ADVANCED PDE II - LECTURE 6

PIETER BLUE AND OANA POCOVNICU

Warning: This is a first draft of the lecture notes and should be used with
care!

1. SOME GEOMETRY

1.1. Tensor notation without manifolds. Consider RY. We use the notation

= (z',...,2"),
B

%= gai

= (0,...,0n).

At this stage, we do not consider an inner product on RYV.

Let Q be an open subset of RV, Recall that a vector field is a map X : Q — R!*" that
defines a vector at each point in the set 2. In this perspective, it is useful to distinguish
between points and vectors. We denote the components of X by {X! é\;r

Recall that the directional derivative of a C! function, f : Q — R, is given by Vx f =
> X 9;f. Summations from 1 to N of this type are so common that we use the Einstein
summation convention, that when there is exactly one subscript and one superscript in a
formula, they are understood to be summed over. Such summations are called contractions
over the index or simply contraction. Thus, we write,

Vxf=(0:H)X"
Typically, we identify a vector field with a differential operator by
X =X'0,.

Crucial in the use of this notation is the geometric fact that in a formula a single index
should never appear more than twice and that when it appear twice, it appears once a
subscript and once as a superscript. If you are unfamiliar with this notation, it may help
to think of vectors as column vectors, the gradient as a row vector, and the components
of a matrix A which takes vectors to vectors as being A7;. Moving the indices on a tensor
radically changes the nature of the tensor!

A 1-form is an object with one subscript and no superscripts. The gradient of a function
f is the 1-form defined to have components

gradf = 0f = (O f,...,Onf),

Observe that the gradient is not a vector field.
1
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A tensor is an object with indices in {1,..., N}. A particularly important tensor is the

o ifi#g

Occasionally, we will consider the tensors defined by ¢;; = 5 = 5{ , but be aware that these

Kronecker delta, given by

are radically different objects; 512' is a map from vectors to vectors, where as d;; is a map
from vectors to 1-forms and defines an inner product on vectors. Another is the Levi-Civita
tensor €;,.. j5, which is uniquelly defined by the conditions that €;, . ;, is antisymmetric in
every pair of indices and €1y = 1.

1.2. The divergence theorem. We define smooth to mean C°°.

We define a nondegenerate parameterisation of a smooth hypersurface to be a smooth
map f : R — R such that R is an open subset of R™ and such that, at each p € R”, the
n x (n + 1) matrix of partial derivatives has rank n. We define ¥ C R to be a smooth
hypersurface if for all x € R'™", there is a neighbourhood N, of z and a nondegenerate
parameterisation of a hypersurface f : R — R*™ such that f(R) = XN N,. Given a
nondegenerate parameterisation of a smooth hypersurface, f : R — R we define the
normal 1-form to be the map v : R — R with components
7 o fil o fin
= Giil...inaiyl ayn

Recall that if R be an open subset of R” and f : R — R be a nondegenerate parametri-

Vi

sation of a smooth hypersurface, and F' a CY map from f(R) to R*"

/ Fidy; = / F(y)vdyt ... dy™
f(R) R

(Typically F' will be a smooth vector field on a neighbourhood of f(R).)

We define a region to be a connected open set such that the boundary is a finite union of
closures of smooth hypersurfaces. From the implicit function theorem and the nondegeracy
condition, around any point in a hypersurface, it can be written locally as a graph over
one of the coordinate hyperplanes, i.e. one of the coordinates can be written as a function
of the others. Given a region ) and a point x on its boundary, a vector T is defined
to leave Q if there is a sufficiently small € such that Vs € (—¢,0) : x + sT € Q and
Vs € (0,€) : x + sT ¢ Q. Given a region 2 with boundary ¥ and a point € ¥ with a
neighbourhood N, a nondegenerate parameterisation f : 3 N N, is defined to be outward
pointing if, for every outward vector T' at =, v;T° > 0. Recall that if Q is a region,
if its boundary is a finite union of closures of smooth hypersurfaces all of which have
parameterisations with outward normal 1—formsﬂ If Q is a region with boundary 0f),
M €N, {fs: R — RY}M is a collection of nondegenerate parameterisations of smooth

1Be aware that, in Minkoswski space, if v is an outward 1-form, it does not mean that the vector with
components v* = n*v; is an outward vector. This fact is an unavoidable consequence of the fact that
Noo = —1 but i =1 for 4 §£ 0.



ADVANCED PDE II - LECTURE 6 3

hypersurfaces such that the closure of Uoj\le fa(Ry) is the boundary of Q and each normal
is outward pointing, and F : 9Q — R'*" then

M
Fidy; = / Fidy;.
/ag ; o (Ra)

The right-hand side in the previous formula is independent of the choice of parameterisation
on the left. In R'*", we typically use dvol for dz°...dz".

Theorem 1.1 (Divergence theorem). Let Q2 be a region with boundary 9. Let ' be an
open set such that Q C . If F: Q' — RY" js O, then

/((%FZ) dvol:/ Fidy;.
Q oN

1.3. Tensors in the Minksowski spacetime. Consider R!*” = R x R™. This is as in
the general case of RY, except that we now index coordinates from 0 to n, instead of 1 to
N. Furthermore, we use the notation

(22, 2) = (20, 21, ..., 2"),

(80,8) = (89,01, ...,0n).

x
0

Two tensors that are frequently, but not always, useful are given by

-1 ifi=j=0,
mij=n" =41 ifi=j#0,.
0 ifi#j

Both of these are called the Minkowski metric. Observe that these are symmetric and that
nin™ = 6.

Minkowski space refers to R with ij-
If a hypersurface is given as the graph over the spatial coordinates, i.e. f(y) =
(¢(9), vecy), then

—

V= (17_8¢)7
vy = 1,

We use the following norms

n 1/2
|| = (Z |8Z-u|2> ,
=1
n 1/2
=0
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2. QUASI-LINEAR WAVES: AN INTRODUCTION

2.1. The basic form.

Definition 2.1. Let Q C R,

Condition 0(9) is that §) is connected with nonempty interior, that GY, B, A, and F are
measurable tensor fields on Q, that GY = GJ%, and that there is a second-order differential
operator L on Q2 given by

Lu= G”Bﬁju + Bz&u + Au

Forr € Nn{oo}, condition 1(s,2) is that condition 0(2) holds and that the tensor fields
G, B, A, and F are functions of x € Q that are Cy in the interior of Q0 and have limits
on the boundary of Q for all their partial derivatives of orders up to k.

Condition 1Q(Q) is that condition 0(Q2) holds and that GY, B', A, and F are C* func-
tions on Q x R x R and are understood to be functions of (x,u,u).

Definition 2.2. Let Q C R and condition 0(2) hold. For e >0, G is € close to n if

1
€.
n+ 1)+ P

max
I,me{0,...,n}

alm _ nlm) < :

2.2. Energy and momentum.

Definition 2.3. Assume condition 1(1,Q) from definition holds.  An energy-
momentum-stress tensor is defined as a locaﬂ map from C1(Q) to tensor fields by

. X 1 .
Tl)'; = G*oudyu— 50, (Glmﬁluﬁmu n u2) .

Given a vector-field X € C*(Q; R, we define the associated momentum to be

Given a hypersurface ¥, we define the energy of u associated with X on the hypersurface
> to be

Ex[u](X2) Z/EP(X)[u]idVi.

If some arguments are clear from context, they will be dropped. For example, we will
often write 7°; for 7¢;. Frequently, we will use the notation

Ex(t) = Ex({t} x R).

For other problems and in other cases, it may be useful to consider other energy-
momentum tensors and to construct from them momenta and energies.

2A map on C¥ is local if its value at a point depends only on the first k derivatives of its argument
evaluated at the point.
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Lemma 2.4 (Quasi-linear Klein-Gordon energy estimate in divergence-form). Assume con-
dition 1(1,9) from definition . If X € CHRY™™) and u € C?(Q), then

0T = ((0:G™)ku + Lu— B'ow — (a+ 1u) dju %(ajalm)aluamu,
OPx) = 0T X7 + T 0, X7.
Proof. By direct computation,
T = (0:G*)udju + G*0;0pudju + G*Oud;0u
- %(@Glm)aluamu — G"™Oud; 0 + udju.

The third and fifth terms cancel. Substituting the definition of L gives the remaining result.
The second result follows from the product rule. O

Lemma 2.5 (Positivity of energy density). Assume condition 1(1,9) from deﬁm'tion
€ >0, and G is € close to n as in definition [2.3.
Ifue CYQ) and X € C1(;RIT™)

1
7%~ | < elul

. 1
Ifi#0 |T"| < (1+e)§yu|%.

Remark 2.6. Observe that the first estimate implies that 760 and |u|? are not only uniformly
equivalent, but that the constants relating the quantities are very close to 1/2.

Proof. First observe that
N udmu = —(du)? + |dul?,
SO

1 = 1
—n00udpu + 3 (nlm(?lu@mu + u2> = (\6tu|2 + [0u|* + |u]2> = 5’“‘%

N

Furthermore, for ¢ # 0,
niké?kuatu = Jjudu,
[ dkudin] = Drull o] < % (16uf? + fouf?) < %my%.
Turning to the terms to be estimated in the current lemma, one finds
~T% = —G%Opudyu + %Glmaluamu
= - udu + %nlmﬁluamu

1
+ (=G + ) ud + 5 (Glm - n””) Budmu,

1 1
7% = | < m |~ GO ¥+ 1)10u + x| = G ™+ 10

< elul;.
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Similarly,
T = GI*9pudyu,
= * O udu + (ij - njk)ﬁkuﬁtu,

. 1
|T70| < 5(1+e)|uﬁ.

3. UNIQUENESS OF SOLUTIONS AND FINITE SPEED OF PROPOGATION

Theorem 3.1 (C? uniqueness of the zero solution). Let e € [0,1), T > 0 and Ty € R™ and
let

_1+e

T 1-¢

B={ZeR":|¥—ap| <cT},

A={(t,¥) e RxR":t€[0,T],|Z— 20| <c(T —1t)}.

Cc

Assume either

e that condition 1(1,A) holdﬁ and G is € close ton, or
e that condition 1Q(A) holds and that G(x,0,0) is € close to n for x € A.

Furthermore, suppose there is a constant C such that everywhere in A
|F| < Cluly.
If u e C? is a solution of
Lu=F, VZ € B :u(0,%) =0,0,u(0,%) =0,
then u =0 in A.

Proof. To begin assume condition 1(co, A) and G is € close to 7.
Step 1: Foliate the cone. Define, for 7 € [0,T], ¢, : B — R by

. T o o
¢r(7) =7 — |7 — @,
and let
2, ={(t,7): 7 € B,t = ¢,()},

A= | =
7'€[0,7]
Observe that
A=Ar.

Also, >, is the graph of t = ¢, so its normal is given by

i i
vy =1, vi = —0i¢r = LM-
T |% — 2o

3In lecture, I mistakenly said condition 1(co, A). We only need G¥, B*, A, F to be C* to hold. Further-
more, in step 5, when we pass to the quasilinear case, we need to allow G to be merely C*.
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From now on, if no argument is given, quantities are evaluated at (¢,(Z),Z). We will
only consider 7 € [0,7] and ¥ € B.

Step 2: Estimate the energy on slices. Consider the energy associated with T =
—0;, which has T% = —1 and T% = 0 for i # 0. Observe that for i € {0,1,...,n},

P(X)i = —Tijaf = —TY.
Thus,

EX,) = [ Pldy

:/Piuid”f
B
Z/Po-ld”f—/ P||dg.|d
B
1 n— 17 "o
> (105 [ sl -+ [ e

>0 (1- 1) /\u\ldn*

Step 3: Estimate the change in energy. On the other hand, from the energy
estimate in divergence form, we find there is a constant C} such that

0;P'| < Chlul3.

We now wish to integrate this over A, = Ur'e[o,r] 3. In doing so, it is convenient to
introduce new coordinates (7, Z). Observe that

A i’f — Zo|

dr’ cT ’

dt
@

This leads to the following

E(S,) — E(D) < /yaplydtdn*

< Cl/ / u
ZEB ’ ‘1 d !
< / Cy / lu|fd"Fdr’
0 reB
< / Cy / lu|fd"zdr.
0 reB

Step 4: Finish with Gronwall’s inequality. Let Ty < T. Thus, there is a constant
Cy > 0 such that for 7 € [0, Tp]

(1—@(1—%)2(1—@(1—?)202.

dr'd"z
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Let f(7) = % f = |u|%d”f Combining the previous two steps, we find there is a constant Cs
such that for 7 € [0, Tp],

F(7) < £(0) + /0 " Caf(yar.

Since f(0) = 0, by Gronwall’s inequality, we find f(7) = 0 for 7 € [0, Tp]. This implies that
u = 01in Ap, for all Ty < T'. Taking the limit as Ty — 7" and using the continuity of u, u
must vanish in A = Ar.

Step 5: Treat the quasi-linear case. Since € < 1, we can choose § > 0 be such that
€+ 6 € (0,1). Let Ty be the supremum value of ¢ such that G is € close to n on A;. Since
G(x,0,0) is € close to , Ty > 0. Furthermore, since v € C?, it means that G¥ is at least
C*, so Ty > 0. However, if Ty < T by applying the theorem in the 1(1,Ar,), we find u
is zero on Af,, which, by continuity of G implies, that G is € + 6 close to 1 on a slightly
larger set, contradicting the definition of 7. Taking the limit as 6 \, 0, we find Ty > T.
Applying the theorem in the 1(1, A7) shows u = 0 on A. O

4. EXISTENCE AND UNIQUENESS FOR LINEAR EQUATIONS

Theorem 4.1. Let s € Z,
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