
ADVANCED PDE II - LECTURE 4

PIETER BLUE AND OANA POCOVNICU

Warning: This is a first draft of the lecture notes and should be used with care!1

1. Cauchy-Kowalevski theorem

The Cauchy-Kowalevski theorem concerns the existence and uniqueness of a real analytic

solution of a Cauchy problem for the case of real analytic data and equations.

1.1. Preliminaries. We recall the definition of a real analytic function.

Definition 1.1. A function f : Rn → R is called real analytic near x0 if there exists r > 0

and constants fα such that

f(x) =
∑
α

fα(x− x0)α for |x− x0| < r,

where the sum is taken over all α = (α1, . . . , αn) ∈ Nn and we used the notation xα :=

xα1
1 . . . xαnn .

Note that if f is real analytic near x0, then f is C∞ near x0 and, moreover, fα = Dαf(x0)
α! .

Here we are using the notations Dα = ∂α1
x1 . . . ∂

αn
xn and α! = α1! . . . αn!.

Example: For r > 0, we consider

f(x) :=
r

r − (x1 + . . . xn)
for |x| < r√

n
.

Then, f is real analytic near zero and moreover

f(x) =
∑
α

|α|!
r|α|α!

xα for |x| < r√
n
.

To prove this, we first notice by Cauchy-Schwarz inequality that |x| < r√
n

yields

|x1 + · · ·+ xn| ≤
√
n
√
x21 + . . . x2n =

√
n|x| < r.

Then, for |x| < r√
n

we have that

f(x) =
1

1− x1+···+xn
r

=

∞∑
k=0

(
x1 + · · ·+ xn

r

)k
=

∞∑
k=0

1

rk

∑
|α|=k

|α|!
α!

xα =
∑
α

|α|!
r|α|α!

xα.

Before discussing the Cauchy-Kowalevski theorem, we first introduce some preliminary

notions and results.

1Lecture 4 was inspired by Section 4.6 in Evans’ book, by Chapter 1, Section D in Folland’s PDE book,
by Gustav Holzegel’s lecture notes (week 3), and by Jonathan Luk’s lecture notes (Section 2).
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2 P. BLUE AND O. POCOVNICU

Definition 1.2. Let f =
∑

α fαx
α and g =

∑
α gαx

α be two power series. We say that g

majorizes f (g � f) if gα ≥ |fα| for all α.

Lemma 1.3. If g � f and g converges for |x| < r, then f also converges for |x| < r.

Lemma 1.4. If f =
∑

α fαx
α converges for |x| < r and if s is such that 0 < s

√
n < r, then

there exists C > 0 such that

g(x) :=
Cs

s− (x1 + . . . xn)
=
∑
α

C|α|!
s|α|α!

xα

majorizes f for |x| < s
√
n.

Proof. Let y = s(1, 1, . . . , 1). Then |y| = s
√
n < r. By the hypothesis, it follows that∑

α fαy
α converges. Thus, there exists C > 0 such that |fαyα| < C for all α. In particular,

|fα| ≤ C
s|α|
≤ C|α|!

s|α|α!
. This shows that indeed g � f . �

1.2. The general setting. We consider the following k-th order fully nonlinear equation

on Rn+1:

F (x, (Dαu)|α|≤k) = 0, (1.1)

where F is real analytic. Let Γ be a hypersurface of class Ck. Fix x0 ∈ Γ. We denote by

ν = (ν1, . . . , νn+1) the unit normal to Γ at x0.

Definition 1.5. Given u, the j-th normal derivative of u at x0 is defined by

∂jνu :=
∑
|α|=j

ναDαu =
∑

α1+···+αn=j
να1
1 . . . ν

αn+1

n+1

∂ju

∂α1
x1 . . . ∂

αn+1
xn+1

.

The Cauchy problem for (1.1) consists in solving (1.1) with prescribed data on Γ:

∂jνu(x, 0) = gj(x), j = 0, . . . , k − 1, for x ∈ Γ.

All our considerations will be restricted to a neighborhood of a given point x0 on Γ.

Using a change of coordinates, we may assume that x0 is the origin and that near the

origin Γ coincides with the hypersurface xn+1 = 0. (This procedure is called flattening of

the boundary. See Appendix C.1 in Evans’ book for details.) It will then be convenient to

make the change of notations (x1, . . . , xn+1) =: (x, t), where x := (x1, . . . , xn) ∈ Rn. Then,

∂jνu = ∂jt u and we can restate the Cauchy problem for (1.1) as{
F
(
x, t, (Dα∂jt u)|α|+j≤k

)
= 0,

∂jt u(x, 0) = gj(x), j = 0, . . . , k − 1, |x| < r,
(1.2)

for some small r.

We observe that if u is a function of class Cr with r ≥ k, then the Cauchy data (gj)
k−1
j=0

determine the derivatives of u on Γ:

Dα∂jt u(x, 0) = Dαgj(x)
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with j ≤ k − 1 and |α|+ j ≤ r. The only quantity in (1.2) which is unknown is ∂kt u(0, 0).

In order for the Cauchy problem to be well-behaved, we need to assume that the equation

F = 0 can be solved for ∂kt u. In the linear case

F
(
x, t, (Dα∂jt u)|α|+j≤k

)
=

∑
|α|+j≤k

aαj(x, t)D
α
x∂

t
ju− f(x, t),

this assumption just means that

a0k(x, 0) 6= 0, (1.3)

and hence by continuity a0k(x, t) 6= 0 for small t.

In the quasi-linear case

F
(
x, t, (Dα∂jt u)|α|+j≤k

)
=

∑
|α|+j≤k

aαj
(
x, t, (Dβ

x∂
i
tu)|β|+i≤k−1

)
Dα
x∂

t
ju−b

(
x, t, (Dβ

x∂
i
tu)|β|+i≤k−1

)
,

this assumption means that

a0k
(
x, 0, (Dβ

xgi(x))|β|+i≤k−1
)
6= 0. (1.4)

In the fully nonlinear case, the equation

F
(
x, 0, ∂kt u(x, 0), (Dαφj(x))|α|+j≤k, j≤k−1

)
= 0,

can be locally and uniquely solved for ∂kt u(x, 0) (using the implicit function theorem) pro-

vided that

F
(
0, 0, γ, (Dαφj(0))|α|+j≤k, j≤k−1

)
= 0, (1.5)

∂F

∂s

(
0, 0, s, (Dαφj(0))|α|+j≤k, j≤k−1

)∣∣∣
s=γ
6= 0 (1.6)

for some γ ∈ R. Then, we can locally write our equation as

∂kt u = G
(
x, t, (Dα∂jt u)|α|+j≤k, j≤k−1

)
, (1.7)

where G is an analytic function.

If conditions (1.3), (1.4), or (1.5) hold, then we say that the Cauchy problem for (1.1) is

non-characteristic. In this case, if the Cauchy data (gj)
k−1
j=0 are real analytic, then (gj)

k−1
j=0

together with (1.7) determine all the derivatives of Dα∂jt u(x, 0), for all α, j.

1.3. The Cauchy-Kowalevski theorem.

Theorem 1.6 (Cauchy-Kowalevski theorem). Let k ≥ 0. Let gj : Rn → R, j = 0, . . . , k −
1, be real analytic functions on a neighborhood of x̄ ∈ Rn, and G be real analytic on a

neighborhood of
(
x̄, 0, (Dα

xgj(x̄))j+|α|≤k, j≤k−1
)
.

Then, the Cauchy problem{
∂kt u = G

(
x, t, (Dα

x∂
j
t u)j+|α|≤k, 0≤j≤k−1

)
∂jt u(x, 0) = gj(x), j = 0, . . . , k − 1 near x = x̄

(1.8)

admits a real analytic solution u defined on a neighborhood of (x̄, 0) ∈ Rnx×Rt. This solution

is unique in the class of real analytic solutions.
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Sketch of proof. By a translation, we easily reduce to the case x̄ = 0 (which coincides

with the setting discuss above). We will prove the theorem for the case of a second order

quasi-linear equation of the form{
∂2t u =

∑
|α|=2, αt≤1Gα(t, x, u, ∂tu, ∂x1u, . . . , ∂xnu)Dαu+ G̃(t, x, u,Du)

u(x, 0) = g0(x), ∂tu(x, 0) = g1(x) for |x| < r,
(1.9)

with α = (α′, αt) = (α1, . . . , αn, αt), Gα, G̃, g0, g1 real analytic, r sufficiently small. The

general case (1.8) can be treated similarly, but we omit it here because of the more involved

notations. See Chapter 1.D in Folland’s book for a proof of Theorem 1.6 in the general

case.

Step 1: Transformation to zero Cauchy data and formulation as a first order system.

First, we notice that ũ = u− g0(x)− tg1(x) satisfies a Cauchy problem of the form (1.9)

(but with different Gα, G̃) and with zero initial data. Therefore, in the following we may

assume the initial data are identically zero.

Next, we write (1.9) as a system of first order equations. We set

u = (u, ∂x1u, . . . , ∂xnu, ∂tu). (1.10)

This is a vector with m = n+ 2 components satisfying u(x, t = 0) = 0. We notice that the

first m − 1 components of the vector ∂tu, ∂tu, ∂t∂xiu, i = 1, . . . , n are determined by the

the vectors {∂xiu}ni=1. The last component ∂2t u of ∂tu is determined by the same vectors

in view of the PDE (1.9). More precisely, we obtain the first order system{
∂tu =

∑n
j=1Bj(u, x)∂xju+ c(u, x)

u(x, 0) = 0 for |x| < r,
(1.11)

where Bj : Rm × Rn → Mat(m ×m), j = 1, . . . , n, and c : Rm × Rn → Rm. We denote

the components of Bj by (bk`j )mk,`=1 and c = (c1, . . . , cm). In components, the system (1.11)

reads{
∂tu

k =
∑n

j=1

∑m
`=1 b

k`
j (u, x)∂xju

` + ck(u, x),

uk(x, 0) = 0,
k = 1, . . . ,m, |x| < r, (1.12)

where we denoted the components of u by (uk)mk=1.

Notice that we assumed above that Bj and c do not depend on t. This can always be

achieved by adding an additional component um+1 to the vector u and by imposing the

additional equation ∂tu
m+1 = 1.

Notice that here we were not precise about the matrices Bj and the vector c. For a

rigorous proof, one would need to write these explicitly and show that if a vector u is

a solution of the corresponding system involving precisely these Bj and c, then the first

component u of u indeed satisfies equation (1.9).

Step 2: Computation of the Taylor series near the origin.
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Since we are looking for a real analytic solution of (1.9), we expect that u has the power

series expansion

uk(x, t) =
∑
α

Dαuk(0, 0)

α!
xα
′
tαt , (1.13)

where α = (α′, αt), for . In the following, we compute the coefficients Dαuk(0, 0). By the

analyticity of Bj and c, we have that

Bj(z, x) =
∑
γ,δ

Bj,γ,δz
γxδ, j = 1, . . . , n,

c(z, x) =
∑
γ,δ

cγ,δz
γxδ

for |z|+ |x| < s and s small, where

Bj,γ,δ =
Dγ
zDδ

xBj(0, 0)

(γ + δ)!
, cγ,δ =

Dγ
zDδ

xc(0, 0)

(γ + δ)!
.

For α = (α′, 0), we have Dαuk(0, 0) = 0 for all k = 1, . . . ,m. This follows by taking the

Dα derivative of the initial conditions uk(x, 0) = 0.

For α = (α′, 1), we have Dαuk(0, 0) = Dα′
x c

k(0, 0). This follows by taking the Dα′

derivative of both sides of (1.12) and by using D(α′,0)uk(0, 0) = 0 for all α′ and k = 1, . . . ,m.

For α = (α′, 2), we take the Dα′∂t derivative of both sides of (1.12):

Dαuk(0, 0) = Dα′

 n∑
j=1

m∑
`=1

bk`j (u, x)∂xj∂tu
` +

m∑
j=1

∂zjc
k∂tu

j

∣∣∣∣∣
(u,x)=(0,0)

.

The right hand side is a polynomial in the derivatives Dβu(0, 0) with β = (β′, βt), βt ≤ 1

and |β′| ≤ |α′| + 1, and in finitely many Taylor coefficients Bj,γ,δ and cγ,δ. Moreover, this

polynomial has only positive integer coefficients since this is all the chain rule and the

product rule can produce.

Continuing in this way, we see that for general α = (α′, αt), we have

Dαuk(0, 0) = qkα(. . . , Bj,γ,δ, . . . , cγ,δ, . . . D
βu(0, 0)), (1.14)

where qkα is a polynomial with nonnegative coefficients, βt ≤ αt − 1, and |β′| ≤ |α′|+ 1.

In conclusion, we obtain by induction that all the coefficients Dαuk(0, 0) can be deter-

mined in terms of Bj,γ,δ and cγ,δ alone.

Step 3: Convergence of the power series (1.13).

In this step we intend to use the method of majorants to show that the power series

(1.13) converges for |x|+ |t| < r and r sufficiently small. Once we do this, the existence of

a real analytic solution u of (1.11) follows. Indeed, by construction we have that the power

series at (0, 0) of the left and right hand-side of (1.11) agree, and now they also converge.

Hence, the left and right hand-side of (1.11) agree on a neighborhood of (0, 0), or in other

words u is a real analytic solution of (1.11) in a neighborhood of (0, 0).
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Suppose that we can find majorizing B∗j � Bj and c∗ � c, that is

0 ≤ |Bj,γ,δ| ≤ B∗j,γ,δ, 0 ≤ |cγ,δ| ≤ cγ,δ.

Given these majorants, we consider the system{
∂tu
∗ =

∑n
j=1B

∗
j (u
∗, x)∂xju

∗ + c∗(u∗, x) for |x|+ |t| < r

u∗(x, 0) = 0 for |x| < r.
(1.15)

If we can find a convergent power series for u∗ which solves (1.15):

(u∗)k(x, t) =
∑
α

Dα(u∗)k(0, 0)

α!
xα
′
tαt , (1.16)

then we claim that u∗ � u. This follows by induction. By (1.14), the general step of the

induction is:

|Dαuk(0, 0)| = |qkα(. . . , Bj,γ,δ, . . . , cγ,δ, . . . D
βu(0, 0))|

≤ qkα(. . . , |Bj,γ,δ|, . . . , |cγ,δ|, . . . |Dβu(0, 0)|)

≤ qkα(. . . , B∗j,γ,δ, . . . , c
∗
γ,δ, . . . D

βu∗(0, 0)) = Dα(u∗)k(0, 0).

Since we assumed that the power series of u∗ is convergent for |x|+|t| < r and since u∗ � u,

it follows by Lemma 1.3 that the power series (1.13) of u also converges for |x|+ |t| < r.

In conclusion, by the method of majorants, it suffices to find majorants B∗j and c∗ such

that (1.15) has a real analytic solution u∗ near (0, 0). By Lemma 1.4, we have the following

simple majorants for Bj and c for |x|+ |z| < r with r sufficiently small:

B∗j =
Cr

r − (x1 + · · ·+ xn)− (z1 + · · ·+ zm)

1 1 . . .
1 1 . . .
...

...
. . .


and

c∗ =
Cr

r − (x1 + · · ·+ xn)− (z1 + · · ·+ zm)
(1, . . . , 1).

The system (1.15) then becomes:{
∂t(u

∗)k = Cr
r−(x1+···+xn)−((u∗)1+···+(u∗)m)

(∑
j,` ∂xj (u

∗)` + 1
)

for |x|+ |t| < r, k = 1, . . . ,m,

u∗(x, 0) = 0 for |x| < r.

The right hand side being independent of k, this suggests considering u∗ = v∗(1, . . . , 1)

with v∗ satisfying

∂tv
∗ =

Cr

r − (x1 + · · ·+ xn)−mv∗

m n∑
j=1

∂xjv
∗ + 1

 .

The ansatz v∗(x1, . . . , xn, t) = v∗(s := x1 + · · ·+ xn, t) leads to the equation

∂tv
∗ =

Cr

r − s−mv∗
(mn∂sv

∗ + 1)
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with initial condition v∗(s, 0) = 0. Using the method of characteristics, one can solve this

(exercise) and obtains

v∗(x, t) =
r − (x1 + · · ·+ xn)−

√(
r − (x1 + · · ·+ xn))2 − 2m(n+ 1)Crt

m(n+ 1)
,

which is analytic for |x|+ |t| < r̃ and r̃ sufficiently small. �

1.4. Remarks on the Cauchy-Kowalevski theorem. The Cauchy-Kowalevski theorem

gives local existence of a unique analytic solution near one point of the hypersurface Γ.

However, given analytic Cauchy data on an analytic hypersurface Γ, there is an analytic

solution near any point of Γ, and by uniqueness any two of these solutions must agree on

their common domain. Hence, we can patch them together and obtain a solution near a

neighborhood of Γ.

Many physical problems lead to analytic PDEs. The restriction to analytic Cauchy data

and solutions, however, is unrealistic. (It would imply, in particular, that a solution is

determined globally by local conditions near one point.)

The Cauchy-Kowalevski theorem is local in character and applies only to analytic solu-

tions of analytic Cauchy problems. In particular, it does not give any information on global

existence of solutions, it does not exclude the possibility that other non-analytic solutions

exist, nor the possibility that an analytic solution becomes non-analytic away from the

initial hypersurface.

An important application of the Cauchy-Kowalevski theorem is Holmgren’s uniqueness

theorem. It asserts the uniqueness of solutions of class Ck for linear equations with analytic

coefficients. In particular, in the linear case, analytic Cauchy problems do not admit other

non-analytic solutions.

Theorem 1.7 (Holmgren’s uniqueness theorem). Let k ≥ 0 and let P =
∑
|α|≤k aα(x)Dα

be a kth-order differential operator with analytic coefficients in a neighborhood of x̄ ∈ Rn.

Let Γ be an analytic hypersurface which is non-characteristic at x̄. If u is a solution of

class Ck of the following Cauchy problem in a neighborhood of x̄:{
Pu = 0

Dαu = 0, |α| ≤ k − 1, on Γ,

then u ≡ 0 on a neighborhood of x̄.

2. The Fourier transform and the linear wave equation

Definition 2.1. For f ∈ L1(Rn), we define it’s Fourier transform by

F(f)(ξ) = f̂(ξ) =

ˆ
Rn
e−ix·ξf(x)dx (2.1)

and its inverse Fourier transform by

F−1(f)(x) =
1

(2π)n

ˆ
Rn
eix·ξf(ξ)dξ =

1

(2π)n
F(f)(−x). (2.2)
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Theorem 2.2 (Properties of the Fourier transform).

(1) (Fourier inversion formula) Let f be such that f, f̂ ∈ L1(Rn). Then

F−1(f̂) = f (2.3)

almost everywhere.

(2) Let f ∈ L1(Rn). Then f̂ ∈ L∞(Rn) and, moreover, we have

‖f̂‖L∞(Rn) ≤ ‖f‖L1(Rn). (2.4)

(3) (Plancherel’s identity) Assume f ∈ L1(Rn) ∩ L2(Rn). Then f̂ ∈ L2(Rn) and

‖f‖L2 =
1

(2π)
n
2

‖f̂‖L2 . (2.5)

(This identity allows one to define the Fourier transform for functions f ∈ L2(Rn). More

precisely, one considers (fn)n∈N such that fn → f in L2(Rn), and defines f̂ as the limit

f̂n → f̂ in L2(Rn).)

In the following, let f, g ∈ L2(Rn).

(4) (Parseval’s identity) ˆ
Rn
fgdx =

ˆ
Rn
f̂ ĝdξ. (2.6)

(5) Let f ∗ g(x) =
´
Rn f(x− y)g(y)dy denote the convolution of f and g. Then,

F(f ∗ g)(ξ) = f̂(ξ)ĝ(ξ) for all ξ ∈ Rn. (2.7)

(6)

F(fg)(ξ) = (f̂ ∗ ĝ)(ξ) for all ξ ∈ Rn. (2.8)

(7) Let α be a multiindex such that ∂αf ∈ L2(Rn). Then

F(∂αf)(ξ) = (iξ)αf̂(ξ) for all ξ ∈ Rn. (2.9)

(8) Let α be a multiindex such that xαf ∈ L2(Rn). Then

F(xαf)(ξ) = iα∂αξ f̂(ξ) for all ξ ∈ Rn. (2.10)

(9) Let S(Rn) be the Schwarz space of rapidly decreasing functions defined by

S(Rn) = {f ∈ C∞(Rn) : sup
x∈Rn

|xα∂βf(x)| ≤ Cα,β}. (2.11)

Then the Fourier transform maps the Schwarz space into itself.

(10) (Translation) Let g(x) = f(x− a) with a ∈ Rn. Then,

ĝ(ξ) = e−ia·ξ f̂(ξ). (2.12)

(11) (Modulation) Let g(x) = eia·xf(x) with a ∈ Rn. Then,

ĝ(ξ) = f̂(ξ − a). (2.13)
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(12) (Scaling/Dilation) Let g(x) = f(ax) with a > 0. Then,

ĝ(ξ) =
1

an
f̂(
ξ

a
). (2.14)

Proof. For a proof of the above properties of the Fourier transform, see Section 2.2 in the

book of Grafakos entitled “Classical Fourier Analysis”. Alternatively, see Chapter I in the

book of Stein and Weiss entitled “Introduction to Fourier Analysis on Euclidean Spaces”.

See also Section 4.3.1 in Evans’ book. �

We now return to the following initial value problem for the linear wave equation:{
∂2t u−∆xu = 0,

u(x, 0) = f(x), ∂tu(x, 0) = g(x),
x ∈ Rn, t ≥ 0.

By the property (2.9) of the Fourier transform, we remark that

F(∆u) = F(

n∑
i=1

∂2xiu) =

n∑
i=1

(iξi)
2û(ξ) = −|ξ|2û(ξ).

Therefore, applying the Fourier transform to both sides of the linear wave equation, we

obtain the ODE:

∂2t û(ξ) + |ξ|2û(ξ) = 0. (2.15)

The characteristic equation associated to this is λ2 + |ξ|2 = 0 with solutions λ = ±i|ξ|.
Therefore, the general solution of this ODE is

û(ξ, t) = A(ξ) cos(t|ξ|) +B(ξ) sin(t|ξ|). (2.16)

Using the initial conditions, we have that

f̂(ξ) = û(ξ, 0) = A(ξ)

ĝ(ξ) = ∂tû(ξ, 0) = B(ξ)|ξ|.

Thus, we obtain the following formula for the solution of the linear wave equation

û(ξ, t) = cos(|ξ|t)f̂(ξ) +
sin(|ξ|t)
|ξ|

ĝ(ξ). (2.17)

Remark 2.3. (i) Taking the inverse Fourier transform of both sides of (2.17), we re-

cover the explicit formulas for a solution of the linear wave equation (D’Alembert, Poisson,

Kirchhoff, etc.) that we obtained earlier.

(ii) Even though formula (2.17) is not explicit on the physical side, it easily gives us infor-

mation on the Sobolev norms of a solution u. For example, we can easily use (2.17) together

with the property (2.9) of the Fourier transform to prove the conservation of energy

E(u(t)) :=
1

2

ˆ
Rn
|∂tu(x, t)|2 + |∇xu(x, t)|2dx = E(u(0)). (2.18)

Exercise. Hint: By Plancherel’s identity notice that

E(u(t)) =
1

2

ˆ
Rn

(
|∂tû|2 + |ξ|2|û|2

)
(ξ, t)dξ

and then use formula (2.17) for û(ξ, t).
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Definition 2.4. Given any function a : Rn → C, define the Fourier multiplier operator

a(D) by the formula

a(D)f := F−1
(
a(ξ)f̂(ξ)

)
.

We say that a(ξ) is the symbol of a(D).

In view of this definition, (2.17) can be rewritten as

u(x, t) = cos(t|D|)f +
sin(t|D|)
|D|

g.

Remark 2.5. In the case of a non homogeneous wave equation{
∂2t u−∆xu = F,

u(x, 0) = f(x), ∂tu(x, 0) = g(x),
x ∈ Rn, t ≥ 0, (2.19)

one considers the non autonomous ODE

∂2t û(ξ) + |ξ|2û(ξ) = F̂ (ξ, t)

and using the method of variation of constants one obtains

û(ξ, t) = cos(|ξ|t)f̂(ξ) +
sin(|ξ|t)
|ξ|

ĝ(ξ) +

ˆ t

0

sin((t− s)|ξ|)
|ξ|

F̂ (ξ, s)ds

or, equivalently,

u(x, t) = cos(t|D|)f +
sin(t|D|)
|D|

g +

ˆ t

0

sin((t− s)|D|)
|D|

F (s)ds.

This is called Duhamel’s formula for the solution of the wave equation (2.19).


