
ADVANCED PDE II - LECTURE 6

PIETER BLUE AND OANA POCOVNICU

Warning: This is a first draft of the lecture notes and should be used with

care!

1. Some geometry

1.1. Tensor notation without manifolds. Consider RN . We use the notation

~x = (x1, . . . , xN ),

∂i =
∂

∂xi
,

~∂ = (∂1, . . . , ∂N ).

At this stage, we do not consider an inner product on RN .

Let Ω be an open subset of RN . Recall that a vector field is a map X : Ω→ R1+n that

defines a vector at each point in the set Ω. In this perspective, it is useful to distinguish

between points and vectors. We denote the components of X by {Xi}Ni=1.

Recall that the directional derivative of a C1 function, f : Ω → R, is given by ∇Xf =∑
iX

i∂if . Summations from 1 to N of this type are so common that we use the Einstein

summation convention, that when there is exactly one subscript and one superscript in a

formula, they are understood to be summed over. Such summations are called contractions

over the index or simply contraction. Thus, we write,

∇Xf = (∂if)Xi.

Typically, we identify a vector field with a differential operator by

X = Xi∂i.

Crucial in the use of this notation is the geometric fact that in a formula a single index

should never appear more than twice and that when it appear twice, it appears once a

subscript and once as a superscript. If you are unfamiliar with this notation, it may help

to think of vectors as column vectors, the gradient as a row vector, and the components

of a matrix A which takes vectors to vectors as being Aj i. Moving the indices on a tensor

radically changes the nature of the tensor!

A 1-form is an object with one subscript and no superscripts. The gradient of a function

f is the 1-form defined to have components

gradf = ~∂f = (∂1f, . . . , ∂Nf),

(gradf)i = ∂if.

Observe that the gradient is not a vector field.
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A tensor is an object with indices in {1, . . . , N}. A particularly important tensor is the

Kronecker delta, given by

δji =

{
1 if i = j,

0 if i 6= j
.

Occasionally, we will consider the tensors defined by δij = δij = δji , but be aware that these

are radically different objects; δji is a map from vectors to vectors, where as δij is a map

from vectors to 1-forms and defines an inner product on vectors. Another is the Levi-Civita

tensor εj1...jN , which is uniquelly defined by the conditions that εj1...jN is antisymmetric in

every pair of indices and ε1...N = 1.

1.2. The divergence theorem. We define smooth to mean C∞.

We define a nondegenerate parameterisation of a smooth hypersurface to be a smooth

map f : R→ R1+n such that R is an open subset of Rn and such that, at each p ∈ Rn, the

n× (n + 1) matrix of partial derivatives has rank n. We define Σ ⊂ R1+n to be a smooth

hypersurface if for all x ∈ R1+n, there is a neighbourhood Nx of x and a nondegenerate

parameterisation of a hypersurface f : R → R1+n, such that f(R) = Σ ∩ Nx. Given a

nondegenerate parameterisation of a smooth hypersurface, f : R → R1+n, we define the

normal 1-form to be the map ν : R→ R1+n with components

νi = εii1...in
∂f i1

∂y1

∂f in

∂yn
.

Recall that if R be an open subset of Rn and f : R→ R1+n be a nondegenerate parametri-

sation of a smooth hypersurface, and F a C0 map from f(R) to R1+n

ˆ
f(R)

F idνi =

ˆ
R
F (y)iνidy

1 . . . dyn.

(Typically F will be a smooth vector field on a neighbourhood of f(R).)

We define a region to be a connected open set such that the boundary is a finite union of

closures of smooth hypersurfaces. From the implicit function theorem and the nondegeracy

condition, around any point in a hypersurface, it can be written locally as a graph over

one of the coordinate hyperplanes, i.e. one of the coordinates can be written as a function

of the others. Given a region Ω and a point x on its boundary, a vector T is defined

to leave Ω if there is a sufficiently small ε such that ∀s ∈ (−ε, 0) : x + sT ∈ Ω and

∀s ∈ (0, ε) : x + sT 6∈ Ω. Given a region Ω with boundary Σ and a point x ∈ Σ with a

neighbourhood Nx, a nondegenerate parameterisation f : Σ ∩Nx is defined to be outward

pointing if, for every outward vector T at x, νiT
i ≥ 0. Recall that if Ω is a region,

if its boundary is a finite union of closures of smooth hypersurfaces all of which have

parameterisations with outward normal 1-forms1. If Ω is a region with boundary ∂Ω,

M ∈ N, {fα : Rα → R1+n}Mα=1 is a collection of nondegenerate parameterisations of smooth

1Be aware that, in Minkoswski space, if ν is an outward 1-form, it does not mean that the vector with
components νi = ηijνj is an outward vector. This fact is an unavoidable consequence of the fact that
η00 = −1 but ηii = 1 for i 6= 0.
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hypersurfaces such that the closure of
⋃M
α=1 fα(Rα) is the boundary of Ω and each normal

is outward pointing, and F : ∂Ω→ R1+n, then

ˆ
∂Ω
F idνi =

M∑
i=1

ˆ
fα(Rα)

F idνi.

The right-hand side in the previous formula is independent of the choice of parameterisation

on the left. In R1+n, we typically use dvol for dx0 . . . dxn.

Theorem 1.1 (Divergence theorem). Let Ω be a region with boundary ∂Ω. Let Ω′ be an

open set such that Ω ⊂ Ω′. If F : Ω′ → R1+n is C1, thenˆ
Ω

(
∂iF

i
)

dvol =

ˆ
∂Ω
F idνi.

1.3. Tensors in the Minksowski spacetime. Consider R1+n = R × Rn. This is as in

the general case of RN , except that we now index coordinates from 0 to n, instead of 1 to

N . Furthermore, we use the notation

x = (x0, ~x) = (x0, x1, . . . , xn),

∂ = (∂0, ~∂) = (∂0, ∂1, . . . , ∂n).

Two tensors that are frequently, but not always, useful are given by

ηij = ηij =


−1 if i = j = 0,

1 if i = j 6= 0,

0 if i 6= j

.

Both of these are called the Minkowski metric. Observe that these are symmetric and that

ηikη
kj = δji .

Minkowski space refers to R1+n with ηij .

If a hypersurface is given as the graph over the spatial coordinates, i.e. f(~y) =

(φ(~y), vecy), then

ν = (1,−~∂φ),

ν0 = 1,

νi = −∂iφ if i ≥ 1.

We use the following norms

|~∂u| =

(
n∑
i=1

|∂iu|2
)1/2

,

|u|1 =

(
n∑
i=0

|∂iu|2 + |u|2
)1/2

.
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2. Quasi-linear waves: An introduction

2.1. The basic form.

Definition 2.1. Let Ω ⊂ R1+n.

Condition 0(Ω) is that Ω is connected with nonempty interior, that Gij, Bi, A, and F are

measurable tensor fields on Ω, that Gij = Gji, and that there is a second-order differential

operator L on Ω given by

Lu = Gij∂i∂ju+Bi∂iu+Au

For r ∈ N∩{∞}, condition 1(s,Ω) is that condition 0(Ω) holds and that the tensor fields

Gij, Bi, A, and F are functions of x ∈ Ω that are Crb in the interior of Ω and have limits

on the boundary of Ω for all their partial derivatives of orders up to k.

Condition 1Q(Ω) is that condition 0(Ω) holds and that Gij, Bi, A, and F are C∞ func-

tions on Ω× R× R1+n and are understood to be functions of (x, u, ∂u).

Definition 2.2. Let Ω ⊂ R1+n and condition 0(Ω) hold. For ε > 0, G is ε close to η if

max
l,m∈{0,...,n}

∣∣∣Glm − ηlm∣∣∣ ≤ 1

(n+ 1) + (n+1)2

2

ε.

2.2. Energy and momentum.

Definition 2.3. Assume condition 1(1,Ω) from definition 2.1 holds. An energy-

momentum-stress tensor is defined as a local2 map from C1(Ω) to tensor fields by

T [u]ij = Gik∂ku∂ju−
1

2
δij

(
Glm∂lu∂mu+ u2

)
.

Given a vector-field X ∈ C1(Ω;R1+n), we define the associated momentum to be

P(X)[u]i = T [u]ijX
j .

Given a hypersurface Σ, we define the energy of u associated with X on the hypersurface

Σ to be

EX [u](Σ) =

ˆ
Σ
P(X)[u]idνi.

If some arguments are clear from context, they will be dropped. For example, we will

often write T ij for T ij . Frequently, we will use the notation

EX(t) = EX({t} × Rn).

For other problems and in other cases, it may be useful to consider other energy-

momentum tensors and to construct from them momenta and energies.

2A map on Ck is local if its value at a point depends only on the first k derivatives of its argument
evaluated at the point.
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Lemma 2.4 (Quasi-linear Klein-Gordon energy estimate in divergence-form). Assume con-

dition 1(1,Ω) from definition 2.1. If X ∈ C1(Ω;R1+n) and u ∈ C2(Ω), then

∂iT ij =
(

(∂iG
ik)∂ku+ Lu−Bi∂iu− (a+ 1)u

)
∂ju−

1

2
(∂jG

lm)∂lu∂mu,

∂iP(X)
i = ∂iT ijXj + T ij∂iXj .

Proof. By direct computation,

∂iT ij = (∂iG
ik)∂ku∂ju+Gik∂i∂ku∂ju+Gik∂ku∂i∂ju

− 1

2
(∂iG

lm)∂lu∂mu−Glm∂lu∂i∂mu+ u∂ju.

The third and fifth terms cancel. Substituting the definition of L gives the remaining result.

The second result follows from the product rule. �

Lemma 2.5 (Positivity of energy density). Assume condition 1(1,Ω) from definition 2.1,

ε > 0, and G is ε close to η as in definition 2.2.

If u ∈ C1(Ω) and X ∈ C1(Ω;R1+n) ∣∣∣∣−T 0
0 −

1

2
|u|21
∣∣∣∣ ≤ ε|u|21,

If i 6= 0
∣∣T i0∣∣ ≤ (1 + ε)

1

2
|u|21.

Remark 2.6. Observe that the first estimate implies that T 0
0 and |u|21 are not only uniformly

equivalent, but that the constants relating the quantities are very close to 1/2.

Proof. First observe that

ηlm∂lu∂mu = −(∂tu)2 + |~∂u|2,

so

−η00∂tu∂tu+
1

2

(
ηlm∂lu∂mu+ u2

)
=

1

2

(
|∂tu|2 + |~∂u|2 + |u|2

)
=

1

2
|u|21.

Furthermore, for i 6= 0,

ηik∂ku∂tu = ∂iu∂tu,∣∣∣ηik∂ku∂tu∣∣∣ = |∂iu||∂tu| ≤
1

2

(
|~∂u|2 + |∂tu|2

)
≤ 1

2
|u|21.

Turning to the terms to be estimated in the current lemma, one finds

−T 0
0 = −G0k∂ku∂tu+

1

2
Glm∂lu∂mu

= −η0k∂ku∂tu+
1

2
ηlm∂lu∂mu

+ (−G0k + η0k)∂ku∂tu+
1

2

(
Glm − ηlm

)
∂lu∂mu,∣∣∣∣−T 0

0 −
1

2
|u|21
∣∣∣∣ ≤ max

k
| −G0k + η0k|(n+ 1)|∂u|2 +

1

2
max
lm
| −Glm + ηlm|(n+ 1)2|∂u|2

≤ ε|u|21.
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Similarly,

T j0 = Gjk∂ku∂tu,

= ηjk∂ku∂tu+ (Gjk − ηjk)∂ku∂tu,∣∣T j0

∣∣ ≤ 1

2
(1 + ε)|u|21.

�

3. Uniqueness of solutions and finite speed of propogation

Theorem 3.1 (C2 uniqueness of the zero solution). Let ε ∈ [0, 1), T > 0 and ~x0 ∈ Rn and

let

c =
1 + ε

1− ε
,

B = {~x ∈ Rn : |~x− ~x0| ≤ cT} ,
Λ = {(t, ~x) ∈ R× Rn : t ∈ [0, T ], |~x− ~x0| ≤ c(T − t)} .

Assume either

• that condition 1(1,Λ) holds3 and G is ε close to η, or

• that condition 1Q(Λ) holds and that G(x, 0, 0) is ε close to η for x ∈ Λ.

Furthermore, suppose there is a constant C such that everywhere in Λ

|F | ≤ C|u|1.

If u ∈ C2 is a solution of

Lu = F, ∀~x ∈ B : u(0, ~x) = 0, ∂tu(0, ~x) = 0,

then u = 0 in Λ.

Proof. To begin assume condition 1(∞,Λ) and G is ε close to η.

Step 1: Foliate the cone. Define, for τ ∈ [0, T ], φτ : B → R by

φτ (~x) = τ − τ

cT
|~x− ~x0|,

and let

Στ = {(t, ~x) : ~x ∈ B, t = φτ (~x)} ,

Λτ =
⋃

τ ′∈[0,τ ]

Στ ′ .

Observe that

Λ = ΛT .

Also, Στ is the graph of t = φτ , so its normal is given by

ν0 = 1, νi = −∂iφτ =
τ

cT

(xi − xi0)

|~x− ~x0|
.

3In lecture, I mistakenly said condition 1(∞,Λ). We only need Gij , Bi, A, F to be C1 to hold. Further-
more, in step 5, when we pass to the quasilinear case, we need to allow G to be merely C1.
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From now on, if no argument is given, quantities are evaluated at (φτ (~x), ~x). We will

only consider τ ∈ [0, T ] and ~x ∈ B.

Step 2: Estimate the energy on slices. Consider the energy associated with T =

−∂t, which has T 0 = −1 and T i = 0 for i 6= 0. Observe that for i ∈ {0, 1, . . . , n},

P(X)
i = −T ij∂jt = −T i0.

Thus,

E(Στ ) =

ˆ
Στ

P idνi

=

ˆ
B
P iνidn~x

≥
ˆ
B
P0 · 1dn~x−

ˆ
B
|~P||~∂φτ |dn~x

≥ (1− ε)1

2

ˆ
B

1

2
|u|21dn~x− (1 + ε)

1

2

τ

cT

ˆ
B
|u|21dn~x

≥ (1− ε)
(

1− τ

T

) 1

2

ˆ
B
|u|21dn~x.

Step 3: Estimate the change in energy. On the other hand, from the energy

estimate in divergence form, we find there is a constant C1 such that

|∂iP i| ≤ C1|u|21.

We now wish to integrate this over Λτ =
⋃
τ ′∈[0,τ ] Στ ′ . In doing so, it is convenient to

introduce new coordinates (τ, ~x). Observe that

dt

dτ ′
= 1− 1

cT
|~x− ~x0|,∣∣∣∣ dt

dτ ′

∣∣∣∣ ≤ 1.

This leads to the following

E(Στ )− E(Σ0) ≤
ˆ

Λτ

|∂iP i|dtdn~x

≤ C1

ˆ
~x∈B

ˆ τ

0
|u|21

∣∣∣∣ dt

dτ ′

∣∣∣∣dτ ′dn~x
≤
ˆ τ

0
C1

ˆ
~x∈B
|u|21dn~xdτ ′

≤
ˆ τ

0
C1

ˆ
~x∈B
|u|21dn~xdτ ′.

Step 4: Finish with Gronwall’s inequality. Let T0 < T . Thus, there is a constant

C2 > 0 such that for τ ∈ [0, T0]

(1− ε)
(

1− τ

T

)
≥ (1− ε)

(
1− T0

T

)
≥ C2.
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Let f(τ) = 1
2

´
B |u|

2
1dn~x. Combining the previous two steps, we find there is a constant C3

such that for τ ∈ [0, T0],

f(τ) ≤ f(0) +

ˆ τ

0
C3f(τ ′)dτ ′.

Since f(0) = 0, by Gronwall’s inequality, we find f(τ) = 0 for τ ∈ [0, T0]. This implies that

u = 0 in ΛT0 for all T0 < T . Taking the limit as T0 → T and using the continuity of u, u

must vanish in Λ = ΛT .

Step 5: Treat the quasi-linear case. Since ε < 1, we can choose δ > 0 be such that

ε + δ ∈ (0, 1). Let T0 be the supremum value of t such that G is ε close to η on Λt. Since

G(x, 0, 0) is ε close to η, T0 ≥ 0. Furthermore, since u ∈ C2, it means that Gij is at least

C1, so T0 > 0. However, if T0 < T by applying the theorem in the 1(1,ΛT0), we find u

is zero on ΛT0 , which, by continuity of G implies, that G is ε + δ close to η on a slightly

larger set, contradicting the definition of T0. Taking the limit as δ ↘ 0, we find T0 ≥ T .

Applying the theorem in the 1(1,ΛT ) shows u = 0 on Λ. �

4. Existence and uniqueness for linear equations

Theorem 4.1. Let s ∈ Z,
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