
ADVANCED PDE II - LECTURE 9

PIETER BLUE AND OANA POCOVNICU

Warning: This is a first draft of the lecture notes and should be used with

care! Again, this lecture’s notes very closely follow C. Sogge’s “Nonlinear Wave Equations”.

1. Symmetries and other higher norms

1.1. Symmetries.

Definition 1.1. Let L be a linear differential operator. A symmetry for the linear PDE

Lu = 0 is a differential operator S such that if Lu = 0 then L(Su) = 0.

Theorem 1.2. Let L and S be linear differential operators taking S to S. If [L, S] = 0 or

there is a (possibly order zero) differential operator P such that [L, S] = P ◦L, then S is a

symmetry for the linear PDE Lu = 0.

Proof. If Lu = 0 and [L, S] = P ◦ L, then 0 = SLu = LSu − [L, Su] = LSu − PLu =

L(Su). �

1.2. Higher norms.

Definition 1.3. Let S = {Si}Ni=1 be a collection of linear differential operators and k ∈ N.

The S-k pointwise and spatial norms are defined by

|f |2S,k =
∑
j≤k

N∑
i1=1

. . .

N∑
ij=1

|Sij . . . Si1f |2,

‖f‖2S,k =

ˆ
Rn

|f |2S,kdnx.

These are defined on functions for which the norms are finite, for example on the Schwartz

class.

Given a vector field X, the S− k strengthened energy is

EX,S,k[u](Σ) =
∑

0≤j≤k

N∑
i1=1

. . .

N∑
ij=1

Ex[Sij . . . Si1u](Σ).

1.3. Applications to the wave equation.
1
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Definition 1.4. In R1+n, let

Vector fields Number

T = ∂t, 1

Xi = ∂i for i ∈ {1, . . . , n} n,

Ωij =
n∑
k=0

(ηjkx
k∂i − ηikxk∂j) for i, j ∈ {0, . . . , n} n(n+ 1)

2
,

L =
n∑
k=0

xk∂k 1.

Let

X = {Xi}ni=1,

� = {T, L} ∪ X ∪ {Ωij}0≤i<j≤n,
� = {Ωij}1≤i<j≤n.

X is a basis for translations of translations, � generates rotations.

Observe that the norms used in previous lectures can be expressed as

|u|21,k =
∑
|α|≤1

∑
|β|≤k

|∂α~∂βu|2 =
∑
|α|≤1

|∂αu|2X,k.

Observe further that rotations can be applied to functions in C∞(Sn−1).

Theorem 1.5 (Commutators for �).

∀Γ ∈ �\{L} : [ηij∂i∂j ,Γ] = 0,

[ηij∂i∂j , L] = 2ηij∂i∂j .

Furthermore,

∀Γα,Γβ ∈ � : ∃{Cγαβ}γ : [Γα,Γβ] = CγαβΓγ .

Proof. The commutators can be computed by direct computation. The coefficients are

rational of order 0, which shows they are of symbol type of order 0. �

Corollary 1.6 (Symmetries for the wave and Klein-Gordon equation). � is a collection of

symmetries for the wave equation ηij∂i∂ju = 0 and �\{L} is a collection of symmetries for

the Klein-Gordon equation (ηij∂i∂j − 1)u = 0.

Proof. The symmetry properties follow from the commutator properties involving ηij∂i∂j .

�

2. The Klainerman-Sobolev inequality

Theorem 2.1 (Klainerman-Sobolev inequality). Let T > 0. Let u ∈ C∞([0, T ] × Rn)

vanish uniformly for |x| sufficiently large. There is a C such that for t ≥ 0,

|u(t, x)| ≤ C(1 + t+ |~x|)−
n−1
2 (1 + |t− |~x|)−

1
2 ‖u(t)‖�,n+2

2
.
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The following results are useful for the proof

Definition 2.2. A function f : R1+n → R is of symbol class of order 0 if for all x ∈
R× (Rn\{~0}) and multiindices α there is a constant Cα such that

|∂αu(t, ~x)| ≤ Cα(|t|+ |~x|)−|α|.

Lemma 2.3 (Formulae for t and r derivatives). Let r = |~x| and ∂r = r−1
∑n

i=1 x
i∂i. In

R× (Rn\{~0}),

(t− r)∂r = − r

r + t
L+

n∑
i=1

t

r + t

xi

r
Ω0i,

(t− r)∂t =
t

r + t
L−

n∑
i=1

1

r + t
xiΩ0i.

The coefficients of L and Ω0i in the previous two formulae are of symbol class of order 0.

Furthermore,

(t− r)2
n∑
i=0

|∂iu(t, ~x)|2 ≤ |Lu(t, x)|2 +
∑

0≤j<k≤n
|Ωjku(t, ~x)|2.

Proof. The identities can be verified by direct calculation. The symbol properties follow

from the coefficients being homogeneous rational functions of order 0.

By rotational symmetry, we may assume x1 = r, x2 = . . . = xn = 0. At such a point,

(t2 + r2)

n∑
i=2

|∂iu|2 =
∑

1≤j<k≤n
|Ωjku|2.

and, by the first two formulae in the the theorem

(t2 − r2)∂tu = tLu− x1Ω01u,

(t2 − r2)∂1u = −x1Lu+ tΩ01u.

Thus,

(t2 − r2)2(|∂tu|2 + |∂ru|2) ≤ 2(t+ r)2(|Lu|2 + |Ω01u|2)
≤ (t2 + r2)(|Lu|2 + |Ω01u|2),

which completes the proof. �

Lemma 2.4 (Radial, angular, and localised Sobolev estimate). Let n ∈ Z+ and δ > 0. For

a multiindex α ∈ Z
n(n−1)

2 , define Θα = Ωα1
12Ωα2

13 . . .Ω
αn(n−1)

2

(n−1)n .

There are constants Cn,δ and Cn such that:

• If f ∈ S(Rn) and ~x ∈ Rn

|f(~x)|2 ≤ Cn,δ
∑

|α|≤n+2
2

ˆ
|~y|≤δ

|(~∂αf)(~x+ ~y)|2dny.
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• If u ∈ C∞(Sn−1) and ω ∈ Sn−1, then

|u(ω)|2 ≤ Cn
∑

|α|<n+1
2

ˆ
Sn−1

|Θαu|2(ν)dn−1σ(ν).

• If v ∈ C∞((0,∞)× Sn−1) and (r, ω) ∈ (0,∞)× Sn−1, then

|v(r, ω)|2 ≤ Cn,δ
∑
j+|α|

ˆ
Sn−1

ˆ
|q|≤δ
|(∂jqΘαv)(r + q, ν)|2dqdn−1σ(ν).

Proof. The first estimate follows from the standard Sobolev inequality and applying a

smooth cut-off function. The second follows from working in local coordinates, applying

smooth cut-off functions, and observing that the rotations span the tangent space. The

third follows from applying the same ideas in (0,∞)× Sn−1. �

Lemma 2.5. Let T > 0. Let u ∈ C∞([0, T ] × Rn) vanish uniformly for |x| sufficiently

large. There is a C such that for t ≥ 0,

|u(t, x)| ≤ C(1 + t+ |~x|)−
n−1
2 ‖u(t)‖�,n+2

2
.

Remark 2.6. This lemma is missing a factor of (1+ |t−|~x|)−
1
2 relative to the Klainerman-

Sobolev inequality.

Proof. Case 0: t+ |vecx| ≤ 1 This follows from localised Sobolev estimate.

Case 1: r 6∈ [t/2, 3t/2] here |t − r| ∼ |t + r|. Let |~y| ≤ t+|~x|
8 , so |t − |~x − ~y|| ≥ c|t + |~x||.

From the first localised Sobolev inequality to f(~z) = u(t+ ~x+ (t+ |~x|)~z), one finds

(t+ |~x|)n|u(t, ~x)|2 ≤ (t+ |~x|)n
∑

|α|≤n+2
2

ˆ
|~y|<1/8

|∂αy (u(t, ~x+ (t+ |~x|)~y))|2dny.

Now, applying a change of variables ~y 7→ (t+ |~x|)~y

(t+ |~x|)n|u(t, ~x)|2 ≤
∑

|α|≤n+2
2

ˆ
|~y|< t+|~y|

8

|((t+ |~x)∂y)
αu(t, ~x+ ~y)|2dny

≤ C‖u(t)‖2
�,bn+2

2
c.

Case 2: r ∈ [t/2, 3t/2] In this region t ∼ r ∼ t + r. Let q = |~x| − t = r − t, ω ∈ Sn−1 be

such that ~x = (t+q)ω, and u(t, q, ω) denote u(t, (t+q)ω). Let din−1σ(ω) denote integration

in the ω variable wiht respect the standard volume form on the sphere. Thus,

dnx = (t+ q)n−1dqdn−1σ(ω), ∂r = ∂q, q∂q = (r − t)∂r.
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From first applying the localised Sobolev estimate, then undoing the change of variables,

and then recalling how ∂r and (t− r)∂r can be expanded in terms of the �, one finds

tn−1|u(t, ~x)|2 ≤ tn−1
∑

j+k+|α|≤n+2
2

ˆ
Sn−1

ˆ
− 3

4
t≤q≤t

|(q∂q)j∂kqΘαu(t, q, ν)dqdn−1σ(ν)

≤ 4n−1
∑

j+k+|α|<n+2
2

ˆ
Sn−1

ˆ
1
4
t≤r≤t

|((t− r)∂r)j∂krΘαu(t, rν)|2rn−1drdn−1σ(ω)

≤ C‖u‖�,bn+2
2
c.

�

Observe that in the previous proof, a decay rate of (t+ r)−n/2 was derived in the region

where r < t/2 and r > 3t/2. The full Klainerman-Sobolev inequality, with decay of

〈t+ r〉−
n−1
2 〈t− r〉−1/2 can be found by dividing the region r ∈ [t/2, 3t/2] into sectors where

r/t varies in a narrow band, applying an argument like that used for |r/t − 1| > 1/2, and

tracking the constants carefully to find the dependence on the lower bound for |r/t − 1|.
The details can be found in many sources, including Sogge’s “Nonlinear Wave Equations”.

Corollary 2.7 (Proof of decay for solutions of the wave equation by vector fields). Let

n ≥ 3. Let f, g ∈ C∞c . If u is a solution of

ηij∂i∂ju = 0

u(0, ~x = f(~x),

∂tu(0, ~x = g(~x),

then ∀(t, ~x) ∈ R1+n

|∂u|(t, ~x) ≤ Cn(1 + t)−
n−1
2 (1 + |t− |~x||)−

1
2 ‖∂u‖�,bn+2

2
c(0),

|u|(t, ~x) ≤ Cn(1 + t)−
n−1
2 (1 + |t− |~x||)

1
2 ‖∂u‖�,bn+2

2
c(0).

Remark 2.8. The factor of (1 + |t− |~x||)
1
2 can be removed if n is odd.

Proof. Recall 1
2‖∂u‖L2(t) = E[u]({t}×Rn). If Γ ∈ �, then Γ is a symmetry, so Γu also has

a conserved energy. Thus, for t > 0, using conservation of energy for Γik . . .Γi1 and the

Klainerman-Sobolev inequality, one finds

‖∂u‖�,bn+2
2
c(0) = CET,�,bn+2

2
c[u]({0} × Rn)

= CET,�,bn+2
2
c[u]({t} × Rn)

= C‖∂u‖�,bn+2
2
c(t)

≥ C(1 + t)
n−1
1 (1 + t− |~x|)1/2|∂u|

Now consider u itself. For fixed t, conisder three regions of r, r ≥ 2t, r ∈ [t, 2t), and

r < t. In the first region, we can integrate along a radial going from r to ∞. Using N =

‖∂u‖�,bn+2
2
c, this gives |u(t, r, ω)| ≤

´∞
r |∂u(t, s, ω)|ds ≤ CN

´∞
r (1+s+t)−

n−1
2 (1+s−t)1/2ds

≤ CN
´∞
r (1+s−t)−(n+1)/2ds ≤ CN(1+(r−t))−n/2+1 ≤ CN(1+r+t)−

n−1
2 (1+r−t)1/2. In
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the region, r ∈ [t, 2t), we can integrate along a radial line from r to 2t and use the decay from

the region r ≥ 2t. Here, |u(t, r, ω)| ≤ CN
´ 2t
r (1+s+t)−

n−1
2 (1+s−t)1/2ds+CN(1+t)−n/2+1

≤ CN
´ 2t
r (1 + t)−

n−1
2 (1 + s− t)1/2ds+CN(1 + t)−n/2+1 ≤ CN

´
(1 + t)−n−1/2(1 + t− r)1/2.

Finally, consider the region r < t. Applying the same argument as in the region r ∈
[t, 2t), and integrating along a radial line from r to t, one finds |u(t, r, ω)| ≤ (1 + t)−n/2+1

≤
´ t
r |∂u|ds + |u(t, t, ω)|. Using the same sort of argument as in the region r ∈ [t, 2t),

one can show that
´ t
r |∂u|ds is bounded by the same sort of bound as |u(t, t, ω)|, namely

CN(1 + t)−n/2+1. Thus, for n ≥ 3 and fixed (r, ω), u(t, r, ω) goes to zero as t→∞. Now,

integrating in time, with r, ω fixed, one finds |u(t, r, ω| ≤
´∞
t |∂u(s, r, ω)|ds ≤ CN

´∞
t (1 +

t+ r)−(n−1)/2(1 + t− r)−1/2ds ≤ CN(1 + t+ r)−(n−1)/2(1 + t− r)1/2. �

3. Global existence for quasilinear equations in high dimensions with small

data

Theorem 3.1 (Principle of continuous induction/ Bootstrap argument.). Let T∗ > 0,

C > 0. If

(1) A is continuous on [0, T∗),

(2) A(0) ≤ C, and

(3) ∀T ≤ T∗ : supt≤T A(t) ≤ 2C =⇒ supt≤T A(t) ≤ C,

then ∀t < T∗ : A(t) ≤ C.

Proof. By the continuity of A, the set of t such that A(t) ≤ C is closed. By the final

condition, this set is open. Thus, it is the entire interval. �

Theorem 3.2. Let n ≥ 4. Assume condition 2Q(R1+n, that G00 = −1, that Gjk and F

depend only on ∂u, and that F (0) = 0 and δF (0) = 0.

There is an ε > 0 such that if T > 0 and u is a solution on [0, T ]× Rn of∑
jk

Gjk(∂u)∂i∂ju = F (∂u)

and ‖u‖�,n+4(0) < ε, then u can be extended to a solution of the PDE on [0,∞)× Rn.

False with n = 1, 3 or no decay.

sketch. The main idea is to combine the continuation criterion involving |u|1,dn+3
2
e, the

Klainerman-Sobolev inequality, and a bootstrap argument. �

Remark 3.3. Fritz John’s “Nonlinear Wave Equations: Formation of Singularities” shows

that the previous theorem is false when n = 1 and n = 3, by giving examples of quasilinear

wave equations that have solutions that cease to be C∞ in finite time. Thus, in higher

dimensions, some form of decay is necessary at infty, otherwise, one could take functions

that are constant in n− 1 (or n− 3) directions, and reduce the nonlinear wave equation to

one in 1 + 1 (or 1 + 3) dimensions, for which the existence of solutions that cease to be C∞

in finite time.
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