ADVANCED PDE II - LECTURE 6

PIETER BLUE AND OANA POCOVNICU

Warning: This is a first draft of the lecture notes and should be used with care!

1. Some geometry

1.1. Tensor notation without manifolds. Consider \mathbb{R}^{N}. We use the notation

$$
\begin{aligned}
\vec{x} & =\left(x^{1}, \ldots, x^{N}\right), \\
\partial_{i} & =\frac{\partial}{\partial x^{i}}, \\
\vec{\partial} & =\left(\partial_{1}, \ldots, \partial_{N}\right) .
\end{aligned}
$$

At this stage, we do not consider an inner product on \mathbb{R}^{N}.
Let Ω be an open subset of \mathbb{R}^{N}. Recall that a vector field is a map $X: \Omega \rightarrow \mathbb{R}^{1+n}$ that defines a vector at each point in the set Ω. In this perspective, it is useful to distinguish between points and vectors. We denote the components of X by $\left\{X^{i}\right\}_{i=1}^{N}$.

Recall that the directional derivative of a C^{1} function, $f: \Omega \rightarrow \mathbb{R}$, is given by $\nabla_{X} f=$ $\sum_{i} X^{i} \partial_{i} f$. Summations from 1 to N of this type are so common that we use the Einstein summation convention, that when there is exactly one subscript and one superscript in a formula, they are understood to be summed over. Such summations are called contractions over the index or simply contraction. Thus, we write,

$$
\nabla_{X} f=\left(\partial_{i} f\right) X^{i}
$$

Typically, we identify a vector field with a differential operator by

$$
X=X^{i} \partial_{i} .
$$

Crucial in the use of this notation is the geometric fact that in a formula a single index should never appear more than twice and that when it appear twice, it appears once a subscript and once as a superscript. If you are unfamiliar with this notation, it may help to think of vectors as column vectors, the gradient as a row vector, and the components of a matrix A which takes vectors to vectors as being $A^{j}{ }_{i}$. Moving the indices on a tensor radically changes the nature of the tensor!

A 1-form is an object with one subscript and no superscripts. The gradient of a function f is the 1-form defined to have components

$$
\begin{aligned}
\operatorname{grad} f & =\vec{\partial} f=\left(\partial_{1} f, \ldots, \partial_{N} f\right), \\
(\operatorname{grad} f)_{i} & =\partial_{i} f .
\end{aligned}
$$

Observe that the gradient is not a vector field.

A tensor is an object with indices in $\{1, \ldots, N\}$. A particularly important tensor is the Kronecker delta, given by

$$
\delta_{i}^{j}=\left\{\begin{array}{ll}
1 & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array} .\right.
$$

Occasionally, we will consider the tensors defined by $\delta_{i j}=\delta^{i j}=\delta_{i}^{j}$, but be aware that these are radically different objects; δ_{i}^{j} is a map from vectors to vectors, where as $\delta_{i j}$ is a map from vectors to 1 -forms and defines an inner product on vectors. Another is the Levi-Civita tensor $\epsilon_{j_{1} \ldots j_{N}}$, which is uniquelly defined by the conditions that $\epsilon_{j_{1} \ldots j_{N}}$ is antisymmetric in every pair of indices and $\epsilon_{1 \ldots N}=1$.
1.2. The divergence theorem. We define smooth to mean C^{∞}.

We define a nondegenerate parameterisation of a smooth hypersurface to be a smooth map $f: R \rightarrow \mathbb{R}^{1+n}$ such that R is an open subset of \mathbb{R}^{n} and such that, at each $p \in \mathbb{R}^{n}$, the $n \times(n+1)$ matrix of partial derivatives has rank n. We define $\Sigma \subset \mathbb{R}^{1+n}$ to be a smooth hypersurface if for all $x \in \mathbb{R}^{1+n}$, there is a neighbourhood N_{x} of x and a nondegenerate parameterisation of a hypersurface $f: R \rightarrow \mathbb{R}^{1+n}$, such that $f(R)=\Sigma \cap N_{x}$. Given a nondegenerate parameterisation of a smooth hypersurface, $f: R \rightarrow \mathbb{R}^{1+n}$, we define the normal 1-form to be the map $\nu: R \rightarrow \mathbb{R}^{1+n}$ with components

$$
\nu_{i}=\epsilon_{i i_{1} \ldots i_{n}} \frac{\partial f^{i_{1}}}{\partial y^{1}} \frac{\partial f^{i_{n}}}{\partial y^{n}} .
$$

Recall that if R be an open subset of \mathbb{R}^{n} and $f: R \rightarrow \mathbb{R}^{1+n}$ be a nondegenerate parametrisation of a smooth hypersurface, and F a C^{0} map from $f(R)$ to \mathbb{R}^{1+n}

$$
\int_{f(R)} F^{i} \mathrm{~d} \nu_{i}=\int_{R} F(y)^{i} \nu_{i} \mathrm{~d} y^{1} \ldots \mathrm{~d} y^{n} .
$$

(Typically F will be a smooth vector field on a neighbourhood of $f(R)$.)
We define a region to be a connected open set such that the boundary is a finite union of closures of smooth hypersurfaces. From the implicit function theorem and the nondegeracy condition, around any point in a hypersurface, it can be written locally as a graph over one of the coordinate hyperplanes, i.e. one of the coordinates can be written as a function of the others. Given a region Ω and a point x on its boundary, a vector T is defined to leave Ω if there is a sufficiently small ϵ such that $\forall s \in(-\epsilon, 0): x+s T \in \Omega$ and $\forall s \in(0, \epsilon): x+s T \notin \Omega$. Given a region Ω with boundary Σ and a point $x \in \Sigma$ with a neighbourhood N_{x}, a nondegenerate parameterisation $f: \Sigma \cap N_{x}$ is defined to be outward pointing if, for every outward vector T at $x, \nu_{i} T^{i} \geq 0$. Recall that if Ω is a region, if its boundary is a finite union of closures of smooth hypersurfaces all of which have parameterisations with outward normal 1-forms. If Ω is a region with boundary $\partial \Omega$, $M \in \mathbb{N},\left\{f_{\alpha}: R_{\alpha} \rightarrow \mathbb{R}^{1+n}\right\}_{\alpha=1}^{M}$ is a collection of nondegenerate parameterisations of smooth

[^0]hypersurfaces such that the closure of $\bigcup_{\alpha=1}^{M} f_{\alpha}\left(R_{\alpha}\right)$ is the boundary of Ω and each normal is outward pointing, and $F: \partial \Omega \rightarrow \mathbb{R}^{1+n}$, then
$$
\int_{\partial \Omega} F^{i} \mathrm{~d} \nu_{i}=\sum_{i=1}^{M} \int_{f_{\alpha}\left(R_{\alpha}\right)} F^{i} \mathrm{~d} \nu_{i} .
$$

The right-hand side in the previous formula is independent of the choice of parameterisation on the left. In \mathbb{R}^{1+n}, we typically use d vol for $\mathrm{d} x^{0} \ldots \mathrm{~d} x^{n}$.

Theorem 1.1 (Divergence theorem). Let Ω be a region with boundary $\partial \Omega$. Let Ω^{\prime} be an open set such that $\Omega \subset \Omega^{\prime}$. If $F: \Omega^{\prime} \rightarrow \mathbb{R}^{1+n}$ is C^{1}, then

$$
\int_{\Omega}\left(\partial_{i} F^{i}\right) \mathrm{d} v o l=\int_{\partial \Omega} F^{i} \mathrm{~d} \nu_{i} .
$$

1.3. Tensors in the Minksowski spacetime. Consider $\mathbb{R}^{1+n}=\mathbb{R} \times \mathbb{R}^{n}$. This is as in the general case of \mathbb{R}^{N}, except that we now index coordinates from 0 to n, instead of 1 to N. Furthermore, we use the notation

$$
\begin{aligned}
& x=\left(x^{0}, \vec{x}\right)=\left(x^{0}, x^{1}, \ldots, x^{n}\right), \\
& \partial=\left(\partial_{0}, \vec{\partial}\right)=\left(\partial_{0}, \partial_{1}, \ldots, \partial_{n}\right) .
\end{aligned}
$$

Two tensors that are frequently, but not always, useful are given by

$$
\eta_{i j}=\eta^{i j}= \begin{cases}-1 & \text { if } i=j=0 \\ 1 & \text { if } i=j \neq 0, \\ 0 & \text { if } i \neq j\end{cases}
$$

Both of these are called the Minkowski metric. Observe that these are symmetric and that

$$
\eta_{i k} \eta^{k j}=\delta_{i}^{j} .
$$

Minkowski space refers to \mathbb{R}^{1+n} with $\eta_{i j}$.
If a hypersurface is given as the graph over the spatial coordinates, i.e. $f(\vec{y})=$ ($\phi(\vec{y})$, vecy), then

$$
\begin{aligned}
\nu & =(1,-\vec{\partial} \phi), \\
\nu_{0} & =1, \\
\nu_{i} & =-\partial_{i} \phi \quad \text { if } i \geq 1 .
\end{aligned}
$$

We use the following norms

$$
\begin{aligned}
|\vec{\partial} u| & =\left(\sum_{i=1}^{n}\left|\partial_{i} u\right|^{2}\right)^{1 / 2} \\
|u|_{1} & =\left(\sum_{i=0}^{n}\left|\partial_{i} u\right|^{2}+|u|^{2}\right)^{1 / 2} .
\end{aligned}
$$

2. Quasi-linear waves: An introduction

2.1. The basic form.

Definition 2.1. Let $\Omega \subset \mathbb{R}^{1+n}$.
Condition $0(\Omega)$ is that Ω is connected with nonempty interior, that $G^{i j}, B^{i}, A$, and F are measurable tensor fields on Ω, that $G^{i j}=G^{j i}$, and that there is a second-order differential operator L on Ω given by

$$
L u=G^{i j} \partial_{i} \partial_{j} u+B^{i} \partial_{i} u+A u
$$

For $r \in \mathbb{N} \cap\{\infty\}$, condition $1(s, \Omega)$ is that condition $0(\Omega)$ holds and that the tensor fields $G^{i j}, B^{i}, A$, and F are functions of $x \in \Omega$ that are C_{b}^{r} in the interior of Ω and have limits on the boundary of Ω for all their partial derivatives of orders up to k.

Condition $1 Q(\Omega)$ is that condition $0(\Omega)$ holds and that $G^{i j}, B^{i}, A$, and F are C^{∞} functions on $\Omega \times \mathbb{R} \times \mathbb{R}^{1+n}$ and are understood to be functions of $(x, u, \partial u)$.

Definition 2.2. Let $\Omega \subset \mathbb{R}^{1+n}$ and condition $0(\Omega)$ hold. For $\epsilon>0, G$ is ϵ close to η if

$$
\max _{l, m \in\{0, \ldots, n\}}\left|G^{l m}-\eta^{l m}\right| \leq \frac{1}{(n+1)+\frac{(n+1)^{2}}{2}} \epsilon .
$$

2.2. Energy and momentum.

Definition 2.3. Assume condition $1(1, \Omega)$ from definition 2.1 holds. An energy-momentum-stress tensor is defined as a loca ℓ^{2} map from $C^{1}(\Omega)$ to tensor fields by

$$
\mathcal{T}[u]^{i}{ }_{j}=G^{i k} \partial_{k} u \partial_{j} u-\frac{1}{2} \delta^{i}{ }_{j}\left(G^{l m} \partial_{l} u \partial_{m} u+u^{2}\right) .
$$

Given a vector-field $X \in C^{1}\left(\Omega ; \mathbb{R}^{1+n}\right)$, we define the associated momentum to be

$$
\mathcal{P}_{(X)}[u]^{i}=\mathcal{T}[u]^{i}{ }_{j} X^{j} .
$$

Given a hypersurface Σ, we define the energy of u associated with X on the hypersurface Σ to be

$$
E_{X}[u](\Sigma)=\int_{\Sigma} \mathcal{P}_{(X)}[u]^{i} \mathrm{~d} \nu_{i} .
$$

If some arguments are clear from context, they will be dropped. For example, we will often write $\mathcal{T}^{i}{ }_{j}$ for $\mathcal{T}^{i}{ }_{j}$. Frequently, we will use the notation

$$
E_{X}(t)=E_{X}\left(\{t\} \times \mathbb{R}^{n}\right) .
$$

For other problems and in other cases, it may be useful to consider other energymomentum tensors and to construct from them momenta and energies.

[^1]Lemma 2.4 (Quasi-linear Klein-Gordon energy estimate in divergence-form). Assume condition $1(1, \Omega)$ from definition 2.1. If $X \in C^{1}\left(\Omega ; \mathbb{R}^{1+n}\right)$ and $u \in C^{2}(\Omega)$, then

$$
\begin{aligned}
\partial_{i} \mathcal{T}^{i}{ }_{j} & =\left(\left(\partial_{i} G^{i k}\right) \partial_{k} u+L u-B^{i} \partial_{i} u-(a+1) u\right) \partial_{j} u-\frac{1}{2}\left(\partial_{j} G^{l m}\right) \partial_{l} u \partial_{m} u, \\
\partial_{i} \mathcal{P}_{(X)}{ }^{i} & =\partial_{i} \mathcal{T}^{i}{ }_{j} X^{j}+\mathcal{T}^{i}{ }_{j} \partial_{i} X^{j} .
\end{aligned}
$$

Proof. By direct computation,

$$
\begin{aligned}
& \partial_{i} \mathcal{T}^{i}{ }_{j}=\left(\partial_{i} G^{i k}\right) \partial_{k} u \partial_{j} u+G^{i k} \partial_{i} \partial_{k} u \partial_{j} u+G^{i k} \partial_{k} u \partial_{i} \partial_{j} u \\
&-\frac{1}{2}\left(\partial_{i} G^{l m}\right) \partial_{l} u \partial_{m} u-G^{l m} \partial_{l} u \partial_{i} \partial_{m} u+u \partial_{j} u
\end{aligned}
$$

The third and fifth terms cancel. Substituting the definition of L gives the remaining result.
The second result follows from the product rule.
Lemma 2.5 (Positivity of energy density). Assume condition $1(1, \Omega)$ from definition 2.1. $\epsilon>0$, and G is ϵ close to η as in definition 2.2.

If $u \in C^{1}(\Omega)$ and $X \in C^{1}\left(\Omega ; \mathbb{R}^{1+n}\right)$

$$
\text { If } i \neq 0 \quad \left\lvert\, \begin{aligned}
\left.\left.\left|-\mathcal{T}_{0}^{0}-\frac{1}{2}\right| u\right|_{1} ^{2} \right\rvert\, & \leq \epsilon|u|_{1}^{2}, \\
\left|\mathcal{T}^{i}{ }_{0}\right| & \leq(1+\epsilon) \frac{1}{2}|u|_{1}^{2} .
\end{aligned}\right.
$$

Remark 2.6. Observe that the first estimate implies that \mathcal{T}_{0}^{0} and $|u|_{1}^{2}$ are not only uniformly equivalent, but that the constants relating the quantities are very close to $1 / 2$.

Proof. First observe that

$$
\eta^{l m} \partial_{l} u \partial_{m} u=-\left(\partial_{t} u\right)^{2}+|\vec{\partial} u|^{2}
$$

so

$$
-\eta^{00} \partial_{t} u \partial_{t} u+\frac{1}{2}\left(\eta^{l m} \partial_{l} u \partial_{m} u+u^{2}\right)=\frac{1}{2}\left(\left|\partial_{t} u\right|^{2}+|\vec{\partial} u|^{2}+|u|^{2}\right)=\frac{1}{2}|u|_{1}^{2} .
$$

Furthermore, for $i \neq 0$,

$$
\begin{aligned}
\eta^{i k} \partial_{k} u \partial_{t} u & =\partial_{i} u \partial_{t} u \\
\left|\eta^{i k} \partial_{k} u \partial_{t} u\right| & =\left|\partial_{i} u\right|\left|\partial_{t} u\right| \leq \frac{1}{2}\left(|\vec{\partial} u|^{2}+\left|\partial_{t} u\right|^{2}\right) \leq \frac{1}{2}|u|_{1}^{2} .
\end{aligned}
$$

Turning to the terms to be estimated in the current lemma, one finds

$$
\begin{aligned}
-\mathcal{T}^{0}{ }_{0}= & -G^{0 k} \partial_{k} u \partial_{t} u+\frac{1}{2} G^{l m} \partial_{l} u \partial_{m} u \\
= & -\eta^{0 k} \partial_{k} u \partial_{t} u+\frac{1}{2} \eta^{l m} \partial_{l} u \partial_{m} u \\
& +\left(-G^{0 k}+\eta^{0 k}\right) \partial_{k} u \partial_{t} u+\frac{1}{2}\left(G^{l m}-\eta^{l m}\right) \partial_{l} u \partial_{m} u, \\
\left.\left.\left|-\mathcal{T}^{0}{ }_{0}-\frac{1}{2}\right| u\right|_{1} ^{2} \right\rvert\, \leq & \max _{k}\left|-G^{0 k}+\eta^{0 k}\right|(n+1)|\partial u|^{2}+\frac{1}{2} \max _{l m}\left|-G^{l m}+\eta^{l m}\right|(n+1)^{2}|\partial u|^{2} \\
\leq & \epsilon|u|_{1}^{2} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\mathcal{T}^{j}{ }_{0} & =G^{j k} \partial_{k} u \partial_{t} u, \\
& =\eta^{j k} \partial_{k} u \partial_{t} u+\left(G^{j k}-\eta^{j k}\right) \partial_{k} u \partial_{t} u, \\
\left|\mathcal{T}^{j}{ }_{0}\right| & \leq \frac{1}{2}(1+\epsilon)|u|_{1}^{2} .
\end{aligned}
$$

3. Uniqueness of solutions and finite speed of propogation

Theorem 3.1 (C^{2} uniqueness of the zero solution). Let $\epsilon \in\left[0,1\right.$), $T>0$ and $\vec{x}_{0} \in \mathbb{R}^{n}$ and let

$$
\begin{aligned}
c & =\frac{1+\epsilon}{1-\epsilon}, \\
B & =\left\{\vec{x} \in \mathbb{R}^{n}:\left|\vec{x}-\overrightarrow{x_{0}}\right| \leq c T\right\}, \\
\Lambda & =\left\{(t, \vec{x}) \in \mathbb{R} \times \mathbb{R}^{n}: t \in[0, T],\left|\vec{x}-\overrightarrow{x_{0}}\right| \leq c(T-t)\right\} .
\end{aligned}
$$

Assume either

- that condition $1(1, \Lambda)$ hold $\|^{3}$ and G is ϵ close to η, or
- that condition $1 Q(\Lambda)$ holds and that $G(x, 0,0)$ is ϵ close to η for $x \in \Lambda$.

Furthermore, suppose there is a constant C such that everywhere in Λ

$$
|F| \leq C|u|_{1} .
$$

If $u \in C^{2}$ is a solution of

$$
L u=F, \quad \forall \vec{x} \in B: u(0, \vec{x})=0, \partial_{t} u(0, \vec{x})=0,
$$

then $u=0$ in Λ.
Proof. To begin assume condition $1(\infty, \Lambda)$ and G is ϵ close to η.
Step 1: Foliate the cone. Define, for $\tau \in[0, T], \phi_{\tau}: B \rightarrow \mathbb{R}$ by

$$
\phi_{\tau}(\vec{x})=\tau-\frac{\tau}{c T}\left|\vec{x}-\overrightarrow{x_{0}}\right|,
$$

and let

$$
\begin{aligned}
& \Sigma_{\tau}=\left\{(t, \vec{x}): \vec{x} \in B, t=\phi_{\tau}(\vec{x})\right\}, \\
& \Lambda_{\tau}=\bigcup_{\tau^{\prime} \in[0, \tau]} \Sigma_{\tau^{\prime}}
\end{aligned}
$$

Observe that

$$
\Lambda=\Lambda_{T}
$$

Also, Σ_{τ} is the graph of $t=\phi_{\tau}$, so its normal is given by

$$
\nu_{0}=1, \quad \quad \nu_{i}=-\partial_{i} \phi_{\tau}=\frac{\tau}{c T} \frac{\left(x^{i}-x_{0}^{i}\right)}{\left|\vec{x}-\vec{x}_{0}\right|} .
$$

[^2]From now on, if no argument is given, quantities are evaluated at $\left(\phi_{\tau}(\vec{x}), \vec{x}\right)$. We will only consider $\tau \in[0, T]$ and $\vec{x} \in B$.

Step 2: Estimate the energy on slices. Consider the energy associated with $T=$ $-\partial_{t}$, which has $T^{0}=-1$ and $T^{i}=0$ for $i \neq 0$. Observe that for $i \in\{0,1, \ldots, n\}$,

$$
\mathcal{P}_{(X)}{ }^{i}=-\mathcal{T}^{i}{ }_{j} \partial_{t}^{j}=-\mathcal{T}^{i}{ }_{0}
$$

Thus,

$$
\begin{aligned}
E\left(\Sigma_{\tau}\right) & =\int_{\Sigma_{\tau}} \mathcal{P}^{i} \mathrm{~d} \nu_{i} \\
& =\int_{B} \mathcal{P}^{i} \nu_{i} \mathrm{~d}^{n} \vec{x} \\
& \geq \int_{B} \mathcal{P}^{0} \cdot 1 \mathrm{~d}^{n} \vec{x}-\int_{B}|\overrightarrow{\mathcal{P}}|\left|\vec{\partial} \phi_{\tau}\right| \mathrm{d}^{n} \vec{x} \\
& \geq(1-\epsilon) \frac{1}{2} \int_{B} \frac{1}{2}|u|_{1}^{2} \mathrm{~d}^{n} \vec{x}-(1+\epsilon) \frac{1}{2} \frac{\tau}{c T} \int_{B}|u|_{1}^{2} \mathrm{~d}^{n} \vec{x} \\
& \geq(1-\epsilon)\left(1-\frac{\tau}{T}\right) \frac{1}{2} \int_{B}|u|_{1}^{2} \mathrm{~d}^{n} \vec{x} .
\end{aligned}
$$

Step 3: Estimate the change in energy. On the other hand, from the energy estimate in divergence form, we find there is a constant C_{1} such that

$$
\left|\partial_{i} \mathcal{P}^{i}\right| \leq C_{1}|u|_{1}^{2}
$$

We now wish to integrate this over $\Lambda_{\tau}=\bigcup_{\tau^{\prime} \in[0, \tau]} \Sigma_{\tau^{\prime}}$. In doing so, it is convenient to introduce new coordinates (τ, \vec{x}). Observe that

$$
\begin{aligned}
\frac{\mathrm{d} t}{\mathrm{~d} \tau^{\prime}} & =1-\frac{1}{c T}\left|\vec{x}-\vec{x}_{0}\right| \\
\left|\frac{\mathrm{d} t}{\mathrm{~d} \tau^{\prime}}\right| & \leq 1
\end{aligned}
$$

This leads to the following

$$
\begin{aligned}
E\left(\Sigma_{\tau}\right)-E\left(\Sigma_{0}\right) & \leq \int_{\Lambda_{\tau}}\left|\partial_{i} \mathcal{P}^{i}\right| \mathrm{d} t \mathrm{~d}^{n} \vec{x} \\
& \leq C_{1} \int_{\vec{x} \in B} \int_{0}^{\tau}|u|_{1}^{2}\left|\frac{\mathrm{~d} t}{\mathrm{~d} \tau^{\prime}}\right| \mathrm{d} \tau^{\prime} \mathrm{d}^{n} \vec{x} \\
& \leq \int_{0}^{\tau} C_{1} \int_{\vec{x} \in B}|u|_{1}^{2} \mathrm{~d}^{n} \vec{x} \mathrm{~d} \tau^{\prime} \\
& \leq \int_{0}^{\tau} C_{1} \int_{\vec{x} \in B}|u|_{1}^{2} \mathrm{~d}^{n} \vec{x} \mathrm{~d} \tau^{\prime} .
\end{aligned}
$$

Step 4: Finish with Gronwall's inequality. Let $T_{0}<T$. Thus, there is a constant $C_{2}>0$ such that for $\tau \in\left[0, T_{0}\right]$

$$
(1-\epsilon)\left(1-\frac{\tau}{T}\right) \geq(1-\epsilon)\left(1-\frac{T_{0}}{T}\right) \geq C_{2}
$$

Let $f(\tau)=\frac{1}{2} \int_{B}|u|_{1}^{2} \mathrm{~d}^{n} \vec{x}$. Combining the previous two steps, we find there is a constant C_{3} such that for $\tau \in\left[0, T_{0}\right]$,

$$
f(\tau) \leq f(0)+\int_{0}^{\tau} C_{3} f\left(\tau^{\prime}\right) \mathrm{d} \tau^{\prime}
$$

Since $f(0)=0$, by Gronwall's inequality, we find $f(\tau)=0$ for $\tau \in\left[0, T_{0}\right]$. This implies that $u=0$ in $\Lambda_{T_{0}}$ for all $T_{0}<T$. Taking the limit as $T_{0} \rightarrow T$ and using the continuity of u, u must vanish in $\Lambda=\Lambda_{T}$.

Step 5: Treat the quasi-linear case. Since $\epsilon<1$, we can choose $\delta>0$ be such that $\epsilon+\delta \in(0,1)$. Let T_{0} be the supremum value of t such that G is ϵ close to η on Λ_{t}. Since $G(x, 0,0)$ is ϵ close to $\eta, T_{0} \geq 0$. Furthermore, since $u \in C^{2}$, it means that $G^{i j}$ is at least C^{1}, so $T_{0}>0$. However, if $T_{0}<T$ by applying the theorem in the $1\left(1, \Lambda_{T_{0}}\right)$, we find u is zero on $\Lambda_{T_{0}}$, which, by continuity of G implies, that G is $\epsilon+\delta$ close to η on a slightly larger set, contradicting the definition of T_{0}. Taking the limit as $\delta \searrow 0$, we find $T_{0} \geq T$. Applying the theorem in the $1\left(1, \Lambda_{T}\right)$ shows $u=0$ on Λ.

4. Existence and uniqueness for linear equations

Theorem 4.1. Let $s \in \mathbb{Z}$,

[^0]: ${ }^{1}$ Be aware that, in Minkoswski space, if ν is an outward 1-form, it does not mean that the vector with components $\nu^{i}=\eta^{i j} \nu_{j}$ is an outward vector. This fact is an unavoidable consequence of the fact that $\eta_{00}=-1$ but $\eta_{i i}=1$ for $i \neq 0$.

[^1]: ${ }^{2}$ A map on C^{k} is local if its value at a point depends only on the first k derivatives of its argument evaluated at the point.

[^2]: ${ }^{3}$ In lecture, I mistakenly said condition $1(\infty, \Lambda)$. We only need $G^{i j}, B^{i}, A, F$ to be C^{1} to hold. Furthermore, in step 5 , when we pass to the quasilinear case, we need to allow G to be merely C^{1}.

