ADVANCED PDE II - LECTURE 3

PIETER BLUE AND QANA POCOVNICU

Warning: This is a first draft of the lecture notes and should be used with care!'

1. THE LINEAR WAVE EQUATION IN HIGHER DIMENSIONS
In this section we first consider the linear wave equation
Bfu —Au=0 (LW)

on R™ with n odd. Our goal is to find an explicit formula for classical solutions (of class
C?). We start with the case n = 3.

Proposition 1.1 (Kirchhoff’s formula for the solution of (LW) on R3). Let f € C*(R%)
and g € C*(R®). Then, the initial value problem

Py — Azu =0, 3
zeR, t>0 1.1
{u(x, 0) = f(:lf), 6-'-“(3"!0) = g(z), ( )
has @ unique solution u € C*(R3) given by the formula
1
u(z,t) = tg(y) + f(¥) = Vyf(y) - (= — y)do(y). (1.2)

Amt? Jigmypes

Our argument will involve spherical means of a function h(z), = € R%:
1
(4eh)(e) = = [ ha +ry)do ), (1.3)
T Jg:

where 7 > 0, $? is the unit sphere in R* (whose area is 4r).

Assume that u is a C2-solution of (LW) at time t. Then we notice by the above defini-
tion that Ag(u(:,t})(x} = u(z,t). In the following, we will obtain an explicit formula for
Ar(u(,t)){x) and we will make  — 0 to obtain a formula for u(z,t). The explicit formula
for Ay(u(-,t))(x) is obtained by showing that a certain function u(r, t) related to it, satisfies
the linear wave equation 8?v — 8%v = 0 on R and by applying D'Alembert's formula.

Before proving Kirchhoff’s formula, let us recall the Divergence theorem that we'll be
using shortly.

Theorem 1.2 (Divergence theorem). Let S be an oriented, piecewise smooth, closed sur-
face enclosing the compact subset V of R3. Denote by v the outward unit normal to S.
Let F be a vector field on V. Then

[[[ divF drdydz = /] F.uds.
v 5

Lecture 3 was inspired by Chapter | in Sogge's book and by Gustav Holzegel's lecture notes {week 3).
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2 F. BLUE AND 0. POCOVNICU

Proof of Kirchhoff's formula. We start with some calculations for spherical means A, h(z).
By noticing that v(y) = y is the outer unit normal to the sphere %, applying the Divergence
theorem 1.2, and making the change of variables x + ry - y, we have that
1 1
O (Arh)(z} = ———f Vh{z + ry) - ydo(y) = —/ divy (V:h(z +ry)) dy
i ise lvl<1

47

= — (diveV2) h(z + ry)dy = -T—-f (Azh)(z + ry)dy
A Jyi<t AT Jy<a
1
= —A hiy)dy.
4are T ly-z|<r W)
On the other hand, using polar coordinates we have
1 1 1 "
— hy)dy = — hz+ydy---—------/-f hiz + py)p*da(y)dp
)y =g | eray= g [0 b st
T
- f prAh(z)dp.
a

The above two calculations show that
1 r
B (Ach)(2) = 54, fn P2 A h(<)dp,
from which we easily obtain that
8, (r*0,(Avh) (@) = A.r2Ah(z).
If we set H(r,z) := Aqh(z), then this shows that H solves Darboux’s equation
2
(a,? + ;ar) H{r,x) = A H(r,z). (1.4)
We notice that H(0, 5} = Agh{z) = h(z). Also, notice that r — A h(z) is an even function.
Since the derivative at zero of any differentiable even function is zero, we conclude that
G H(0,x) = 0.
In the following, let us assume that u is a C%-solution of (LW). We set
1
U(r ) 1= (A, 0)(e) = 5= [ ula s )doty).
4 52
Then, by (1.4), we have
2 1
AU = (33 + ;a,,) U= ;Bf(rU).
On the other hand, since #?u = Au, we have

1
AU =~ f Agti(z +ry, do(y) = f Bu(z + ry, t)do(y) = OU.
a7 52 4 52

The last two calculations show that 87(rl/) = 82(rU). Therefore, if we set v(r t) :=
rU(t,r, z) (think of z as a parameter here), we have that v solves the one-dimensional wave
equation:

Oiv = 6%

v(r,0) = 1A f(z), Ou(r,0)=rd,g{z).
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By D’Alembert’s formula, it follows that
1 1 [t
o) = 5L+ DAl () + (= DAif(@l +3 [ pAsatadip
-

Using U = % together with the fact that r — A,f and r — A,g are even functions, we

deduce that
t+r

U(rt,2) = 52 [+ Y Araaf @) = (=) An [+ 0 [ pAsalad.

t—7r

Letting » — 0 and recalling that U(0, ¢, x) = (Agu(z,-))(z) = u¢, z), we finally obtain

e ) = AEAS(@)) + thug(@) = - [ tola-+ 1) + Fe + )+ Vo o+ ) tudo(s)
1

= Ani2
4zt |r—yl=

: tg(y) + fly) — Vyf(y) - (z — y)do(y).

This shows that any C*-solution of the Cauchy problem (1.1) must be given by the above
formula and, in particular, it must be unique. Conversely, if f € C3(R®) and g € C*(R?),
it can be easily verified that u(t,z) given by the above formula solves (1.1). O

We can generalize the above strategy to obtain an explicit formula for solutions of (LW)
on R® for any n odd.

Proposition 1.3 (Explicit formula for the solution of (LW) on R™ with n odd). Let n be
odd, f € o™ (R™), and g € Cn—}l‘(R"). Then, the initial value problem

afu - Azu =0, ' .
{U(JE,O) = f(x)- 3;11(:1:,0) = g(g;)' TER vt >0 (15)

has a unique solution u € C*(R™) given by the formula

n—-3 n=3
df1o\z __ 19\ 7 ._
—(EE) " 2A¢f(:r:)+(z-éz) i 2A¢g(:):|

a (19\ 7T 1
1.3..... (n— 2wt [a (;'37) ;flr_m:t F(y)do(y)

+ (;g) = : f| y ntg(y)da(y).] (1.6)

Sketch of proof. If n > 3 odd, we use a similar construction to that for n = 3. More
precisely, we consider the spherical means

i

Wn—1

u(x,t) =

Avh(z) = fs Mz + ty)do(y),

where wy_1 denotes the area of the unit sphere S, € B If n = 2k + 1, we consider

. k-1
olr,£) i= (%%) %=1 A u(t, x) (L.7)
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and it turns out that v solves the linear wave equation on R, d%v — 8%y = 0. Also, the
initial values of v are

om0 = (22) 7 14, 0.2y = 00, ot - (22)" -t angte < vt

By D'Alembert’s formula, it follows that
1 1 t
o) = S0+ -0 -]+ 3 [ wshds. (18)
r

One can show that there exist constants cj with

such that
19\ 21 Z +1 3J
(;'B_r) 9(7‘) (‘JTJ

Combining this with the definition (1.7) of v, it follows that

k
u(r,t) = (cn'r +c1r26—(2_-+ LG T jk) Apult, ).

Therefore, the arguments for n = 3 and (1.8) yield

. .1 1
u(z, t) = }1_1}1(1) Apu(z,t) = }1_1)1(1} a;v(r, )= a@,qﬁ .

1
ot a']"t,b(t).

We then obtain formula (1.6) by plugging in the above equation the definitions of ¢ and
. O

Next, we obtain an explicit formula for solutions of (LW) on R” for n even.

Propos:tlon 1 4 (Explicit formula for the solution of (LW) on R™ with n even). Let n be
even, f € C*5° (R“), and g € c* (IR“) Then, the tnitial value problem

02 — Agu =0,
u(z,0) = f(z), Gu(z,0) = g(z),
has a unique solution u € C*(R™) given by the formula

- 2 12 Q)“T"tn_l fla+ty)
T 13- (n— w, LOt \ t Ot <t V1 — [y

zeR™ t>0

g1 f $+ty) ]
lyl<1 vl - |yl?
En f(y)
___—._d_y
flx-yl<t Vit =z -yl

n=2

N 9(v)
L—yla mdy] (1.9)

o ]
\-.._./ \-.-/

Sl
—
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Proof. We will use Hadamard’s method of descent. The idea here is that if u solves the
lincar wave equation on R™, then it is also a solution of the linear wave equation on R7+!
which happens to be independent of the variable z,41. Therefore, if n is even, we can
obtain a formula for u(t,z) by using the formula (1.6) for the solution on R"*! and then
integrating out the redundant variable.

Let
ﬁ(xl,...,1ﬂ+1,t) = (T, . B ),
f(:z:l,...,:t:n+1) s = f(zy, ... z0).
g(xl"",$n+1) : -:g(x]'l""wn)'

If u solves the Cauchy problem (1.5) on R", then 4 solves the Cauchy problem for (LW) on
R™*! with initial data f and §. By applying formula (1.6) on ®*+!_ it follows that

ﬁ(m, Tnil, i) =

n-2
1 s (1 3) z _lf .
= =T t" flx+ty, xng + tyny do(y, y

1-3..... (n — 1)wn [55 t ot i+, =1 ( n+1 n+1 n+l)

R=2

190y % __ _
+(E§) t" 'f. g(:r+ty,:rn+n+tyn+1)d0(y,yn+1)],

|y|2+y?1+1=1

where we used the notations (zy,...,Tn,Zns1) = (2, Tn+t) and (Y1, ..., U Unse1) =
{(# Yn+1). In view of the definitions of 4, f, §, this can be rewritten as

n-2
B 1 a 1o\ |
e ) =g [E(tat) " flylzﬂﬁ“__lf(m+ty)da(y,yn+1)

-
+ (;5) "t f : g(m+ty)d6(y,yn+1)]- (1.10)
Iy|2+y:|+1_.1

Next, we apply ?

A —ngy T ¥ ¥n41)do (Y, Y1) f Fy, My V1 + Vh(y)2dy,
n4-1 D

yeED

with the domain of integration being one of the two hemispheres of 8™ (for which we have

h(y) = £/1 - |y’ and D = {ly| < 1}) and F(y, yo+1) = f(z+ty) or F(y,tns1) = g(z-+ty).
This yields

f(:c+ty)d

fx +ty)de(y, v +1)=[ ——dy
‘/l;lz_y.f|+1=1 " [gl<l v 1- |y|2

g(z 4 ty) J

g(x + ty)do(y, yus1) =f Yy
-/ly|2+yf+1=1 , Iyl<1 Vv 1~ 'y|2

Combining these with (1.10) yields the desired formula (1.9). O

2This is simply & generalization of the formula for a surface integral over a surface § given explicitly by S ;
z = hiz,y) with {z,y) € D C R*. Namely, Mg Flz,y, 2)de = [f, Flz,y. bz, 1)) /1 % (8:8)2 + (B,h)2dzdy,
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Remark 1.5. In the case n = 2, formula (1.9) simpiifies to

ulz, §) = l] to(e +ty) + flztty) +Veflz )ty
lyl<1

4 V1-{yl?
_ if tow) + W) ~ Ve /W) (2= 9) (1.11)
le—yl<t

2m t\/t2 — |z — y|?

This is called Poisson’s formule for the solution of the linear wave equation on R?.

From formulas (1.6) and (1.9), we deduce the following:

(1) The domain of dependence of a solution u of (LW) at (x,%) on the initial data f
and g is contained in the ball centered at z of radius £.

(2) (Finite speed of propagation) The domain of influence of a point zy on the solution
is contained in the “light cone” with vertex (zo,0): {(x,t): |z —xzo| <t¢, t > 0}.

(3) (Strong Huygens Principle) For n odd, the domain of influence of a point x4 on
the solution is the boundary {(z,t) : |z — xo| = ¢, t > 0} of the “light cone”
{(z,t) s |lx—z0| £, t =0},

£ =

(%)

,,, 7 .
e /e

Moreover, from Propositions 1.3 and 1.4, we obtain the following theorem.

Theorem 1.6. Let k = 2,3,..., f € CWATK(R"), and g e Clr/A+k={(Rn), Then, the
Cauchy problem (1.5) has a unigue solution u € C*(R"), given by formulas (1.6) or (1.9)
depending on whether u is odd or even.

Ifn is odd and f,g are supported on {z : |z| < R}, then u is supported on ||z| — t| < R.
Moreover, there exists a constant C > 0 such that

lwfz,t)| <

(1.12)

ne=1"*

If n is even and f,g are supported on {x : [z| < R}, then u is supported on |x| < t+ R.
Moreover, there exists a constant C > 0 such that

< == c 1"
O (ol - 1)

[2e(z, £)) {1.13)
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Here, [n/2] denotes the integer part of n/2 and (t) := V/t* + 1.

Sketch of proof. The proof follows from formulas (1.6) and (1.9).

For n odd and f,g supported on {z : [z| < R}, we obtain the solution v in (1.6) by
integrating in y over |z — y| = ¢, with the additional constraint |y} < R (this is clear in
Kirchhoff's formula (1.2}). Then, u is supported on

|zl = 2] = |=] = ly — zl| < |& + (g — )| = [y] < B.

The decay (1.12) also follows from formula (1.6}. In particular, for n = 3, we see immedi-
ately from Kirchhoff’s formula (1.2) that |u(t, z)| < -Qt'

For n even and f,g supported on {z : |z| < R}, we obtain the solution u in (1.6) by
integrating in y over |z — y| < ¢, with the additional constraint |y| < R (this is clear in
Poisson's formula (1.11)). Then, u is supported on

lz] <lz—yl+ |yl <t+R.

The decay (1.13) is more subtle then (1.12), but it does follow from formula (1.9) {Exercise].
O

Remark 1.7. Even though for n even we don’t have a strong Huygens principle, the decay
estimate {1.13) compensates for it. More precisely, it says that for compactly supported
initial data, u decays more and more rapidly as one goes away from the light cone {(z,t):
lz| =t, t = 0}.

Both decay estimates (1.12) and {1.13) can also be derived from the Klainerman-Sobolev
inequality that we’ll sec later in the course, without using formulas {1.6) and (1.9).

2. CAuchY-KOWALEVSKI THEOREM

The Cauchy-Kowalevski theorem concerns the existence and uniqueness of & real analytic
solution of a Cauchy problem for the case of real analytic data and equations.
We first recall the definition of a real analytic function,
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Definition 2.1. A function f: R™ — R is called real analytic near g if there exists r > 0
and constants f, such that

flz)= qu(-’ﬂ —zg)® for |z—mo| <1,

where the sum is taken over all & = (@,...,,) € N"® and we used the notation z* :
..z,

Theorem 2.2 (Cauchy-Kowalevski theorem). Let k > 0. Let g; : R* > R, j=0,...,k-
1, be real analytic functions on a neighborhood of T € R™, and G be real analytic on a
neighborhood of (.1".. 0, (Dggj(j))j+la|5k.j5k—l) .

Then, the Cauchy problem

{3{““ = G(,t, (Dg0]u);j +ia<k, 0<<k—1)

: 2.1
#Hu(z,0)=g;(z), j=0,...,k—1 near =73 (2.1)

admits a real analytic solution u defined on a neighborhood of (£,0) € R x R,. This solution
15 unigue in the class of real analytic solutions.

Sketch of proof. Step 11 Transformation to zero Cauchy dete end formulation as a first
order system for the new unknown:

U= (O 1ty O, O, .0 ),
with components (u")7L,.

Step 2. Computation of the Taylor series near the origin.
Since we are looking for a real analytic solution, we expect that i has the power series
expansion
Dou*(0,0)
k i3 1
u (27, t) = Z '-—--—a'!-—'-—.'l:ﬂ tﬂft, (22)
[+

where @ = (@, o).

Step 3: Convergence of the power series (2.2).

In this step we intend to use the method of mejorants to show that the power series (2.2)
converges for |x| + Jt| < r and r sufficiently small. Once we do this, the existence of a real
analytic solution u of our first order system follows. Indeed, by construction we have that
the power series at {0,0) of the left and right hand-side of the system agree, and now they
also converge. Hence, the left and right hand-side of the system agree on a neighborhood
of (0,0}, or in other words % is a real analytic solution in a neighborhood of (0,0).

O

We will give the details of the above proof in Lecture 4. We will also discuss the different
settings in which the Cauchy-Kowalevski theorem can be applied.



