ADVANCED PDE II - LECTURE 6

PIETER BLUE AND OANA POCOVNICU

Warning: This is a first draft of the lecture notes and should be used with care!

1. Some geometry

1.1. Tensor notation without manifolds. Consider \mathbb{R}^N . We use the notation

$$\vec{x} = (x^1, \dots, x^N),$$
$$\partial_i = \frac{\partial}{\partial x^i},$$
$$\vec{\partial} = (\partial_1, \dots, \partial_N).$$

At this stage, we do not consider an inner product on \mathbb{R}^N .

Let Ω be an open subset of \mathbb{R}^N . Recall that a vector field is a map $X : \Omega \to \mathbb{R}^{1+n}$ that defines a vector at each point in the set Ω . In this perspective, it is useful to distinguish between points and vectors. We denote the components of X by $\{X^i\}_{i=1}^N$.

Recall that the directional derivative of a C^1 function, $f : \Omega \to \mathbb{R}$, is given by $\nabla_X f = \sum_i X^i \partial_i f$. Summations from 1 to N of this type are so common that we use the Einstein summation convention, that when there is exactly one subscript and one superscript in a formula, they are understood to be summed over. Such summations are called contractions over the index or simply contraction. Thus, we write,

$$\nabla_X f = (\partial_i f) X^i$$

Typically, we identify a vector field with a differential operator by

$$X = X^i \partial_i.$$

Crucial in the use of this notation is the geometric fact that in a formula a single index should never appear more than twice and that when it appear twice, it appears once a subscript and once as a superscript. If you are unfamiliar with this notation, it may help to think of vectors as column vectors, the gradient as a row vector, and the components of a matrix A which takes vectors to vectors as being A^{j}_{i} . Moving the indices on a tensor radically changes the nature of the tensor!

A 1-form is an object with one subscript and no superscripts. The gradient of a function f is the 1-form defined to have components

grad
$$f = \vec{\partial} f = (\partial_1 f, \dots, \partial_N f),$$

(grad f)_i = $\partial_i f$.

Observe that the gradient is not a vector field.

A tensor is an object with indices in $\{1, \ldots, N\}$. A particularly important tensor is the Kronecker delta, given by

$$\delta_i^j = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j \end{cases}$$

Occasionally, we will consider the tensors defined by $\delta_{ij} = \delta^{ij} = \delta^j_i$, but be aware that these are radically different objects; δ^j_i is a map from vectors to vectors, where as δ_{ij} is a map from vectors to 1-forms and defines an inner product on vectors. Another is the Levi-Civita tensor $\epsilon_{j_1...j_N}$, which is uniquely defined by the conditions that $\epsilon_{j_1...j_N}$ is antisymmetric in every pair of indices and $\epsilon_{1...N} = 1$.

1.2. The divergence theorem. We define smooth to mean C^{∞} .

We define a nondegenerate parameterisation of a smooth hypersurface to be a smooth map $f: R \to \mathbb{R}^{1+n}$ such that R is an open subset of \mathbb{R}^n and such that, at each $p \in \mathbb{R}^n$, the $n \times (n+1)$ matrix of partial derivatives has rank n. We define $\Sigma \subset \mathbb{R}^{1+n}$ to be a smooth hypersurface if for all $x \in \mathbb{R}^{1+n}$, there is a neighbourhood N_x of x and a nondegenerate parameterisation of a hypersurface $f: R \to \mathbb{R}^{1+n}$, such that $f(R) = \Sigma \cap N_x$. Given a nondegenerate parameterisation of a smooth hypersurface, $f: R \to \mathbb{R}^{1+n}$, we define the normal 1-form to be the map $\nu: R \to \mathbb{R}^{1+n}$ with components

$$\nu_i = \epsilon_{ii_1...i_n} \frac{\partial f^{i_1}}{\partial y^1} \frac{\partial f^{i_n}}{\partial y^n}.$$

Recall that if R be an open subset of \mathbb{R}^n and $f: R \to \mathbb{R}^{1+n}$ be a nondegenerate parametrisation of a smooth hypersurface, and F a C^0 map from f(R) to \mathbb{R}^{1+n}

$$\int_{f(R)} F^i \mathrm{d}\nu_i = \int_R F(y)^i \nu_i \mathrm{d}y^1 \dots \mathrm{d}y^n.$$

(Typically F will be a smooth vector field on a neighbourhood of f(R).)

We define a region to be a connected open set such that the boundary is a finite union of closures of smooth hypersurfaces. From the implicit function theorem and the nondegeracy condition, around any point in a hypersurface, it can be written locally as a graph over one of the coordinate hyperplanes, i.e. one of the coordinates can be written as a function of the others. Given a region Ω and a point x on its boundary, a vector T is defined to leave Ω if there is a sufficiently small ϵ such that $\forall s \in (-\epsilon, 0) : x + sT \in \Omega$ and $\forall s \in (0, \epsilon) : x + sT \notin \Omega$. Given a region Ω with boundary Σ and a point $x \in \Sigma$ with a neighbourhood N_x , a nondegenerate parameterisation $f : \Sigma \cap N_x$ is defined to be outward pointing if, for every outward vector T at x, $\nu_i T^i \geq 0$. Recall that if Ω is a region, if its boundary is a finite union of closures of smooth hypersurfaces all of which have parameterisations with outward normal 1-forms¹. If Ω is a region with boundary $\partial\Omega$, $M \in \mathbb{N}$, $\{f_\alpha : R_\alpha \to \mathbb{R}^{1+n}\}_{\alpha=1}^M$ is a collection of nondegenerate parameterisations of smooth

¹Be aware that, in Minkoswski space, if ν is an outward 1-form, it does not mean that the vector with components $\nu^i = \eta^{ij}\nu_j$ is an outward vector. This fact is an unavoidable consequence of the fact that $\eta_{00} = -1$ but $\eta_{ii} = 1$ for $i \neq 0$.

hypersurfaces such that the closure of $\bigcup_{\alpha=1}^{M} f_{\alpha}(R_{\alpha})$ is the boundary of Ω and each normal is outward pointing, and $F: \partial \Omega \to \mathbb{R}^{1+n}$, then

$$\int_{\partial\Omega} F^i \mathrm{d}\nu_i = \sum_{i=1}^M \int_{f_\alpha(R_\alpha)} F^i \mathrm{d}\nu_i.$$

The right-hand side in the previous formula is independent of the choice of parameterisation on the left. In \mathbb{R}^{1+n} , we typically use dvol for $dx^0 \dots dx^n$.

Theorem 1.1 (Divergence theorem). Let Ω be a region with boundary $\partial\Omega$. Let Ω' be an open set such that $\Omega \subset \Omega'$. If $F : \Omega' \to \mathbb{R}^{1+n}$ is C^1 , then

$$\int_{\Omega} \left(\partial_i F^i \right) \mathrm{d} v o l = \int_{\partial \Omega} F^i \mathrm{d} \nu_i.$$

1.3. Tensors in the Minksowski spacetime. Consider $\mathbb{R}^{1+n} = \mathbb{R} \times \mathbb{R}^n$. This is as in the general case of \mathbb{R}^N , except that we now index coordinates from 0 to n, instead of 1 to N. Furthermore, we use the notation

$$x = (x^0, \vec{x}) = (x^0, x^1, \dots, x^n),$$

$$\partial = (\partial_0, \vec{\partial}) = (\partial_0, \partial_1, \dots, \partial_n).$$

Two tensors that are frequently, but not always, useful are given by

$$\eta_{ij} = \eta^{ij} = \begin{cases} -1 & \text{if } i = j = 0, \\ 1 & \text{if } i = j \neq 0, \\ 0 & \text{if } i \neq j \end{cases}$$

Both of these are called the Minkowski metric. Observe that these are symmetric and that

$$\eta_{ik}\eta^{kj} = \delta_i^j.$$

Minkowski space refers to \mathbb{R}^{1+n} with η_{ij} .

If a hypersurface is given as the graph over the spatial coordinates, i.e. $f(\vec{y}) = (\phi(\vec{y}), vecy)$, then

$$\begin{split} \nu &= (1, -\vec{\partial}\phi),\\ \nu_0 &= 1,\\ \nu_i &= -\partial_i \phi \qquad \text{if } i \geq 1. \end{split}$$

We use the following norms

$$|\vec{\partial}u| = \left(\sum_{i=1}^{n} |\partial_i u|^2\right)^{1/2},$$
$$|u|_1 = \left(\sum_{i=0}^{n} |\partial_i u|^2 + |u|^2\right)^{1/2}$$

2. QUASI-LINEAR WAVES: AN INTRODUCTION

2.1. The basic form.

Definition 2.1. Let $\Omega \subset \mathbb{R}^{1+n}$.

Condition $0(\Omega)$ is that Ω is connected with nonempty interior, that G^{ij} , B^i , A, and F are measurable tensor fields on Ω , that $G^{ij} = G^{ji}$, and that there is a second-order differential operator L on Ω given by

$$Lu = G^{ij}\partial_i\partial_j u + B^i\partial_i u + Au$$

For $r \in \mathbb{N} \cap \{\infty\}$, condition $1(s, \Omega)$ is that condition $0(\Omega)$ holds and that the tensor fields G^{ij} , B^i , A, and F are functions of $x \in \Omega$ that are C_b^r in the interior of Ω and have limits on the boundary of Ω for all their partial derivatives of orders up to k.

Condition $1Q(\Omega)$ is that condition $0(\Omega)$ holds and that G^{ij} , B^i , A, and F are C^{∞} functions on $\Omega \times \mathbb{R} \times \mathbb{R}^{1+n}$ and are understood to be functions of $(x, u, \partial u)$.

Definition 2.2. Let $\Omega \subset \mathbb{R}^{1+n}$ and condition $0(\Omega)$ hold. For $\epsilon > 0$, G is ϵ close to η if

$$\max_{l,m \in \{0,\dots,n\}} \left| G^{lm} - \eta^{lm} \right| \le \frac{1}{(n+1) + \frac{(n+1)^2}{2}} \epsilon$$

2.2. Energy and momentum.

Definition 2.3. Assume condition $1(1, \Omega)$ from definition 2.1 holds. An energymomentum-stress tensor is defined as a local² map from $C^{1}(\Omega)$ to tensor fields by

$$\mathcal{T}[u]^{i}{}_{j} = G^{ik}\partial_{k}u\partial_{j}u - \frac{1}{2}\delta^{i}{}_{j}\left(G^{lm}\partial_{l}u\partial_{m}u + u^{2}\right).$$

Given a vector-field $X \in C^1(\Omega; \mathbb{R}^{1+n})$, we define the associated momentum to be

$$\mathcal{P}_{(X)}[u]^i = \mathcal{T}[u]^i{}_j X^j.$$

Given a hypersurface Σ , we define the energy of u associated with X on the hypersurface Σ to be

$$E_X[u](\Sigma) = \int_{\Sigma} \mathcal{P}_{(X)}[u]^i \mathrm{d}\nu_i.$$

If some arguments are clear from context, they will be dropped. For example, we will often write \mathcal{T}^{i}_{j} for \mathcal{T}^{i}_{j} . Frequently, we will use the notation

$$E_X(t) = E_X(\{t\} \times \mathbb{R}^n).$$

For other problems and in other cases, it may be useful to consider other energymomentum tensors and to construct from them momenta and energies.

²A map on C^k is local if its value at a point depends only on the first k derivatives of its argument evaluated at the point.

Lemma 2.4 (Quasi-linear Klein-Gordon energy estimate in divergence-form). Assume condition 1(1, Ω) from definition 2.1. If $X \in C^1(\Omega; \mathbb{R}^{1+n})$ and $u \in C^2(\Omega)$, then

$$\partial_i \mathcal{T}^i{}_j = \left((\partial_i G^{ik}) \partial_k u + Lu - B^i \partial_i u - (a+1)u \right) \partial_j u - \frac{1}{2} (\partial_j G^{lm}) \partial_l u \partial_m u,$$
$$\partial_i \mathcal{P}_{(X)}{}^i = \partial_i \mathcal{T}^i{}_j X^j + \mathcal{T}^i{}_j \partial_i X^j.$$

Proof. By direct computation,

$$\partial_i \mathcal{T}^i{}_j = (\partial_i G^{ik}) \partial_k u \partial_j u + G^{ik} \partial_i \partial_k u \partial_j u + G^{ik} \partial_k u \partial_i \partial_j u - \frac{1}{2} (\partial_i G^{lm}) \partial_l u \partial_m u - G^{lm} \partial_l u \partial_i \partial_m u + u \partial_j u.$$

The third and fifth terms cancel. Substituting the definition of L gives the remaining result.

The second result follows from the product rule.

Lemma 2.5 (Positivity of energy density). Assume condition $1(1, \Omega)$ from definition 2.1, $\epsilon > 0$, and G is ϵ close to η as in definition 2.2.

If $u \in C^1(\Omega)$ and $X \in C^1(\Omega; \mathbb{R}^{1+n})$

$$\begin{split} \left| -\mathcal{T}^0_0 - \frac{1}{2} |u|_1^2 \right| &\leq \epsilon |u|_1^2, \\ If \ i \neq 0 \qquad \qquad \left| \mathcal{T}^i_0 \right| &\leq (1+\epsilon) \ \frac{1}{2} |u|_1^2 \end{split}$$

Remark 2.6. Observe that the first estimate implies that \mathcal{T}_0^0 and $|u|_1^2$ are not only uniformly equivalent, but that the constants relating the quantities are very close to 1/2.

Proof. First observe that

$$\eta^{lm}\partial_l u \partial_m u = -(\partial_t u)^2 + |\vec{\partial} u|^2,$$

 \mathbf{SO}

$$-\eta^{00}\partial_t u \partial_t u + \frac{1}{2}\left(\eta^{lm}\partial_l u \partial_m u + u^2\right) = \frac{1}{2}\left(|\partial_t u|^2 + |\vec{\partial}u|^2 + |u|^2\right) = \frac{1}{2}|u|_1^2.$$

Furthermore, for $i \neq 0$,

$$\eta^{ik} \partial_k u \partial_t u = \partial_i u \partial_t u,$$

$$\left| \eta^{ik} \partial_k u \partial_t u \right| = \left| \partial_i u \right| \left| \partial_t u \right| \le \frac{1}{2} \left(\left| \vec{\partial} u \right|^2 + \left| \partial_t u \right|^2 \right) \le \frac{1}{2} |u|_1^2$$

Turning to the terms to be estimated in the current lemma, one finds

$$\begin{aligned} -\mathcal{T}^{0}_{0} &= -G^{0k}\partial_{k}u\partial_{t}u + \frac{1}{2}G^{lm}\partial_{l}u\partial_{m}u \\ &= -\eta^{0k}\partial_{k}u\partial_{t}u + \frac{1}{2}\eta^{lm}\partial_{l}u\partial_{m}u \\ &+ (-G^{0k} + \eta^{0k})\partial_{k}u\partial_{t}u + \frac{1}{2}\left(G^{lm} - \eta^{lm}\right)\partial_{l}u\partial_{m}u, \\ \left|-\mathcal{T}^{0}_{0} - \frac{1}{2}|u|_{1}^{2}\right| &\leq \max_{k}|-G^{0k} + \eta^{0k}|(n+1)|\partial u|^{2} + \frac{1}{2}\max_{lm}|-G^{lm} + \eta^{lm}|(n+1)^{2}|\partial u|^{2} \\ &\leq \epsilon|u|_{1}^{2}. \end{aligned}$$

Similarly,

$$\begin{aligned} \mathcal{T}^{j}_{0} &= G^{jk} \partial_{k} u \partial_{t} u, \\ &= \eta^{jk} \partial_{k} u \partial_{t} u + (G^{jk} - \eta^{jk}) \partial_{k} u \partial_{t} u, \\ \left| \mathcal{T}^{j}_{0} \right| &\leq \frac{1}{2} (1 + \epsilon) |u|_{1}^{2}. \end{aligned}$$

3. Uniqueness of solutions and finite speed of propogation

Theorem 3.1 (C^2 uniqueness of the zero solution). Let $\epsilon \in [0, 1)$, T > 0 and $\vec{x}_0 \in \mathbb{R}^n$ and let

$$c = \frac{1+\epsilon}{1-\epsilon},$$

$$B = \{\vec{x} \in \mathbb{R}^n : |\vec{x} - \vec{x_0}| \le cT\},$$

$$\Lambda = \{(t, \vec{x}) \in \mathbb{R} \times \mathbb{R}^n : t \in [0, T], |\vec{x} - \vec{x_0}| \le c(T-t)\}.$$

Assume either

- that condition $1(1, \Lambda)$ holds³ and G is ϵ close to η , or
- that condition $1Q(\Lambda)$ holds and that G(x,0,0) is ϵ close to η for $x \in \Lambda$.

Furthermore, suppose there is a constant C such that everywhere in Λ

$$|F| \le C|u|_1.$$

If $u \in C^2$ is a solution of

$$Lu = F, \qquad \forall \vec{x} \in B : u(0, \vec{x}) = 0, \partial_t u(0, \vec{x}) = 0,$$

then u = 0 in Λ .

Proof. To begin assume condition $1(\infty, \Lambda)$ and G is ϵ close to η .

Step 1: Foliate the cone. Define, for $\tau \in [0,T], \phi_{\tau} : B \to \mathbb{R}$ by

$$\phi_{\tau}(\vec{x}) = \tau - \frac{\tau}{cT} |\vec{x} - \vec{x_0}|,$$

and let

$$\Sigma_{\tau} = \{(t, \vec{x}) : \vec{x} \in B, t = \phi_{\tau}(\vec{x})\}$$
$$\Lambda_{\tau} = \bigcup_{\tau' \in [0, \tau]} \Sigma_{\tau'}.$$

Observe that

$$\Lambda = \Lambda_T$$

Also, Σ_{τ} is the graph of $t = \phi_{\tau}$, so its normal is given by

$$\nu_0 = 1,$$
 $\nu_i = -\partial_i \phi_\tau = \frac{\tau}{cT} \frac{(x^i - x_0^i)}{|\vec{x} - \vec{x}_0|}.$

³In lecture, I mistakenly said condition $1(\infty, \Lambda)$. We only need G^{ij} , B^i , A, F to be C^1 to hold. Furthermore, in step 5, when we pass to the quasilinear case, we need to allow G to be merely C^1 .

From now on, if no argument is given, quantities are evaluated at $(\phi_{\tau}(\vec{x}), \vec{x})$. We will only consider $\tau \in [0, T]$ and $\vec{x} \in B$.

Step 2: Estimate the energy on slices. Consider the energy associated with $T = -\partial_t$, which has $T^0 = -1$ and $T^i = 0$ for $i \neq 0$. Observe that for $i \in \{0, 1, ..., n\}$,

$$\mathcal{P}_{(X)}{}^{i} = -\mathcal{T}^{i}{}_{j}\partial_{t}^{j} = -\mathcal{T}^{i}{}_{0}.$$

Thus,

$$\begin{split} E(\Sigma_{\tau}) &= \int_{\Sigma_{\tau}} \mathcal{P}^{i} \mathrm{d}\nu_{i} \\ &= \int_{B} \mathcal{P}^{i} \nu_{i} \mathrm{d}^{n} \vec{x} \\ &\geq \int_{B} \mathcal{P}^{0} \cdot 1 \mathrm{d}^{n} \vec{x} - \int_{B} |\vec{\mathcal{P}}| |\vec{\partial} \phi_{\tau}| \mathrm{d}^{n} \vec{x} \\ &\geq (1-\epsilon) \frac{1}{2} \int_{B} \frac{1}{2} |u|_{1}^{2} \mathrm{d}^{n} \vec{x} - (1+\epsilon) \frac{1}{2} \frac{\tau}{cT} \int_{B} |u|_{1}^{2} \mathrm{d}^{n} \vec{x} \\ &\geq (1-\epsilon) \left(1 - \frac{\tau}{T}\right) \frac{1}{2} \int_{B} |u|_{1}^{2} \mathrm{d}^{n} \vec{x}. \end{split}$$

Step 3: Estimate the change in energy. On the other hand, from the energy estimate in divergence form, we find there is a constant C_1 such that

$$|\partial_i \mathcal{P}^i| \le C_1 |u|_1^2.$$

We now wish to integrate this over $\Lambda_{\tau} = \bigcup_{\tau' \in [0,\tau]} \Sigma_{\tau'}$. In doing so, it is convenient to introduce new coordinates (τ, \vec{x}) . Observe that

$$\frac{\mathrm{d}t}{\mathrm{d}\tau'} = 1 - \frac{1}{cT} |\vec{x} - \vec{x}_0|,$$
$$\left|\frac{\mathrm{d}t}{\mathrm{d}\tau'}\right| \le 1.$$

This leads to the following

$$E(\Sigma_{\tau}) - E(\Sigma_{0}) \leq \int_{\Lambda_{\tau}} |\partial_{i}\mathcal{P}^{i}| \mathrm{d}t \mathrm{d}^{n}\vec{x}$$

$$\leq C_{1} \int_{\vec{x}\in B} \int_{0}^{\tau} |u|_{1}^{2} \left| \frac{\mathrm{d}t}{\mathrm{d}\tau'} \right| \mathrm{d}\tau' \mathrm{d}^{n}\vec{x}$$

$$\leq \int_{0}^{\tau} C_{1} \int_{\vec{x}\in B} |u|_{1}^{2} \mathrm{d}^{n}\vec{x} \mathrm{d}\tau'$$

$$\leq \int_{0}^{\tau} C_{1} \int_{\vec{x}\in B} |u|_{1}^{2} \mathrm{d}^{n}\vec{x} \mathrm{d}\tau'.$$

Step 4: Finish with Gronwall's inequality. Let $T_0 < T$. Thus, there is a constant $C_2 > 0$ such that for $\tau \in [0, T_0]$

$$(1-\epsilon)\left(1-\frac{\tau}{T}\right) \ge (1-\epsilon)\left(1-\frac{T_0}{T}\right) \ge C_2.$$

Let $f(\tau) = \frac{1}{2} \int_{B} |u|_{1}^{2} d^{n} \vec{x}$. Combining the previous two steps, we find there is a constant C_{3} such that for $\tau \in [0, T_{0}]$,

$$f(\tau) \le f(0) + \int_0^\tau C_3 f(\tau') \mathrm{d}\tau'$$

Since f(0) = 0, by Gronwall's inequality, we find $f(\tau) = 0$ for $\tau \in [0, T_0]$. This implies that u = 0 in Λ_{T_0} for all $T_0 < T$. Taking the limit as $T_0 \to T$ and using the continuity of u, u must vanish in $\Lambda = \Lambda_T$.

Step 5: Treat the quasi-linear case. Since $\epsilon < 1$, we can choose $\delta > 0$ be such that $\epsilon + \delta \in (0, 1)$. Let T_0 be the supremum value of t such that G is ϵ close to η on Λ_t . Since G(x, 0, 0) is ϵ close to η , $T_0 \ge 0$. Furthermore, since $u \in C^2$, it means that G^{ij} is at least C^1 , so $T_0 > 0$. However, if $T_0 < T$ by applying the theorem in the $1(1, \Lambda_{T_0})$, we find u is zero on Λ_{T_0} , which, by continuity of G implies, that G is $\epsilon + \delta$ close to η on a slightly larger set, contradicting the definition of T_0 . Taking the limit as $\delta \searrow 0$, we find $T_0 \ge T$. Applying the theorem in the $1(1, \Lambda_T)$ shows u = 0 on Λ .

4. EXISTENCE AND UNIQUENESS FOR LINEAR EQUATIONS

Theorem 4.1. Let $s \in \mathbb{Z}$,