivalent to the quadratic
form Y ai;(Z, t)&;€; being positive definite.

2. THE LINEAR ADVECTION EQUATION

We start by noticing that along a line of the family x — ef = const., any solution of the
linear advection equation

diu + cpu = 0, z€R, =0

is constant. Indeed, for any a € R, we have
du d

x = i

and therefore u(ct + a,f) = u(e,0). We thus obtained the following proposition.

ct+a.t)=cdu+dJu=0

Proposition 2.1. The unique classical solution of equation (1.7) with initial data u(x, 0) =
Ff{z) € C'(R) is given by u(t,z) = f(x — ct).

t 4 Lot/ Lot X-cl=a

(1)

The line Lg : & — ¢t = ¢ is called a characteristic line of (1.7). For (z,t) € L,, the domain
of dependence of the solution u on the initial value is the single point a. The domain of
tnfluence of the initial value at a on the solution u is just the characteristic line L.

The initial condition f(x) is transported along the characteristic lines L,. For this
reason, (1.7} is also known under the name of “transport equation”. We can rephrase this
by saying that the graph of a solution of (1.7) is a wave propagating to the right with
velocity ¢, without changing shape.
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3. THE METHOD OF CHARACTERISTICS FOR FIRST-ORDER QUASI-LINEAR PDES
For simplicity, we only consider quasi-linear PDEs in the two-dimensional case:
a(z,y, u)dxu + b(z, y, u)dyu = ez, y,u), (3.1)

where a,b.¢: ®* x B — R are ! functions.

Loosely speaking, the idea of the method of characteristics is that for each (z,y, 2) near
a fixed point (xo,y0,20) we find characteristic curves going through (z,y, z) on which we
can compute u: z = u(z,y). These characteristic curves are solutions of a system of ODEs.
Therefore, the method of characteristics consists in converting a first-order PDE into an
appropriate system of ODEs.

Definition 3.1. If u is a C' function solving (3.1), we call it's graph S = {{z,y,2) : 2 =
u{z,y)} an integral surface of the PDE (3.1).

From multivariable calculus, we have that the normal to an integral surface S is propor-
tional to (O;u, dyu, —1)!. Then (3.1) is equivalent to

(a(m, y,z),b(:r, Y, z)?c(x’y’m))t : (6:cusayu1 _l)t =0. (3'2)

Thus, (a{z,y, 2),b(z,y, 2}, c(z, ¥, o) L (D.n, dyu, —1) or, in other words, the characteristic
direction {a, b,c) is parallel to the tangent plane to the surface S. This suggests obtaining
an integral surface via integral curves along the characteristic directions (e, b, ¢).

—A) = ror to S
(3424 =) =rormal
““%wm plane B Sat P
/ D:JS { 2= u&g)j

Given (o, 3o, 20) S we consider the system of ODEs

Ht_ = a(:r:,'y,z),
% = b(z,y,2), (@, 9, 2)(0) = (70, %0, 20)- (3.3)
dz

= c(m y, )1
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By ODE theory?, this system has a unique solution that we call a characteristic curve.
An important element in the proof of Theorem 3.5 is the following proposition.

Proposition 3.2. A C! surface S is an integral surface for the PDE (3.1) if and only if
S is a union of characteristic curves.

The proof of Proposition 3.2 follows from the two lemmas below.

Lemma 3.3. If ¢ C! surface is u union of characteristic curves, then it is an integral
surface of (3.1)

Proof. Through any point P of S we have a characteristic curve v lying in S. The tangent
line to v at P necessarily lies in the tangent plane to § at P. Since the tangent line to
7 has the characteristic direction (a,b,c), it follows that (e, b, e} is parallel to the tangent
plane of § at P. In other words, with S given parametrically by z = u(z,y), (a,b,c) is
perpendicular to the normal (d-u,d,u, —1) to the surface S. As in (3.2), it then follows
that (3.1) is satisfied. [

Next, we show that any integral surface S is the union of characteristic curves, or that
through any point of an integral surface S passes a characteristic curve contained in S.

Lemma 3.4. Let S be an integral surface containing the point P(zg,yo,20). Let v be the
characteristic curve through P. Then v lies completely in S.

Proof. We parametrize v by v(t) = (z(t),y(t), z(t}) such that P = v(0). We set U(t) :=
z(t) — u{z(t), y(t)). Since P € S, we have U(0) = 0. We will show that U(t) = 0 for all ¢,
which implies that v C §. We have

dU’
di
This gives an ODE for U(t), for which U(t) = 0 is a particular solution. By the uniqueness
theory for ODEs, it follows that this is the only solution. {1

= (e~ Feu-a— Gyu-b)(z,y,2) = (c — dpu - a — Byu- b} (z(t), y(t), U(t) + u(z(t), y(2))) -

Let I" be a curve in the three-dimensional space given parametrically by

z=f(s) y=g(s) z=nh(s)
We are looking for a solution u(z,y) of (3.1) such that
hs) = u(f(s), 9(s))-
This is the Cauchy problem for (3.1). We are only interested here in a local solution, defined

for (z,y) near (xo = f(s0), %0 = g{s0)) for some fixed sg. The initial-value problem is the
Cauchy problem with T of the form

=5 y=0 z=~h(s).

That is, we impose that u(z, 0) = h(z).
The purpose of this section is to prove the following theorem using the method of char-
acteristics.

2You can find a nice ‘ODEs refresher” in the online lecture notes of Gustay Holzegel (week 1).
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Theorem 3.5. Let P = (x0,%0, 20) and T' a C'-curve parametrized by
T s (f(s),g(s), h(s)),

going through the point P at s = sp. Assume that T’ is non-charcateristic, i.e.

£ (s0)b(z0, Yo, 20) — ¢'(s0)a(xo, yo, 20) # 0. (3.4)

Then, there ezist a small neighbouhood U C R of (z0,y0) and « unique C -function u :
U = R solving (3.1) in U and satisfying

h(s) = u(f(s),g(s)) along T.

Proof. We are looking for an integral surface S of (3.1) given by z = u(z,y} with (z,¥)
in a neighborhood of (zo,y0), passing through I'. By Proposition 3.2, this will consist of
characteristic curves passing through the various points of T' .
More precisely, we construct a local solution near (zo, ) = (f(50), 9(s0)) parametrized
by
x=X(st) y=Y{s,t) z=2(st), (3.5)
where s is near sp and X, Y, Z satisfy the characteristic ODEs

X — o (X(s,t), Y (5,1), Z(s,1)),
= h(X(s,1),Y (5,1), Z(s,1)), (3.6)
L — c(X(3,1),Y (5,1}, Z(s,1)) ,

with initial conditions
X(s,0) = f(s) Y{(s,0)=g(s) Z(s5,0)= h{s).

From the ODE theory, there exists a unique solution of class C! of this system with (s,t)
near (sg,0). Moreover, this solution depends continuously on the parameter s.

Equation (3.5) represents a parametrized surface . In order to represent this surface
explicitly as z = u(z,y), we need to invert x = X(s,1), y = Y(s,t) to s = S(z,y),
t = T(z,y), since then

z = Z(s,t) = Z(S(z,y), Tz, y}) =: u(z. y)-
By the implicit function theorem, the local inversion is possible provided that

Jﬂ(so) g’(sﬂ) 7& 0.

a(zo, %0, 20) b(xo, 0, 20)

%(50,0) 4¥ (s0,0)| _
&(s0,0) %(50,0)
This is precisely the condition (3.4) that T is a non-characteristic curve. Therefore, (3.5)
represents indeed a surface z = u(z, y). In order to show that this is an integral surface, we
notice from (3.6) that for any point P € Z, (X, 8,Y, 0.2 )} gives the direction of the tangent
to a curve s = const. on L. Thus, the characteristic direction (a,b,c)' = (8, X,8,Y,0Z )t is
parallel to the tangent plane of £ at P. In conclusion, ¥ is an integral surface of the PDE
(3.1).
So far, we have proved the existence of a local Cl.solution u. To prove the uniqueness
of this solution, it suffices to apply Lemma 3.4. More precisely, any other integral surface
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%/ through T' would have to contain all characteristic curves through I' and hence would
locally coincide with X.

O

Example: We apply the method of characteristics to the linear advection equation (1.7)
with initial condition u(zx,0) = f(z).
In this case, the curve I is parametrized by

z=s t=0 =z=f(s),

where we relabeled y by £. The characteristic equations become:

dr

o=

&1, {(x,y,2)(s,0) = (5,0, f(3)).
dz __

& =0

Thus,
(s, T)=cT+8
s, T)=T1
z(s, 1) = f(s).
We invert the first two equations ebtaining T = ¢ and s = z — ¢f and conclude that
= z(s,7) = f(s) = f(z — ct).
We thus recovered the result in Proposition 2.1.

The method of characteristics can also be applied to first-order fully nonlinear PDEs,
but we will not discuss this in this course. We refer the interested readers to [JohnPDE],
[Holzegel], [Evans, Chapter 3.

4. THE INVISCID BURGER'S EQUATION

The inviscid Burger’s equation

{6,:1!. -+ u(‘),_.u =1{

u(z, 0) = h(z), zeR, t=>0. (4.1)

appears in fluid mechanics, where u represents the velocity field of a Newtonian fluid.

We start by applying the method of characteristics to (4.1). The curve T is in this case
parametrized by

while the characteristic equations become:

.
4 1, (x,y,2)(s,0) = (5,0, f(s)).

dz .
& =9,
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Then,

z(s,T)=27+5s

t{s,7) =T

z(s,7) = h(s),
where we used ﬁ% =0 to deduce the expression of x{s, 7). We invert the first two equations
obtaining 7 = £ and s = z — zt, and thus

z(s,T) = h(s) = h{z — 2t).

Therefore, u = z{s, T) satisfies the implicit equation

u(z,t) = h(z — ulz, t) - £).



