ADVANCED PDE 1I - LECTURE 2

PIETER BLUE AND OANA POCOVNICU

Warning: This is a first draft of the lecture notes and should be used with care!'

1. THE INVISCID BURGER'S EQUATION

We consider the initial-value problem for the inviscid Burger’s equation

du+udbu=20
u{x, 0) = h{x),

In the previous lecture we found the characteristic curves for this problem:

zeR, t>0. (1.1)

z(s,T) =27 +s

ts,T)="71 T 20

z(s,7) = h(s),
In order to understand the solutions of the Burger’s equation, we project the characteristic
curves on the (z,{)-plane. Fix a point (s,0). Then, 2 = u(s,0) = h(s) = const. The
projected characteristic through (s,0, h(s)) € T is the line

z(s,T) =27+
t(s,7) =,

which can also be expressed by x = h(s)t + s for £ > 0, The solution is constant along this
line since it is constant (= h(s)) on the characteristic through (s,0, k(s)).

+ &
X=h()t +5

75 &= X

Unless h(s) is monotonically increasing, we notice that two projected characteristics
Cy:x = h(s1)t+s1,t > 0 and Cy : © = h(s2)t + 52,¢ > 0, intersect at some point (z,t)
where

S2 — 851
h(32) E h(Sl) ’

'Lecture 2 was inspired by Chapter 3 in Evans' book, by Gustav Holzegel's lecture notes (week 2), and
by Chapter 2 in Fritz John's PDE book. We refer the interested readers to these sources for more details.
See also Alinhac’s book on hyperbolic PDEs (Chapters 4) for a slightly different perspective.

1

t=—
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(Note that if h is monotonically increasing, then ms—:%:—;m < 0.) At the point of intersec-

tion, the solution can no longer be univalued. 't LS
51 Ls, N/ L

2 b ¥ »
W

B
53 SLb

Sy

N Y i “ .
In order to continue a solution of Burger's equation beyond the crossing of characteristics,
we need to give up the requirement that it should be of class C! (classical). We define below
a less restrictive notion of solution.
Assume for the moment that u is a C'-solution of (1.1) with initial condition u(z,0) =
h{x). Let v : & x [0, 00) — R be smooth and compactly supported. We call such a function

v a test function. Multiplying (1.1) by v and integrating by parts, we obtain:

00 o) oo [s.] 2 oa
0= f [ (B + 28, (w2))vdadt = — f [ udv + -3, vdzdt — f h(a:)vd:z:i .
0 —a0 2 0 —0a 2 —c0o t=0

Thus,
oo o ,u2 o0
f f udv + —dyvdrdt 4+ f h{xjvdr] =0. (1.2)
0 —=00 2 —0oa t=0

We derived (1.2) by assuming that u is of class C!, but (1.2) makes sense even if u is only
bounded.

Definition 1.1. A function u € L*™(R x (0,00)) is an integral solution of (1.1) provided
that (1.2) holds for any smooth compactly supported test function v : R x [0, 00) - R.

The natural questions to ask is whether there exists an integral solutions of (1.1) and if
so, whether it is unique. We will not answer these questions in full generality, but we will
gain further insight by studying piecewise-smooth integral solutions and by looking at a
few concrete examples. Before we proceed, we first recall Green's theorem that we will use
shortly.

Theorem 1.2 (Green’s theorem). Let C be a positively oriented, piecewise smooth, simple
closed curve in the plane and let D be the region bounded by C. Denote by v = (v, 1)
the outward unit normal to D. Let F = (P, Q) be a vector field on D, Then

/f divﬁda:dy=[ﬁ-uds,
D C

[[ O: P + 0,Qdxdy = f Py + Quads.
D C

or equivalently,
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Let V C R x (0, c0) be some open region separated into V¢ and V;. by a smooth curve C.
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We assume that u is an integral solution and that u and its derivatives are uniformly
contimious in V¢ and V; (i.e., u is a piecewise-smooth integral solution).
For any v compactly supported in V¢, we have by integration by parts as above that

o0 p0o .u2
f f udhv + —dyvdrdl =
1} -o0 2

Thus, dyu + ud,u = 0 on Vp. Similarly, yu + ud,u = 0 on V.. On the other hand, for any
v compactly supported in V, which does not necessarily vanish on C, we have:

oo o0 ,u2 ,u2 uz
= f / udv + — O vdrdt = f/ udyv + —J vdzdt + /] udyv + —dgudrdt. (1.3)
0 J-oo 2 v, 2 2 2

Let ¥ = (v;,1») be the unit normal to C pointing from V; into V,. By applying Green's
theorem 1.2 to the vector field F = (%v, uv} in the (z,t)-plane, we have that

u?
ff udv + — ;,,vd:cdt = —f (Oru + udzu)vdrdt +[ (—'r + u;ug)vds
Ve 2 Ve 2

u2
=f (-—e-vl-}-ugug)'vds. {1.4)
o\ 2

Similarly, we obtain

2 2
j] wdjv + %vadrdt =— [/ (Ou + udyu)vdedt +f (u—2rm + u_..uQ)vds
£ v, C
u?
=[ (_rul +urV2)'UdS. (15)
o2

By (1.3), (1.4), and (1.5}, we obtain that

2 _ .2
Or-rf (ue 2urV1+(u£_ur)V2) vds
C

for any test function v compactly supported in V. Therefore,

2 2

Y —-2~u, v+ (ug — us e =0 along C. (1.6)
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Suppose C' is parametrized by (t) = (z = s(t),t), where 5 : [0,00) — K. Since the tangent
to C is parallel to ($,1), we have 7 = Wiﬁ(l’ —§). Then, (1.6) becomes

2 2

te ; EA S(ue — ur). (1.T)

This equality relating the jump of the function 323, the jump of u, and the speed s of the
curve C is called the Rankine-Hugoniot condition.

We have thus deduced that any piecewise-smooth integral solution of (1.1) in ¥V must be
a classical solution on both V; and V,. and must also satisfy the Rankine-Hugoniot condition.
This leads us to the following definition.

Definition 1.3. Let V', V¢, V;, and C be as above. An integral solution u of (1.1) with
the following properties:

(1) u is discontinuous across C,
(2} u is a classical solution of (1.1) in V¢ and V;,
(3} u satisfies the Rankine-Hugoniot condition (1.7)

is called a shock solution.

We discuss next two examples of initial data for the inviscid Burger’s equation {1.1)
which lead to crossing of characteristics, shock solutions, rarefaction solutions.

Example 1: We consider the initial condition

1, if z <0,
hmz)={1-z, fO0<z<1,
0, ifx>1.

Given zp € R, we know by the method of characteristics that ¢ takes the constant value
hi(zp) on the projected characteristic & = h;(xg)t + zo. Consequently,

elfag <0, thenu=1lonz =1+,

e If xp > 1, then u = 0 on = = xyp,

e If0<xg <1, thenu=1—xgonx=(1-—xzp)t+xp.
From this, it follows easily that for 0 < ¢ < 1 the solution of (1.1) with initial condition
u(zx,0) = hy(z) is:

1, ife<t,
wi(z,t) =< =%, ft<z<l,
0, if x> 1.

For ¢ > 1 the method of characteristics breaks down since the projected characteristics
cross. How do we then define a solution for ¢ > 17 The Rakine-Hugoniot condition (1.7)
suggests considering a curve with speed § = -’5%’—‘—'1 % So. we set s(t) = 1—“—‘21 and, for
t > 1, we consider

uy(z, £) ==

1, ifx<s(t)
0, ifz > s(t).
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shock solution of {1.1}.

St

One can easily verify that this a (compressible
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Example 2: We consider the initial condition
0, ifx<0
h ) = L 1
2(z) {1, it x> 0.
Given zp € &, arain by the method of characteristics we have that u takes the constant
value ha(xg) on the projected characteristic © = ho{xg)t + xo. Consequently,
o If zg < 0, then u = 0 on x = xp,
e fzg=0,thenu=1onz =1+ 0.
Therefore, the method of characteristics does not give us any information about the solution
u(z,t) for (z,£) in the wedge 0 < = < £.
L, B=T

L x=-1 4t
!

f n=0 éi
!

. ..

=4

et —

In this case, we can find at least two integral solutions of (1.1). First,

"2&(:57 t) = {

which can be easily checked to be a compressible shock solution, and secondly

0, ifz <0,
X

ugp(z,t) = ¢ ¥ f0<t<uz,
l, ifxz >t

0, ifz<i,
1, ifz> %,
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The solution ugy, is called & rerefuction wave.
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Example 2 shows that integral solutions are in general not unique. To ensure uniqueness
one needs to impose a so-called entropy condition.

Let us briefly discuss the entropy condition in the context of piecewise-smooth integral
solutions of (1.1). Starting with a point P in the (z,#)-plane, we go backwards in time
along a characteristic and hope not to cross any other characteristic. If P € C and if a
projected characteristic from the left (x = uet + s. or equivalently, t = & — 2 if u¢ # 0)
and one from the right (x = u,;f + 8} meet at P, then u; > § > u,. This is the entropy
condition yielding uniquenecss of integral solutions in this case. In particular, this shows
that the shock solution u) constructed in Example 1 is the unique integral solution of (1.1)
with initial condition u;(z,0) = hi(z).

For more on entropy solutions see for example [Evans, Chapter 3].



ADVANCED PDE II - LECTURE 2, PART 2

PIETER BLUE AND OANA POCOVNICU

Warning: This is a first draft of the lecture notes and should be used with care!!

1. THE LINEAR WAVE EQUATION ON R

The wave equation on R
u—Au=F, (LW)
where A = 321 4o+ Bgn is Laplace’s operator, appears as a model in various physical
contexts, including:
s Vibrating string. With n = 1 and F = 0, u represents the normal displacement
of a vibrating string.
¢ Light in vacuum. From Maxwell’s equations in electromagnetism, it can be seen
that each component of the electric and magnetic fields satisfies (LW) with n = 3
and F=0.
* Propagation of sound. Equation (LLW) arises as the linear approximation of the

compressible Euler equations, which describe the behaviour of compressible fluids,
such as air.

¢ Gravitational waves. A suitable geometric generalization of (LW) turns out to
be the linear approximation of Einstein’s equation, which is the basic equation of
the theory of general relativity.

In this section, we discuss the simplest wave equation, namely the linear wave equation
en K (n =1 and F =0), also known as the equation of the vibrating string:

Ofu— 202u =0,

u(x,0) = f(z), zeR. (1.1)

atU(.’E,U) = g(I)a
The equation can be rewritten as

(O + e )(Dr — ede)u = 0.
This suggests that, instead of using (z,f), we use the so-called characteristic coordinates
E=zxz+ct np=zx—c.
In these coordinates, (1.1) has the form 9¢d,u = 0. Integrating successively with respect
to € and 7, we easily obtain that u = F(£) + G(7), or equivalently that
u(zx,t) = F(z +ct) + G(z — ct). (1.2)

"Lecture 2 was inspired by Chapter 3 in Evans’ book, by Gustav Holzegel's lecture notes (weel 2}, and
by Chapter 2 in Fritz John's PDE book. We refer the interested readers to these sources for more details.
See also Alinhac’s book on hyperbolic PDEs (Chapters 4) for a slightly different perspective.

1



2 P. BLUE AND O. POCOVNICU

Therefore, we have two families of characteristic lines & & ¢t = const. The graph of u(z,t)
consists of two waves propagating with velocity ¢ in opposite directions.

[Figure 11]

Next, we determine F and  in terms of the initial conditions f and g. By differentiating
the first equation in the following system:

F(z) + G(x) = f(z)
cF'(z) - cG'(z) = g(z),
we obtain easily that
oy _ ef'(z) +g(x)
F(‘T) - %2 '
Integrating these from 0 to z, we have
F(z) = [2 + 5 [7 g(e')de’ + (F(0) - L)
G(z) = L2 - L 7 g(2')de’ + (G(0) — £2),
Combining these with (1.2), we obtain
r-t+ct

ulz,t) = 3 (Flz + ) + flz - ) + 5 [ ola')dz',

r—ct
This is called D’Alembert’s formula for the solution of the linear wave equation on B. We
list below some of the consequences of this formula.

Consequences:

1). If g = 0, then u breaks up into two traveling waves with speed ¢, with the same profile
‘25, one traveling to the left and the other one to the right.

2). The domain of dependence of the solution u at (x,t) is the interval [z — ct,z + ¢f]

t

(=) +)

(%
x-ct = X dxct PXE

3). The domain of influence of a point xg is the interior of the “light cone™ with vertex zg:
Tg—ct < <xg+ cl. £ A

fe=XatCE
X=X oL

Xo -

4). [Finite speed of propagation] For the linear wave equation, “signals” only travel with
speed ¢.
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5). {Conservation of energy] We introduce the energy of a solution u at time #:
ool

E(u(t)) := f ((Beu)? + 2(8:u)?) (, t)da.

-0

Then, E(u(t)) = E(u(0)) for all £ € R. In order to prove this fact, we note by (1.2) that
(Bu)? + 2(Opu)? = 262 [(F"(m + ct))2 +(G'(z ~ r:t))z] .
Then, by simple changes of variables, we obtain that

E(u(t)) = 26 [ T (P + )+ (€'l — @) da = 28 f T (@) + () de

—-00 —00

= E(u(0)).



