
ADVANCED PDE II - LECTURE 8: ADDITIONAL RESULTS

PIETER BLUE AND OANA POCOVNICU

Warning: This is a first draft of the lecture notes and should be used with

care!1

1. Well-posedness for quasilinear wave equations

1.1. Some further comments related to Burgers’ equation and the lack of Lips-

chitz continuous dependence on initial data. The main lecture 8 notes prove existence

and uniqueness for quasilinear wave equations. An earlier version claimed to show well-

posedness using contraction mapping; such an approach cannot work. Recall that to be

well-posed in the sense of Kato for first-order systems, the map from data in Hs to so-

lutions in C0(H ′s) should be continuous. For second-order equations, this is replaced by

the condition that the map from Hs ×Hs−1 to C0(Hs) ∩ C1(Hs−1) is continuous. Recall

further that a stronger condition than continuity is Lipschitz continuity. The method using

energy and contraction mapping used to treat quasilinear wave equations in these notes

can be applied equally well to first-order systems, including Burgers’ equation. As shown

in Home Work 2, contraction mapping, if it gives continuity, will give Lipschitz continuity.

It can be shown that Burgers’ equation is not Lipschitz continuous. Thus, a contraction

mapping argument cannot hold.

1.2. Well-posedness of quasilinear wave equations.

Theorem 1.1 (Kato well-posedness for quasilinear wave equations). Assume condition

2Q(R1+n) and G00 = −1.

If s ≥ n + 4, then for all (f0, g0) ∈ Hs × Hs−1, there exists a T > 0 and a δ > 0

such that the map from B = {(f, g) ∈ Hs × Hs−1 : ‖f − f0‖Hs + ‖g − g0‖Hs−1 < δ} to

C0([0, T ];Hs) ∩ C1([0, T ];Hs−1) is continuous.

Remark 1.2. Here, we take the”obvious” extension to second-order equations of Kato’s

definition of well-posedness, that the map Hs×Hs−1 → C0(Hs)∩C1(Hs−1) is continuous.

For an inhomogeneous quasilinear wave equation, continuous dependence on the inhomo-

geneity, F , can also be shown.

Proof. Step 1: Uniform time From step 2 of the existence and uniqueness proof, there

is a time of existence which depends only on the norm of the initial data, which gives a

uniform time of existence for solutions with inital data in a neighbourhood of (f0, g0). (This

1This lecture’s notes very closely ideas from T. Tao’s blog post “Quasilinear well-posedness” and N.
Tzvetkov’z “Ill-posedness issues for nonlinear dispersive equations”. Both of these build on J.L. Bona, R.
Smith: “The initial-value problem for the Korteweg-de Vries equation”, Philos. Trans. Roy. Soc. London
Ser. A 278 (1975) 1287, 555-601.
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time was the time on which energy estimates and Gronwall’s inequality could be applied to

prove a uniform bound on the energy. Frequently, solutions can be extended to much longer

times of existence.) In particular, there is a T > 0 such that if (f0, g0) have Hs × Hs−1

norm less than δ and (f, g) have norm less than 2δ, then the solution u arising from initial

data (f, g) will have C0(Hs) ∩ C1(Hs−1) norm not greater than 4δ.

Step 2: Lipschitz estimate with loss of regularity Let u and v be two solutions of

QLWIVP with initial data (f1, g1) and (f2, g2) respectively. Let w = u− v. Observe that,

since L[u, ∂u]u = F [u, ∂u] and L[v, ∂v]v = F [v, ∂v]

L[u, ∂u]u− L[v, ∂v]v = F [u, ∂u]− F [v, ∂v],

L[u, ∂u]u− L[v, ∂v]v = L[u, ∂u]u− L[u, ∂u]v + L[u, ∂u]v − L[v, ∂v]v

= L[u, ∂u](u− v) + (L[u, ∂u]− L[v, ∂v])v

= L[u, ∂u](u− v)− (L[u, ∂u]− L[v, ∂v])(u− v) + (L[u, ∂u]− L[v, ∂v])u.

Thus,

L[u, ∂u]w = (L[u, ∂u]− L[v, ∂v])(u− v)− (L[u, ∂u]− L[v, ∂v])u+ F [u, ∂u]− F [v, ∂v].

Let k ∈ N and |β| = k. Applying ~∂β, we find

L[u, ∂u]~∂βw = I1 + I2 + I3 + I4 + I5 + I6

where

I1 = −[~∂β, L[u, ∂u]]w

I2 = (L[u, ∂u]− L[v, ∂v])~∂βw

I3 = [~∂β, L[u, ∂u]− L[v, ∂v])w

I4 = −(L[u, ∂u]− L[v, ∂v])~∂βu

I5 = −[~∂β, L[u, ∂u]− L[v, ∂v]]u

I6 = ~∂β(F [u, ∂u]− F [v, ∂v]).

We now derive an energy estimate by applying the energy estimate in divergence form

to ~∂βw with X = −∂t. Using the energy based on G = G[u, ∂u], one finds

Ek[w](t)− Ek[u](0)

=

ˆ t

0
(−∂t~∂βw)(L[u, ∂u]~∂βw)dnxdt′

+

ˆ t

0

((
(∂iG

ik)∂k~∂
βw −Bi∂i~∂

βw − (a+ 1)~∂βw
)
∂t~∂

βw − 1

2
(−∂tGlm)∂l~∂

βw∂m~∂
βw

)
dnxdt′.

The terms in the second integral can be estimated by the Cauchy-Schwarz inequality. All

such terms can be estimated by C(1 +
∑
‖α‖≤1 |∂αu|)|w|21,k.

It remains to estimate the terms from (−∂t~∂βw)(L~∂βw). These can be treated using the

Cauchy-Schwarz inequality when there is a good estimate on the corresponding terms in
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L~∂w. In particular, one finds

|I1| = |[~∂β, L[u, ∂u]]w| ≤ C
(

(1 + |u|1,d k
2
e)
k|w|1,k + (1 + |u|1,d k

2
e)
k−1|u|1,k|w|1,d k

2
e

)
,

|I3| = |[~∂β, L[u, ∂u]− L[v, ∂v])w| ≤ C(1 + |u|1,d k
2
e + |v|1,d k

2
e)
k|w|1,k

+ C(1 + |u|1,d k
2
e + |v|1,d k

2
e)
k−1(|u|1,k + |v|1,k)|w|1,d k

2
e,

|I5| = |[~∂β, L[u, ∂u]− L[v, ∂v]]u| ≤ C(1 + |u|1,d k
2
e + |v|1,d k

2
e)
k|w|1,k

+ C(1 + |u|1,d k
2
e + |v|1,d k

2
e)
k−1(|u|1,k + |v|1,k)|w|1,d k

2
e,

|I6| = |~∂β(F [u, ∂u]− F [v, ∂v])| ≤ C(1 + |u|1,d k
2
e + |v|1,d k

2
e)
k−1|u− v|1,k

+ C(1 + |u|1,d k
2
e + |v|1,d k

2
e)
k−2(|u|1,k + |v|1,k)|u− v|1,d k

2
e.

The contribution to the change in the energy estimate from I2 cannot be treated by the

Cauchy-Schwarz inequality but can be treated using integration by parts. In particular,

(∂t~∂
βw)((L[u, ∂u]− L[v, ∂v])~∂βw

= (∂t~∂
βw)((G[u, ∂u]−G[v, ∂v])ij∂i∂j~∂

βw)

+ (∂t~∂
βw)(B[u, ∂u]i∂i −B[v, ∂v]i∂i + (A[u, ∂u]−A[v∂v])(~∂βw)

The terms on the last line can be estimated by C(|u|1 + |v|1)|w|21,k. The remaining term is

(∂t~∂
βw)((G[u, ∂u]−G[v, ∂v])ij∂i∂j~∂

βw)

= −(∂t∂i~∂
βw)((G[u, ∂u]−G[v, ∂v])ij∂j~∂

βw)

+ ∂i

(
(∂t~∂

βw)((G[u, ∂u]−G[v, ∂v])ij∂j~∂
βw)

)
+ (∂t~∂

βw)(∂i((G[u, ∂u]−G[v, ∂v])ij)∂j~∂
βw)

= −1

2
∂t

(
(∂i~∂

βw)((G[u, ∂u]−G[v, ∂v])ij∂j~∂
βw)

)
+ (∂i~∂

βw)(∂t((G[u, ∂u]−G[v, ∂v])ij)∂j~∂
βw)

+ ∂i

(
(∂t~∂

βw)((G[u, ∂u]−G[v, ∂v])ij∂j~∂
βw)

)
+ (∂t~∂

βw)(∂i((G[u, ∂u]−G[v, ∂v])ij)∂j~∂
βw)

The second and fourth terms on the right-hand side of the final equation can be estimated

by C(|u|1,1 + |v|1,1)|v|21,k, after applying the equation to eliminate terms involving ∂2t u

or ∂2t v from ∂tG[u, ∂v] or ∂tG[v, ∂v]. When the first and third term are integrated over

[0, t]×B(~0, R), where R is a sufficiently large radius in Rn, the boundary terms at |~x| = R

vanish as R → ∞ and there remain integrals over {0} × Rn and {t} × Rn. The integrand

on these surfaces is bounded by |u − v|1|w|21,k, so, as long as u − v is small, they can be

dominated by 1/10 times the initial and final energy.

It remains to treat the contribution from I4, which, from the perspective of regularity is

far worse term. Since L is a second-order operator, but G00 is always one, regardless of the
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argument, L[u, ∂u]− L[v, ∂v] is a second-order operator with at most one time derivative.

Thus,

|(∂t~∂βw)I4| = |(∂t~∂βw)(L[u, ∂u]− L[v, ∂v])~∂βw|
≤ C|w|1,k|u− v|1|u|1,k+1.

Summing the estimates on the growth of the k-energy for w, summing over |β| ≤ k, using

the equivalence of the k-energy and the 1, k norm squared, applying the Sobolev estimate,

and integrating in space and then in time, we find

‖w‖1,k(t)2 ≤ C‖w‖1,k(0)2 + C

ˆ t

0
(1 + ‖u‖1,k + ‖v‖1,k)k‖w‖21,kdt′

+ C

ˆ t

0
‖w‖1,k‖w‖1‖u‖1,k+1dt

′.

A further application of the Cauchy-Schwarz inequality yields the following energy estimate

for differences

‖w‖1,k(t)2 ≤ C‖w‖1,k(0)2 + C

ˆ t

0
(1 + ‖u‖1,k + ‖v‖1,k)k‖w‖21,kdt′ + C

ˆ t

0
‖w‖21‖u‖21,k+1dt

′.

(1)

When applying this formula, we will refer to u as the reference solution and v as the

perturbation.

Step 3: Continuity by approximation by more regular reference solutions We

now conclude the proof of continuity. Let (f0, g0) ∈ Hs ×Hs−1 as in step 1 and let ε > 0.

Theorem A.1 provides a linear operator ρN from Hj to Hk for any j < k such that for

i ≤ j : ∀N ∈ [1,∞) : ∀u ∈ Hk:

‖ρN (u)‖Hk ≤ (1 +N)k−j‖u‖Hj ,

‖ρN (u)− u‖Hi ≤ (1 +N)i−j‖u‖Hj .

Furthermore, limN→∞ ‖ρN (u)−u‖ → 0. Let N and δ be such that the following conditions

hold:

N ≥ 1,

N s−3‖(f0, g0)‖Hs×Hs−1 ≤ ε,
‖ρN (f0)− f0‖Hs + ‖ρN (g0)− g0‖Hs−1 < ε,

δ <
ε2

N(1 + ‖(f0, g0)‖Hs×Hs−1)
.

Suppose ‖(f1, g1)− (f0, g0)‖Hs×Hs−1 < δ. Observe that

‖ρN (f1)− f1‖Hs ≤ ‖ρN (f1)− ρn(f0)‖Hs + ‖ρN (f0)− f0‖Hs + ‖f0 − f1‖Hs

≤ ‖f1 − f0‖Hs + ‖ρN (f0)− f0‖Hs + ‖f1 − f0‖Hs

≤ Cε.
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Similarly, ‖ρN (f1)− f1‖Hs−1 ≤ Cε. In addition,

‖ρN (f0)‖Hs + ‖ρN (g0)‖Hs−1 ≤ ‖f0‖Hs + ‖g0‖Hs−1 ,

‖ρN (f1)‖Hs + ‖ρN (g1)‖Hs−1 ≤ ‖f1‖Hs + ‖g1‖Hs−1 ≤ C(‖f0‖Hs + ‖g0‖Hs−1),

‖ρN (f0)‖Hs+1 + ‖ρN (g0)‖Hs ≤ CN(‖f0‖Hs + ‖g0‖Hs−1),

‖ρN (f1)‖Hs+1 + ‖ρN (g1)‖Hs ≤ CN(‖f0‖Hs + ‖g0‖Hs−1).

Let u be the solution arising from (f0, g0), v be the solution arising from (f1, g1),

uN be the solution arising from (ρN (f0), ρN (g0)), and vN be the solution arising from

(ρN (f1), ρN (g1)). Observe that since these are all close to u, the solutions exist up to

time T and all have a C0(Hs) ∩ C1(Hs−1) norm that is bounded by C‖(f0, g0)‖Hs×Hs−1 .

Furthermore, from applying the continuation criterion, we find that uN and vN , which

have initial data in the higher regularity Hs+1 ×Hs, are in C0(Hs+1) ∩ C1(Hs) and have

supt∈[0,T ] ‖uN‖1,s + supt∈[0,T ] ‖vN‖1,s ≤ CN‖(f0, g0)‖Hs×Hs−1 .

Using the uniform bound on the solutions, for k ≤ s − 2, from the energy estimate for

differences (1),

sup
t∈[0,T ]

‖u− uN‖1,k ≤ CN (k+1)−(s−1)(‖f0 − ρN (f0)‖Hs + ‖g0 − ρN (g0)‖Hs−1)

≤ CNk+2−sε.

In particular,

sup
t∈[0,T ]

‖u− uN‖1 ≤ CN2−sε,

and similarly for v.

The smallness of ‖u − uN‖1 can be used to compensate for the largeness of ‖uN‖1,s in

the energy estimate for differences (1), when k = s − 1. Thus, taking uN as the reference

solution and u as the perturbation, we find

‖u− uN‖1,s−1(t)2 ≤ C‖u− uN‖1,s−1(0)2 + C

ˆ t

0
(1 + ‖u‖1,s−1 + ‖uN‖1,s)k‖u− uN‖21,s−1dt′

+ C

ˆ t

0
‖u− uN‖21‖uN‖21,sdt′

≤ Cε2 + C

ˆ t

0
‖u− uN‖21,s−1dt′ + C

ˆ t

0
N2−sεN‖(f0, g0)‖Hs×Hs−1dt′

≤ Cε2 + C

ˆ t

0
‖u− uN‖21,s−1dt′.

Thus, from Gronwall’s inequality, for t ∈ [0, T ], ‖u − uN‖1,s−1(t)2 ≤ ε. A similar estimate

holds for ‖v − vN‖1,s−1.
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We now wish to take uN as the reference solution and vN as the perturbation, the energy

estimate for differences. To do so, we note that ‖uN − vN‖1 ≤ ‖u− v‖1 ≤ δ = ε2/N , so

‖uN − vN‖1,s−1(t)2 ≤ ‖uN − vN‖1,s−1(0)2 +

ˆ t

0
(1 + ‖uN‖1,s−1 + ‖vN‖1,s−1)2‖un − vN‖21,s−1dt′

+ C

ˆ t

0

ε2

N(1 + ‖(f0, g0)‖Hs×Hs−1)
N‖(f0, g0)‖1,s−1dt′

≤ Cε2 + C

ˆ t

0
‖un − vN‖21,s−1dt′.

Gronwall’s inequality again yields ‖uN − vN‖1,s−1(t)2 ≤ Cε2.
Summing gives, at each t, ‖u−v‖1,s−1 ≤ ‖u−uN‖1,s+‖uN −vN‖1,s−1 +‖v−vN‖1,s−1 ≤

Cε, which gives the continuity of the map from initial data in Hs × Hs−1 to C0(Hs) ∩
C1(Hs−1). �

Appendix A. Further results in Harmonic analysis: Approximation by more

regular functions

Theorem A.1. Let i, j, k ∈ N with i ≤ j ≤ k. There is a family of linear operators

ρN : H i → Hk such that ∀N ∈ [1,∞) : ∀u ∈ Hk:

‖ρN (u)‖Hk ≤ C(1 +N)k−j‖u‖Hj ,

‖ρN (u)‖Hj ≤ ‖u‖Hj ,

‖ρN (u)− u‖Hi ≤ C(1 +N)i−j‖u‖Hj .

Furthermore, limN→∞ ‖ρN (u)− u‖ → 0.

Proof. Let F denote the Fourier transform. Let χN (~ξ) be a smooth function that takes val-

ues in [0, 1] and is constantly 1 for |~ξ| ≤ N and constantly zero for |~ξ| ≥ N+1. Let ρN (u) =

F−1(χNF(u)). From Plancherel’s theorem, ‖u‖2
Hk =

∑
|α|≤k ‖ξαF(u)(ξ)‖2L2(dnξ). The

three estimates then follow from the fact that χN
∑
|α|≤k(ξ

k)2 ≤ C(1 +N)k−j
∑
|α|<j(ξ

α)2,

χN ≤ 1, and (1 − χN )
∑
|α|≤i(ξ

α)2 ≤ C(1 + N)i−j
∑
|α|≤j(ξ

α)2. The convergence result

follows from the the pointwise convergence of χN to 1 and from the Lebesgue dominated

convergence theorem. �
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