
ADVANCED PDE II - LECTURE 8

PIETER BLUE AND OANA POCOVNICU

Warning: This is a first draft of the lecture notes and should be used with

care! This lecture’s notes very closely follow C. Sogge’s “Nonlinear Wave Equations”.

1. Existence and uniqueness for quasilinear wave equations

Definition 1.1. Condition 2Q(Ω) is condition 1Q(Ω) and that for all multiindices α ∈
Z(1+n)+1+(1+n), there are constants Cα such that |δαGij | < Cα, |δαBi| < Cα, and |δαA| <
Cα.

(Recall that G, B, and A are functions of (x, u, ∂u) ∈ R1+n × R × R1+n. δ denotes

the partial derivative operator in R1+n × R × R1+n, as opposed to ∂ which denotes partial

differentiation in R1+n.)

Definition 1.2.

|w|0,s(t, ~x) =
∑
|β|≤s

|~∂βw(t, x)|,

|w|1,s(t, ~x) =
∑
|α|≤1

∑
|β|≤s

|∂α~∂βw(t, x)|,

‖w‖21,s(t) =

ˆ
Rn

|w|1,s(t, ~x)2dn~x.

Theorem 1.3 (s-chain rule). Assume condition 2Q(Ω). Assume further G00 is constant.

Let s ∈ N. If |α| ≤ s, then ∃C : ∀v, w ∈ C∞(Ω), ∀(t, ~x) ∈ Ω

|F (x, v, ∂v)|0,s ≤ C
(

1 + |v|1,d s+1
2
e

)s−1
|v|1,s,∣∣∣[~∂α, L(~x, v, ∂v)]w

∣∣∣ ≤ C (1 + |v|1,d s+1
2
e

)s
|w|1,s

+ C
(

1 + |v|1,d s+1
2
e

)s−1
|w|1,d s+1

2
e|v|1,s.

Proof. See lecture 7 notes. �
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Corollary 1.4 (s-chain rule with differences). Assume condition 2Q(Ω). Assume further

G00 is constant. Let s ∈ N. If |α| ≤ s, then ∃C : ∀v1, v2, w ∈ C∞(Ω), ∀(t, ~x) ∈ Ω

|F (x, v1, ∂v1)− F (x, v2, ∂v2)|0,s

≤ C|v1 − v2|1,d s+1
2
e

(
1 + |v1|1,d s+1

2
e + |v2|1,d s+1

2
e

)s−1
(|v1|1,s + |v2|1,s),

+ C|v1 − v2|1,s
(

1 + |v1|1,d s+1
2
e + |v2|1,d s+1

2
e

)s−1
(|v1|1,d s+1

2
e + |v2|1,d s+1

2
e),∣∣∣∣[~∂α,L(~x, v1, ∂v1)− L(~x, v2, ∂v2)]w

∣∣∣∣
≤ C|v1 − v2|1,d s+1

2
e

(
1 + |v1|1,d s+1

2
e + |v2|1,d s+1

2
e

)s
|w|1,s

+ C|v1 − v2|1,s
(

1 + |v1|1,d s+1
2
e + |v2|1,d s+1

2
e

)s
|w|1,d s+1

2
e

+ C|v1 − v2|1,d s+1
2
e

(
1 + |v1|1,d s+1

2
e + |v2|1,d s+1

2
e

)s−1 (
|v1|1,s + |v2|1,s

)
|w|1,d s+1

2
e.

Proof. This largely follows the proof for the previous theorem. For s = 0, by condition 2Q,

it follows that |F (x, v1, ∂v1)−F (x, v2, ∂v2)|0,0 ≤ C|v1− v2|1. For the induction step, define

a difference term to be of the form h(x, v1, ∂v1)− h(x, v2, ∂v2) for some smooth function h

or of the form ~∂α(v1 − v2) or ~∂α∂(v1 − v2). Consider h(x, v, ∂v) = h(v) for simplicity. In

this case,

~∂ (h(v1)− h(v2)) = h′(v1)~∂v1 − h′(v2)~∂v2
= h′(v1)~∂v1 − h′(v2)~∂v1

+ h′(v2)~∂v1 − h′(v2)~∂v2
= (h′(v1)− h′(v2))~∂v1 + h′(v2)~∂(v1 − v2).

A similar argument for general h(x, v, ∂v) shows that the derivative of a difference term

is a sum of products in which at least one factor is a difference term. By induction,

|F (x, v1, ∂v1) − F (x, v2, ∂v2)|0,s is a sum of at most s + 1 products, where the first term

in the product is a derivative of F (x, v1, ∂v1) − F (x, v2, ∂v2) and the remaining s terms

are derivatives of v or ∂v with at most s spatial derivatives distributed between them. By

induction, each such sum can be written as a sum of products in which at least one factor

is a difference term and in which the first term involves either F , its derivatives of such

terms. By condition 2Q, difference terms involving differences of F or its derivatives can

be |v1 − v2|1,0. Difference terms involving ~∂α∂(v1 − v2) can be estimated by |v1 − v2|1,|α|.
The argument for [~∂α, L(x, v1, ∂v1]− L(x, v2, ∂v2)]w is similar. �

Corollary 1.5 (Hs-chain rule). Assume condition 2Q(R1+n). Assume further G00 is con-

stant. Let s ≥ n+ 3.

If |α| ≤ s, then ∃C : ∀v, w, v1, v2 ∈ C∞(Ω), ∀t ∈ R :

‖F (x, v, ∂v)‖0,s ≤ C(1 + ‖v‖1,s)s−1‖v‖1,s,

‖[~∂α, L(x, v, ∂v)]w‖L2 ≤ C(1 + ‖v‖1,s)s‖w‖1,s.
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Furthermore,

‖F (x, v1, ∂v1)− F (x, v2, ∂v2)‖0,s ≤ C‖v1 − v2‖1,0
(
‖v1‖1,s + ‖v2‖1,s

)s
,

‖(L(x, v1, ∂v1)− L(x, v2, ∂v2))w‖0,s ≤ C‖v1 − v2‖1,s(1 + ‖v1‖1,s + ‖v2‖1,s)s−1‖w‖1,s+1,∥∥∥∥[~∂α, L(~x, v1, ∂v1)− L(~x, v2, ∂v2)]w

∥∥∥∥
L2

≤ C‖v1 − v2‖1,s
(
‖v1‖1,s + ‖v2‖1,s

)s
‖w‖1,s.

Proof. From the definition of the L2 norm and the s-chain rule,

‖F (x, v, ∂v)‖20,s =

ˆ
|F (x, v, ∂v)|20,sdnx

≤ C
ˆ (

1 + |v|1,d s+1
2
e

)2s−2
|v|21,sdnx

≤ C‖1 + |v|1,d s+1
2
e‖

2s−2
L∞

ˆ
|v|21,sdnx.

Now observe that since s ≥ n+ 3, one has⌈
s+ 1

2

⌉
+
n

2
≤ s+ 2

2
+
s− 3

2
< s.

Thus, the previous computation and the Sobolev embedding theorem give the first result.

(Recall |∂|u|| ≤ |∂u| a.e.) The remaining results follow similarly. �

Definition 1.6. Assume condition 2Q(R1+n). Consider

L(x, u, ∂u)u = F (x, u, ∂u), (1a)

u(0, ~x) = f(~x), (1b)

∂tu(0, ~x) = g(~x). (1c)

This system is called the quasilinear wave initial value problem, QLWIVP.

Theorem 1.7 (Quasilinear existence and uniqueness). Assume condition 2Q(R1+n) and

G00 = −1.

If s ≥ n + 3, then for all (f, g) ∈ Hs × Hs−1, there exists T > 0 and a unique u ∈
C0([0, T ];Hs) ∩ C1([0, T ], Hs−1) that solves QLWIVP. 1

Proof. Initially, assume f, g ∈ C∞0 (Rn). Let k = s− 1.

1Please note that, contrary to what was claimed in lecture and an earlier draft of these notes, this
argument does not prove that solutions depend continuously on the initial data. (This error was mine.
In particular, it was not present in the notes of C. Sogge.) Thanks to Leonardo Tolomeo and Hiro Oh
for useful discussions on this point. I hope to post an updated version which will cover the proof of
continuity of the map from initial data to solutions. In step 5, one cannot easily obtain an estimate
on the energy of the difference of two solutions, u − v, because in estimating L[u]u − L[v]v, one must
estimate both (L[u] + L[v])(u − v), which is fine, and (L[u] − L[v])(u + v), which must be estimate as an
inhomogeneity, F , and which involves 2 derivatives on u+ v. In particular, if k derivatives are applied, then
~∂k((L[u]− L[v])(u + v)) involves a term with ∂2~∂k(u + v), which cannot be controlled by ‖u + v‖1,k. Even

if the direction of derivatives could be controlled, ~∂k+2(u + v) could not be controlled by ‖u + v‖1,k.
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Step 1: Define the Picard iterates Let u−1 = 0. For m ∈ N, let um solve

L(x, um−1, ∂um−1)um = F (x, um−1, ∂um−1),

u(0, ~x) = f(~x),

∂tu(0, ~x) = g(~x).

By induction and the existence of solutions to linear equations, each um exists and is

smooth. By finite speed of propagation (from uniqueness), for each t and m, um(t, ~x)

vanishes for sufficiently large |~x|.
For simplicity, let Lm = L(x, um, ∂um) and Fm = F (x, um, ∂um).

Step 2: Find T

Recall, ∃C (depending on n, s) such that for all u and t,

C−1Ek[u](t) ≤ ‖u‖1,k(t)2 ≤ CEk[u](t).

By the alternative energy bound

Ek[um](t) ≤ Em[u](0)

+ C

ˆ t

0
‖Fm−1‖2kdt′ +

ˆ t

0

ˆ ∑
|α|≤k

|[~∂α, Lm−1]um|2dnxdt′

+ C

ˆ t

0
Ek[um](t′)dt′.

By the s-chain rule,

Ek[um](t)2 ≤ Ek[um](0)

+ C

ˆ t

0
(1 + ‖um−1‖1,k)2kdt′

+ C

ˆ t

0
(1 + ‖um−1‖1,k)2kEk[um]dt′

+ C

ˆ t

0
Ek[um](t′)dt′

≤ Ek[um](0) + C

ˆ t

0
(1 + ‖um−1‖1,k)2kEk[um](t′)dt′.

By Gronwall’s inequality

Ek[um](t)2 ≤ 2Ek[um](0),

if

C

ˆ t

0

(
1 + Ek[um−1](t

′)
)k

dt′ ≤ ln 2.

This holds by induction if T is chosen sufficiently small relative to ‖f‖2Hs + ‖g‖2Hs−1 =

Ek[um](0). Similarly integral restrictions on T will be imposed later, with different con-

stants C.
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Step 3: Show the Picard iterates are Cauchy We will prove by induction that

there is a C such that ∀m ∈ N.

‖um(t)− um−1(t)‖21,k ≤ C2−2m.

Since u−1 = 0, the base case follows from choosing C based on ‖f‖2Hs + ‖g‖2Hs−1 .

Observe that

Lm−1(um−1 − um) = (Lm−1 − Lm−2)um−1 − Fm−2 − Fm−1.

Since um−1 − um−2 = 0 at t = 0, by the alternative s-energy estimate

Ek[um−1 − um](t) ≤ C
ˆ t

0

(
‖(Lm−1 − Lm−2)um−1‖2k + ‖Fm−2 − Fm−1‖2k

)
dt′

+ C

ˆ t

0

∑
|β|≤k

‖[~∂β, Lm−1](um−1 − um)‖2L2dt′.

From the equivalence of the square of the k-energy and the 1, k norm, and from the Hs-chain

rule, one finds

‖um−1 − um‖1,k(t)2 ≤ C
ˆ t

0
‖um−1 − um−2‖21,k (1 + ‖um−1‖1,k + ‖um−2‖1,k)2k ‖um−1‖21,kdt′

+ C

ˆ t

0
‖um−1 − um−2‖21,k (1 + ‖um−1‖1,k + ‖um−2‖1,k)2k dt′

+ C

ˆ t

0
(1 + ‖um−1‖1,k)2k‖um−1 − um‖21,kdt′.

Since the norms ‖uj‖1,k are uniformly bounded, by restricting T to be sufficiently small

depending only on the uniform bound, we find

‖um−1 − um‖1,k(t)2 ≤
1

4

(
sup
t′
‖um−1 − um−2‖1,k(t)2 + sup

t′
‖um−1 − um‖1,k(t)2

)
,

sup
t′
‖um−1 − um‖1,k(t)2 ≤

1

2
sup
t′
‖um−1 − um−2‖1,k(t)2.

This implies the uj are Cauchy in C0(Hs) ∩ C1(Hs−1). Let u denote the limit.

Step 4: The limit for smooth data is a solution Solving the definition of the Picard

iterates for ∂2t um and using the fact that u ∈ C0(Hs)∩C1(Hs−1), one finds um ∈ C2(Hs−2).

Furthermore, the convergence of um in C0(Hs) ∩ C1(Hs−1) implies the convergence in

C2(Hs−2). Thus, Lm−1um−Fm−1 is well defined in C0(Hs−2) and identically zero. Taking

the limit, L(x, u, ∂u)u−F (x, u, ∂u) is zero as an element of C0(Hs−2) ⊂ L∞(Hs−2). Since

every test function is in L1(H−s+2), it follows that L(x, u, ∂u)u−F (x, u, ∂u) is defined and

vanishes as a distribution.

Step 5: completing the argument Since the sequence um was Cauchy with respect

to the norm maxt∈[0,T ] ‖u‖1,k and consisted of smooth functions, we find that the limit is

in C0([0, T ], Hs) ∩ C1([0, T ], Hs−1). Furthermore, as a solution of the equations, we find

u ∈ C2([0, T ], Hs−2).
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Since s > n + 3 > n/2 + 2, we find that C0([0, T ], Hs) ∩ C1([0, T ], Hs−1) ∩
C2([0, T ], Hs−2) ⊂ C2([0, T ] × Rn). C2 uniqueness of solutions was proved in a previous

theorem, which gives the uniqueness in this space. �

Definition 1.8. Consider a locally well-posed initial value problem. A continuation cri-

terion involving t and a solution u is a criterion that is sufficient to guarantee that the

solution u exists until time t.

Theorem 1.9 (Continuation criterion). Assume condition 2Q(R1+n) and G00 = −1. As-

sume further that Gij, Bi, A, and F do not depend explicitly on t = x0.

Let s ≥ n+ 3. Let (f, g) ∈ Hs ×Hs−1, and let T∗ be the supremum of times T such that

QLWIVP has a solution u ∈ C0([0, T ];Hs) ∩ C1([0, T ];Hs−1).

The following are equivalent

(1) T∗ <∞,

(2) ‖u‖1,s−1 6∈ L∞([0, T∗)).

(3) |u|1,d s
2
e 6∈ L∞([0, T∗)× Rn).

Proof. First, observe that since the problem does not depend explicitly on t, we can consider

any time t as the initial time and extend to time t+T with T as in the proof of the previous

theorem.

Second, although the statement of the previous theorem gave T as depending on (f, g),

in the proof, T depended only on the norm ‖f‖Hs +‖g‖Hs−1 , in particular, being sufficiently

small that C(1 + ‖f‖Hs + ‖g‖Hs−1)sT ≤ 1/2.

Now, consider the statements in the theorem. Since C0 ⊂ L∞, (1) implies (2). If T∗ <∞
but ‖u‖1,s−1 is bounded, then at time T∗ − T/2, we can construct a solution existing until

(T∗ − T/2) + T , contradicting the definition of T∗. Thus, (2) implies (1). By Sobolev

embedding, (2) implies (3).

Finally, consider (3) implies (2). In steps 2 and 3 of the proof, we used the energy

estimate to estimate the growth of the 1, s− 1 norm using the Hs-chain rule. However, if

we had used the s-chain rule, we could, instead have proved estimates of the formˆ
‖F (x, u, ∂u)‖20,kdt′ =

ˆ ˆ
|F (x, u, ∂u)|20,kdnxdt′

≤ C
ˆ ˆ

(1 + |u|1,d k+1
2
e)

2k−2|u|21,kdnxdt′

≤ C sup
t,~x

(1 + |u|1,d k+1
2
e)

2k−2
ˆ
|u|21,kdnx

≤ C(1 + sup
t,~x
|u|1,d k+1

2
e)

2k−2‖u‖21,k,

and similarly for the remaining terms. Substituting k = s−1 as in the well-posedness proof

gives the desired result. �

Theorem 1.10 (Propagation of regularity). Assume condition 2Q(R1+n) and G00 = −1.

Assume further that Gij, Bi, A, and F do not depend explicitly on t = x0.

Let s ≥ n+ 4.
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If (f, g) ∈ Hs+1 × Hs, T > 0, and u is a solution of QLWIVP in C0([0, T );Hs) ∩
C1([0, T );Hs−1 is a solution of QLWIVP, then u ∈ C0([0, T );Hs+1) ∩ C1([0, T );Hs).

Proof. Let T ′ ≤ T . Since u ∈ C0([0, T ′];Hs)∩C1([0, T ′];Hs−1), the ‖u‖1,s−1 norm remains

bounded on [0, T ′]. Since

s− 1 ≥ s+ 1

2
+
n

2
+ 1 >

⌈
s+ 1

2

⌉
+
n

2
,

by Sobolev embedding, |u|1,d s+1
2
e remains bounded on [0, T ′] × Rn. By the continuation

criterion in Hs+1 ×Hs, this means that u exists in C0([0, T ′];Hs+1) ∩ C1([0, T ′];Hs). �

Remark 1.11. From the continuation criterion and propagation of regularity, if f, g ∈ C∞

and |u|1,dn
2
+2e remains bounded, then there are global, smooth solutions.
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