
ADVANCED PDE II - LECTURE 5 (PART 2)

PIETER BLUE AND OANA POCOVNICU

Warning: This is a first draft of the lecture notes and should be used with care!

1. Well-posedness

Informal Definition 1.1. A PDE is well-posed (in the sense of Hadamard) if

(1) For each choice of data, a solution exists in some sense.

(2) For each choice of data, the solution is unique in some space.

(3) The map from data to solutions is continuous in some topology.

Definition 1.2. Let n,m ∈ Z+ and s ∈ R. Let Hs = Hs(Rn,Rm). For u0 ∈ Hs and r > 0,

let B(u0, r;H
s) = {v0 ∈ Hs : ‖v0 − u0‖Hs} be a metric space with the Hs norm.

Let G : R×Hs → Hs−1 and t0 ∈ R. Consider the initial-value problem

d

dt
u(t) = G(t, u(t)), (1a)

u(t0) = u0. (1b)

In this case, u is called the solution, and u0 is the initial data.

The initial-value problem (1a)-(1b) is well-posed in Hs (in the sense of Kato1) if

for all w0 ∈ Hs there are T > t0 and r > 0 such that, with B = B(w0, r;H
s) and

Z = C0([t0, T ];Hs) ∩ C1([t0, T ];Hs−1)

(1) [Existence] ∀v0 ∈ B : ∃S(v0) ∈ Z such that (u, u0) = (S(v0), v0) solves (1a)-(1b).

(2) [Uniqueness] ∀v0 ∈ B : ∀v1, v2 ∈ Z : if (u, u0) = (v1, v0) and (u, u0) = (v2, v0) are

solution of (1a)-(1b), then v1 = v2.

(3) [Continuity] The map S taking data to solutions given by (1)-(2) is continuous from

B(w0, r;H
s) to C0([t0, T ];Hs).

Well-posedness is also called local well-posedness. If ∀w0 ∈ Hs the result holds for all

T > 0, then (1a)-(1b) is globally well-posed.

Remark 1.3. (1) Wave equations can be written as first-order systems. For a second-

order PDE, well-posedness is equivalent to showing the map (u(0), ∂tu(u)) 7→
(u, ∂tu) from Hk × Hk−1 to C0([0, T ], Hk) × C0([0, T ], Hk−1) exists uniquelly and

is continuous.

(2) Hyperbolic PDE are time symmetric, so we can solve both forward and backward in

t.

1Technically, Kato [?] merely requires for continuity that, ∀t ∈ [t0, T ], the map v0 7→ S(v0)(t) is contin-
uous from B(w0, r;H

s) to Hs.
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(3) The above definition is adapted to hyperbolic problems. For other problems, Hs and

Hs−1 can be replaced by Banach spaces Y and X, with Y embedding densely and

continuously into X. For Schrödinger or heat equations, one would take Y = Hs

and X = Hs−2. The heat equation ∂tu−
∑n

i=1 ∂
2
i u = 0 is not time symmetric and

can only be solved forward in time.

(4) If A is Banach, t1, t2 ∈ R, and k ∈ N, then Ck([t1, t2];A) is also a Banach space.

On R, Ck(R;A) is not Banach, but we can introduce Ck0 (R;A) and Ckb (R, A), the

set of compactly supported Ck functions and the space of Ck functions with bounded

partials of order k; the latter is a Banach space.

(5) In some cases, one can only establish uniqueness in Z∩A where A is some auxilliary

Banach space, such as Lpt,x. This is conditional uniqueness.

(6) T is lower semicontinuous in w0.

(7) By density, it is sufficient (but not necessary) to check the above holds for all w0 in

some dense subset of Hs (such as Schwarz functions) and T − t0 depends only on

‖w0‖Hs.

Proving local and global well-posedness for hyperbolic PDE will be the main focus of the

remainder of the course. The following theorem seems useful in establishing such results.

However, it is likely that in any application, the theorem slightly fails and slight modification

of the proof is required.

Definition 1.4. Let U be a metric space and V be a complete metric space. Let Φ :

U × V → V . Φ is uniformly continuous in U if

∀x1 ∈ U, ε > 0 : ∃δ > 0 : ∀x2 ∈ U, y ∈ V : ‖x2 − x1‖U < δ =⇒ ‖Φ(x2, y)− Φ(x1, y)‖V < ε.

Φ is a uniform contraction mapping in V if

∃r ∈ [0, 1) : ∀x ∈ U ; y1, y2 ∈ V : ‖Φ(x, y2)− Φ(x, y1)‖V ≤ r‖y2 − y1‖V .

Theorem 1.5. Let U be a metric space and V be a complete metric space.

If Φ : U × V → V is uniformly continuous in U and a uniform contraction mapping in

V , then there is a map S : U → V such that

(1) ∀x ∈ U : Φ(x, S(x)) = S(x);

(2) If Φ(x, y) = y, then y = S(x); and

(3) The map S : U → V is continuous.

Proof. Exercise. (Use the ideas of the contraction mapping theorem and lots of ε− δ.) �

2. Preparation for the vector-field method

2.1. Illustrative examples. In this section, we will use the following notation: the energy

(of u at time t, if u is sufficiently regular and decaying at infinity) is

E[u](t) =
1

2

ˆ
{t}×Rn

(
|∂tu|2 +

n∑
i=1

|∂iu|2 + |u|2
)

dnx.
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Theorem 2.1 (Basic energy estimate). Let n ∈ Z+. Let u ∈ C2([0, T ] × Rn,R) be a

function that vanishes for x sufficiently large.

If u is solution of the Klein-Gordon equation −∂2t u+
∑n

i=1 ∂
2
i u− u = 0, then ∀t ∈ [0, T ]

E[u](t) = E[u](0).

Proof. Let N = −∂t. Consider

0 = (Nu)

(
−∂2t u+

n∑
i=1

∂2i u− u

)

= (−∂tu)

(
−∂2t u+

n∑
i=1

∂2i u− u

)

= ∂tu∂
2
t u−

n∑
i=1

∂i (∂tu∂iu) +

n∑
i=1

∂t∂iu∂iu+ ∂tuu

= ∂t

(
1

2
(∂tu)2 +

1

2

n∑
i=1

(∂iu)2 +
1

2
u2

)
−

n∑
i=1

∂i (∂tu∂iu) .

We now integrate by parts over [0, t]×B(~0, R) where R is sufficiently large that u(s, ~x) = 0

for |~x| > R. This gives the desired result. �

Theorem 2.2 (Translation symmetries). Let n ∈ Z+. Let k > 2. Let u ∈ Ck([0, T ] ×
Rn,R).

If u is a solution of �u = 0, then for any multiindex |α| < k − 2, v = ∂αu is a Ck−|α|

solution of �v = 0.

Proof. Since ∂j
(
−∂2t +

∑n
i=1 ∂

2
i

)
w =

(
−∂2t +

∑n
i=1 ∂

2
i

)
∂jw holds for all w ∈ C3, the result

holds by induction. �

Theorem 2.3 (Uniform bound). Let n ∈ Z+. Let k > n/2.

There is a constant C such that if f, g are test functions in Rn, and u is the unique C∞

solution to the initial value problem

−∂2t u+

n∑
i=1

∂2i u− u = 0, (2a)

u(0, ~x) = f(~x), (2b)

∂tu(0, ~x) = g(~x), (2c)

then

‖u‖L∞t,x ≤ C
(
‖f‖2Hk + ‖g‖2Hk−1

)
.

Proof. Let T > 0.

Since f and g are compactly supported. From the explicit representation formula for

solutions of the wave equation, this means that a C∞ solution u exists and vanishes for

sufficiently large |~x| uniformly in [0, T ]× Rn.
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Observe that

E[u](0) =
1

2

ˆ (
|∂tu(0, ~x)|2 +

n∑
i=1

|∂iu(0, ~x)|2 + |u(0, ~x)|2
)

dnx

= (1/2)
(
‖g‖2L2 + ‖f‖2H1

)
,

∑
|α|<k−1

E[u](0) =

ˆ
{0}×R

 ∑
|α|<k−1

|∂αg|2 +
∑
|α|<k−1

n∑
i=1

(
|∂α∂if |2 + |∂αf |2

) dnx

≤ C ′
(
‖g‖2Hk−1 + ‖f‖2Hk

)
.

We now apply the basic energy estimate to the solution ∂αu, the relation between the

energy and Hk norm, and Sobolev embedding, to observe that∑
|α|<k−1

E[∂αu](0) =
∑
|α|<k−1

E[∂αu](T )

≥ C ′′‖u|t=T ‖2Hk

≥ C−1‖u(T, ~x)‖L∞x .

The constant C is independent of T , which gives the desired result. �

Corollary 2.4 (Density argument). Let n ∈ Z+, k ∈ Z+.

(1) There is a unique, linear map S : Hk×Hk−1 → C0(Hk)∩C1(Hk−1) that takes test

function initial data f, g to solutions u = S(f, g) of the initial value problem (2)

(2) Furthermore, if k > n/2, then S : Hk ×Hk−1 → C0(Hk) ∩ C1(Hk−1) ∩ L∞t,x.

In particular, the Klein-Gordon equation is globally well-posed in Hk.

2.2. Generalising from the examples. In the above, there have been four crucial ideas:

(1) Multiplying the PDE by some factor and applying integration by parts gave us

the basic energy estimate. Many other energy-like quantities can be considered by

changing the multiplier. This is the method of multipliers. If Nu = a∂tu+ ~B ·
~∇u+ cu, this is Friedrich’s abc method.

(2) Differentiating the equation and the translation symmetry allowed us to control

higher Sobolev norms. We could differentiate in angular directions or differentiate

along position dependent directions.

(3) An estimate, in this case the uniform bound, followed from our control of a higher

energy.

(4) The density argument showed that by working in a very regular class (Schwarz!),

we could then obtain results in a Banach space to get well-posedness.

The vector-field method (also called Klainerman’s commuting vector-field method)

uses geometric ideas to choose both the multipliers and the directions in which to differ-

entiate the equation. The remaining two points are then used to prove estimates that are

used to study nonlinear problems.
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