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1. Introduction

Consider the defocusing quintic nonlinear Schrödinger equation

(NLS) iut +�u = |u|4u
describing the evolution of a complex - valued function u : (I ✓ Rt)⇥ R3

x ! C.
The solution to this equation conserves both the energy

(1) E(u(t)) =
1

2

Z

R3

|ru(t, x)|2dx+
1

6

Z

R3

|u(t, x)|6dx

and the mass

(2) M(u(t)) =

Z

R3

|u(x, t)|2dx.

By Sobolev embedding, u(0) has a finte energy if and only if u(0) 2 Ḣ1, which is
the space in which we will consider the initial data u

0

. This is also a scale - invariant
space; if we consider the family of transformations

(3) u(t, x) 7! u�,x
0(t, x) = �

1

2u(�2t,�(x+ x(t)),

they preserve both the space of solutions to (NLS) and the Ḣ1 norm. For this reason,
the equation is called energy critical.

A function u : I⇥R3 ! C on a nonempty interval I 3 0 is called a strong solution
to NLS if u 2 CtḢ1

\L10

t,x(K ⇥R3) for all compact intervals K ✓ I, and it obeys the
Duhamel formula

(Duhamel) u(t) = S(t)u
0

� i

Z t

0

S(t� t0)|u(t0)|4u(t0)dt0,

for all t 2 I, where S(t) = eit� is the Scrödinger propagator. Since this is the only
kind of solution we are interested in this report, we will drop the term strong and
we will just talk about solutions in this sense.
We say that u is a maximal solution if it cannot be extended to any strictly larger
interval (in this class).
We say that u scatters at ±1 if there exists u± 2 Ḣ1 such that ku� S(t)u±k ! 0
as t ! ±1.
The main result is the following:

Theorem 1.1. Let u
0

2 Ḣ1. Recall that E(u) = 1

2

kuk2
˙H1

+ 1

6

kuk6L6

, and let E(u
0

) =
E. Then there exists a unique global solution u to (NLS) which satisfies

kukL10

t,x

(I
max

⇥R3

)

 L(E) < +1.

In particular, the solution scatters, that is, there exists u± such that

ku(t)� S(t)u±k ˙H1

! 0 as t ! ±1.
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Theorem 1.1 was proven in the radial setting by Bourgain[1] and in its full gener-
ality by Colliander, Keel, Sta�lani, Takaoka and Tao in [3]. In this report, we will
follow a di↵erent kind of approach, introduced by a discovery of Keraani [5] of the
existence of a minimal blowup solution, which was first used by Kenig and Merle in
[4] for the focusing equation in the radial setting in dimension 3  d  5. This ap-
proach for (NLS) is due to Killip and Vişan ([6]), from which we have taken sections
4 and 5, up to very slight tweaks and modifications. In sections 2 and 3, we follow
mainly [8], which proves a similar result in dimension 4.

2. Preliminary results and notations

We will use the notation X . Y to denote that there exists some constant C for
which X  CY . Similarly, we will use X ⇠ Y if X . Y . X. We will denote
eventual dependencies on the constant C using subscripts, for instance X .u Y
means X  C(u)Y .

We will use frequently the operator |r|s, defined on the Fourier side by having the
multiplier |⇠|2, togheter with the corresponding homogeneous Sobolev norms

kfk
˙W s,p

:= k|r|sfkLp

x

,

and Ḣ1 = Ẇ s,p.
We will also need some Littlewood-Paley theory. Let ' 2 C1

c (R+), supp(') ⇢
[�1

2

, 2], and
P

N22Z '(
r
N
) ⌘ 1. For N 2 2Z, let 'N(⇠) = '( |⇠|

N
), and define the

operators (Littlewood-Paley projections)

(4) \PNu =
X

MN

'M û, \P>Nu =
X

M>N

'M û, dPNu = 'N û.

Other operators like P�N , P<N , PM·N may appear in this report and are defined
similarly. We will often use the notation uN := PNu, uN := PNu, etc.. The
Littlewood - Paley projections commute with everything that commutes with trans-
lations, like derivatives, S(t), convolution operators. Moreover, they are self-adjoint
for every Ḣs space and bounded for every Ẇ s,p for any 1  p  1. They also obey
the following estimates

(Bernstein)
��|r|±sfN

��
Lp

x

⇠ N±s kfNkLp

, kfNkLq

x

.s N
3

p

� 3

q kfNkLp

.

whenever s � 0 and 1  p  q  1, and

(5) kfkLp

x

⇠

������

 
X

N22Z
|fN(x)|2

! 1

2

������
Lp

x

. for 1 < p < 1. We will often write F (u) := |u|4u and, following [6], we will use
the notation Y = Ø(X) to denote a quantity that resembles X, in the sense that in
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order to estimate Y in whichever norm we need, it is enough to estimate X. Namely,
this will often mean that Y is a linear combination of pieces with the same factors
of X, up to complex conjugation, like

F (u+ v) =
5X

j=0

Ø(ujv5�j),

or up to Littlewood-Paley projections, like

F (u) = F (u>N) + Ø(uNu
4).

Another notation we will use in this report is that a set {u(t)}t2I is precompact
modulo symmetries in Ḣ1: by this we mean that there exists N(t) 2 R+, x(t) 2 R3

such that {v(t)|v(t, x) = N(t)
1

2u(t, N(t)(x+ x(t)))}t2I is precompact in Ḣ1.
As basic results go, we first need a couple of results on the linear theory of the

Schrödinger propagator S(t):

Proposition 2.1 (Strichartz estimates). We call a couple q, r � 2 admissibile if
2

q
+ 3

r
= 3

2

. Then for any admissible couples (q, r), (q̃, r̃) the following inequalities

hold:

kS(t) kLq

t

Lr

x

(R⇥R3

. k kL2

x

(R3

)

(6)
����
Z

R

S(�t)F (t)dt

����
L2

x

(R3

)

. kFk
Lq̃

0
t

Lr̃

0
x

(R⇥R3

)

(7)

����
Z t

0

S(t� t0)F (t0)dt0
����
Lq

t

Lr

x

(R⇥R3

. kFk
Lq̃

0
t

Lr̃

0
x

(R⇥R3

)

.(8)

Proof. See Theorem 2.3 in [7]. ⇤
Lemma 2.2 (Fraunhofer formula). Let  2 L2(Rd). Then

(9)

����(S(t) )(x)� (2it)�
d

2 ei
|x|2
4t  ̂

⇣ x

2t

⌘����
L2

! 0

as |t| ! 1.

Proof. See Lemma 8.8 of [8]. ⇤
The next result is still a linear result on the Schrödinger propagator S(t), but it

is more technical, and it is a precise formulation of the heuristic statement

“Proposition”. The embedding Ḣ1 ,! L10

t,x given by u 7! S(t)u, which is composi-

tion of the embedding u 7! S(t)u granted by the Strichartz inequality Ḣ1 ,! L10

t Ẇ
1, 30

13

x
x

and the Sobolev embedding L10

t Ẇ
1, 30

13

x ,! L10

t,x, is compact modulo scaling and transla-
tions.
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Theorem 2.3 (Profile decomposition). Let fn be a sequence of functions bounded
in Ḣ1. Up to subsequences, there exists a J⇤ 2 N [ {1}, functions {�j}J⇤

j=1

⇢ Ḣ1,

{�n} ⇢ (0,1) and {tjn, xj
n} ⇢ R⇥ R3 such that for each finite 0  J  J⇤, we have

the decomposition

(10) fn =
JX

j=1

(�jn)
� 1

2

�
S(tjn)�

j
�✓x� xj

n

�jn

◆
+ wJ

n

with the following properties:

lim
J!J⇤

lim sup
n!1

��S(t)wJ
n

��
L10

t,x

= 0(11)

lim
n!1

 
kfnk2˙H1

�
JX

j=1

���j
��2

˙H1

�
��wJ

n

��2
˙H1

!
= 0(12)

lim
n!1

 
kfnk6L6

�
JX

j=1

��S(tjn)�j
��6
L6

�
��wJ

n

��6
L6

!
= 0(13)

S(�tjn)
�
�jn
� 1

2 wJ
n

�
�Jnx+ xJ

n

�
* 0(14)

If j 6= k,
�jn
�kn

+
�kn
�jn

+
|xj

n � xk
n|2

�jn�kn
+

��tjn(�jn)2 � tkn(�
k
n)

2

��

�jn�kn
! 1 as n ! 1(15)

Moreover, we can assume that tjn ⌘ 0 or tjn ! ±1.

Proof. See Theorem 4.1 in [8] ⇤

Now we are ready to talk about our equation. The basic result, which gives
local existence and uniqueness for any initial data in Ḣ1 and global existence and
uniqueness for small initial data is the following, due to Cazenave and Weissler [2]:

Theorem 2.4. Let u
0

2 Ḣ1. There exists a �
0

> 0 such that, if 0 2 I is an interval
in which kS(t)u

0

k
L10

t

˙W
1,

30

13

x

(I⇥R3

)

< �
0

, then there exists a unique solution to (NLS)

in I ⇥ R3. This solutions satisfies kukL10

t,x

(I⇥R3

)

. kuk
L10

t

˙W
1,

30

13

x

(I⇥R3

)

. ku
0

k
˙H1

.

With a very similar proof (arguably, the same proof), the following holds:

Theorem 2.5. Let u
+

2 Ḣ1. There exists a �
0

> 0 such that, if I = (t,+1) is
an interval in which kS(t)u

+

k
L10

t

˙W
1,

30

13

x

(I⇥R3

)

< �
0

, then there exists a unique solu-

tion to (NLS) in I ⇥ R3 which scatters to u
+

as t ! 1. This solutions satisfies
kukL10

t,x

(I⇥R3

)

. kuk
L10

t

˙W
1,

30

13

x

(I⇥R3

)

. ku
0

k
˙H1

.
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In order to control the Ẇ
1, 30

13

x norm of a solution, it is actually su�cient to control
the weaker L10

t,x norm:

Lemma 2.6. Let u be a solution to (NLS) on I ⇥ R3 such that kukL10

t.x

 L < +1
and ut

0

2 Ḣ1. Then ku(t)k
˙H1

+ kuk
L10

t

˙W
1,

30

13

x

(I⇥R3

)

 C(E,L) < +1, where E is the

energy.

Proof. By Duhamel, Strichartz and Hölder, we have, for every interval [t
0

, t
1

] ⇢
[0, T

max

)

kukL1
t

˙H1

(I⇥R3

)

. kut
0

k
˙H1

+ kuk
L10

t

˙W
1,

30

13

x

(I⇥R3

)

kuk4L10

t,x

(I⇥R3

)

(16)

kuk
L10

t

˙W
1,

30

13

x

(I⇥R3

)

. kut
0

k
˙H1

+ kuk
L10

t

˙W
1,

30

13

x

(I⇥R3

)

kuk4L10

t,x

(I⇥R3

)

(17)

Therefore, chopping down [0, T
max

] in a finite number
⇣
.
�
L
�

�
10

⌘
of intervals Jk =

[tk, tk+1

] where kukL10

t,x

(I⇥R3

)

 �, we get for � small enough (depending only on the

implicit constants in the previous inequalities):

kuk
L10

t

˙W
1,

30

13

x

([t
k

,t
k

+1]⇥R3

)

. kukL1
t

˙H1

x

([t
k�1

,t
k

]⇥R3

)

,(18)

kukL1
t

˙H1

x

([t
k

,t
k+1

]⇥R3

)

. kukL1
t

˙H1

x

([0,t
k

]⇥R3

)

+ �4 kuk
L10

t

˙W
1,

30

13

x

([t
k

,t
k+1

]⇥R3

)

,(19)

from which, proceeding inductively, we get kut
0

k
˙H1

+ kuk
L10

t

˙W
1,

30

13

x

(I⇥R3

)

< C(E,L) <

+1. ⇤

This L10

t,x norm of the solution it is a good indicator for the eventual blowup.
Indeed we have that in case kukL10

t,x

= 1, we have blowup:

Lemma 2.7. Let u a solution to NLS such that kukL10

t,x

((0,T
max

)⇥R3

= +1. Then u

cannot be extended to a solution v 2 CtḢ
1((0, T )⇥ R3) for any T > T

max

.

Proof. Suppose by contradiction that there exists v : (0, T ) ! R3 solution to NLS
which extends u. Let 0 < T  T

max

the minimum time at which kukL10

t,x

((0,T )⇥R3

= +1
(it exists because of Theorem 2.4). Let � > 0 such that

kukL10

t,x

([T��,T ]⇥R3

)

= kvkL10

t,x

([T��,T ]⇥R3

)

< +1

(it exists because of Theorem 2.4 again). Then we have

kukL10

t,x

 kukL10

t,x

([0,T��]⇥R3

)

+ kukL10

t,x

([T��,T ]⇥R3

)

< +1,

contradiction. ⇤
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On the other hand, in case kukL10

t,x

((0,T
max

)⇥R3

< +1, then we cannot have any

blowup in finite time:

Proposition 2.8. Let u a maximal solution to (NLS) in [0, T
max

)⇥R3 with kukL10

t,x

<

+1. Then T
max

= +1.

Proof. Now let us suppose by contradiction that T
max

< +1, and let tn " T
max

. We
have, by Duhamel with t

0

= tn, Strichartz inequality and Hölder:

(20) kS(t� tn)u(tn)k
L10

t

˙W
1,

30

13

x

((t
n

,T
max

)⇥R3

)

. kuk
L10

t

˙W
1,

30

13

x

(t
n

,T
max

)

+ kuk
L10

t

˙W
1,

30

13

x

((t
n

,T
max

)⇥R3

)

kuk4L10

t,x

((t
n

,T
max

)⇥R3

)

.

The RHS in this last inequality is approaching 0 when n ! 1, so we have that for
n big enough,

kS(t� tn)u(tn)k
L10

t

˙W
1,

30

13

x

((t
n

,T
max

)⇥R3

)

<
�
0

2
.

Moreover, since kS(t� tn)u(tn)k
L10

t

˙W
1,

30

13

x

(R⇥R3

)

. ku(tn)k ˙H1

< +1, we have that

there exists ⌘ > 0 such that kS(t� tn)u(tn)k
L10

t

˙W
1,

30

13

x

((t
n

,T
max

+⌘)⇥R3

)

< �. Therefore,

by Theorem 2.4, one can extend u up to T
max

+ ⌘, contradiction. ⇤
Moreover, if kukL10

t,x

((0,+1)⇥R3

< +1, we have a good behavior at +1, namely

scattering:

Proposition 2.9. Let u be a solution to (NLS) on [0,+1)⇥R3 such that kukL10

t,x

<

+1. Then u scatters at +1, that is, there exists u
+

2 Ḣ1 such that ku� S(t)u
+

k
˙H1

!
0 for t ! +1.

Proof. Let u
+

= u
0

� i
R
+1
0

S(�t0)|u|4u(t0)dt0. This is well defined in Ḣ1, since by
Strichartz and Hölder,

����
Z T

1

T
0

S(�t0)|u|4u(t0)dt0
����

˙H1

=

����
Z T

1

�T
0

0

S(�t0)|u|4u(T
0

+ t0)dt0
����

˙H1

. kuk
L10

t

˙W
1,

30

13

x

((T
0

,+1)⇥R3

)

kuk4L10

t,x

((T
0

,+1)⇥R3

)

which is going to 0 as T
0

! 1 since kuk
L10

t

˙W
1,

30

13

x

(R+⇥R3

)

, kukL10

t,x

(R+⇥R3

)

< +1.

Therefore we have, by Duhamel,

ku(t)� S(t)u
+

k
˙H1

= kS(�t)u(t)� u
+

k
˙H1

=

����
Z 1

t

S(�t0)|u|4u(t0)dt0
����

˙H1

,

which is converging to 0 as t ! 1 (as we just proved). ⇤
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In order to complete this list of basic results on NLS, we need some kind of stability
result, which united with Theorem 2.4 will give LWP and GWP for small data for
NLS, other then being a fundamental technical tool that we will need in the further
sections. The next statement is what we need. Stronger versions (with weaker
hypotheses) are available, but this is the easiest (to prove) that the writer knows,
and it is enough for our purposes.

Theorem 2.10 (Perturbation theory). Let I a compact time interval and let ũ satisfy
a perturbed NLS

(PNLS) iũt = ��ũ± |ũ|4ũ+ e

for some function e. Assume that

kũkL1
t

˙H1

x

(I⇥R3

)

 E(21)

kũkL10

t,x

(I⇥R3

)

 L(22)

for some positve constants E and L. Let t
0

2 I and u
0

2 Ḣ1

x and assume the
smallness conditions

ku
0

� ũ
0

k
˙H1

 "(23)

krekN0

(I)  "(24)

for some 0 < " < "
1

(E,L). (Here kekN0

is the dual norm of the norm of L2

tL
6

x \
L1
t L2

x). Then there exists a unique solution u : I ⇥ R3 ! C to (NLS) with initial
data u

0

at time t = t
0

satisfying

ku� ũkL10

t,x

 C(E,L)"(25)

kr(u� ũ)k
L10

t

L
30

13

(I⇥R3

)

 C(E,L)(26)

kruk
L10

t

L
30

13

(I⇥R3

)

 C(E,L).(27)

Proof. See Theorem 5.3 in [8]. ⇤
The rest of this section will be dedicated to a few technical lemmas we will need

in the following sections,

Lemma 2.11. Let u : I ⇥R3 ! C be a solution to the forced Schröndinger equation

iut +�u = G

for some function G, and let (q, r) and (q̃, r̃) be Schröndinger admissible (2
q
+ 3

r
= 3

2

and q, r � 2). Then we have
 
X

N22Z
kruNk2Lq

t

Lr

x

(I⇥R3

)

! 1

2

. ku(t
0

)k
˙H1

(R3

)

+ krGk
Lq̃

0
t

Lr̃

0
x

(I⇥R3

)
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Proof. By Duhamel and Strichartz,

kruNkLq

t

Lr

x

(I⇥R3

)

. ku(t
0

)Nk ˙H1

+ kPNrGk
Lq̃

0
t

Lr̃

0
x

(I⇥R3

)

.

By Littlewood - Paley theory krGk
Lq̃

0
t

Lr̃

0
x

(I⇥R3

)

⇠ kPNrGk
Lq̃

0
t

Lr̃

0
x

l2
N

(I⇥R3⇥Z), so by

Minkowski inequality,

LHS = kruNkl2
N

Lq

t

Lr

x

(Z⇥I⇥R3

)

. ku(t
0

)Nkl2
N

˙H1

x

+ kPNrGk
l2
N

Lq̃

0
t

Lr̃

0
x

(Z⇥I⇥R3

)

q̃0,r̃01

. ku(t
0

)k
˙H1

+ kPNrGk
Lq̃

0
t

Lr̃

0
x

l2
N

(I⇥R3⇥Z) ⇠ ku(t
0

)k
˙H1

(R3

)

+ krGk
Lq̃

0
t

Lr̃

0
x

(I⇥R3

)

⇤
Lemma 2.12. For any u : I ⇥ R3 ! C we have

kukL4

t

L1
x

(I⇥R3

)

. kruk
1

2

L1
t

L2

t

 
X

N22Z
kruNk2L2

t

L6

x

(I⇥R3

)

! 1

4

.

In particular,

kuNkL4

t

L1
x

(I⇥R3

)

. kruNk
1

2

L1
t

L2

x

 
X

MN

kruMk2L2

t

L6

x

(I⇥R3

)

! 1

4

.

Proof. From Minkowski and Littlewood Paley theory, we have that

krukL2

t

L6

x

⇠ kruNkL2

t

L6

x

l2
N

(I⇥R3⇥Z) . kruNkl2
N

L2

t

L6

x

(Z⇥I⇥R3

)

.

Then we have, by Hölder,

kukL4

t

L1
x

 kruk
1

2

L1
t

L2

x

kruk
1

2

L2

t

L6

x

. kruk
1

2

L1
t

L2

x

kruNk
1

2

l2
N

L2

t

L6

x

(Z⇥I⇥R3

)

.

⇤
Proposition 2.13 (Maximal Strichartz Estimate). Let v : I⇥R3 ! C be a solution
to the forced Schröndinger equation

ivt +�v = F +G.

Then for each 6 < q  1,
���M(t)

3

q

�1

��PM(t)v(t)
��
Lq

x

���
L2

t

.
���|r|� 1

2v
���
L1
t

L2

x

+
���|r|� 1

2G
���
L2

t

L
6

5

x

+ kFkL2

t

L1

x

uniformly for all functions M : [0, T ] ! 2Z. All spacetime norms are over [0, T ]⇥R3.

Proof. See Theorem 3.1 in [6]. ⇤
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3. Minimal blowup solution for the defocusing case

Suppose by contradiction that Theorem 1.1 fails. Therefore, defining

L(E) := sup{kukL10

t,x

(I⇥R3

)

|E(u
0

)  E},

L(E) = 1 for some E < 1. By Theorem 2.4, L(E) < +1 for E small enough.
Therefore, by monotonicity of L, there exists a critical level 0 < Ec < +1 such that
Ec = sup{E|L(E) < +1} = inf{E|L(E) = +1}.

Lemma 3.1. L(Ec) = +1.

Proof. Suppose by contradiction that L(Ec) = Lc < +1, and let 0 < � ⌧ 1. Let
u
0

a generic initial data with E(u
0

) = Ec + �, and let u be the maximal solution
starting from u

0

. Let ũ
0

such that E(ũ
0

)  Ec and ku
0

� ũ
0

k
˙H1

. �. Let ũ be the
solution starting from ũ

0

.
We have that kũ

0

k2
˙H1

 2Ec and kũ
0

kL10

t,x

 Lc, so we can apply Theorem 2.10 to this

ũ, getting that kukL10

t,x

. C(
p
2Ec, Lc)� + Lc. Therefore L(Ec + �) . � + Lc < +1,

contradiction. ⇤
Since L(Ec) = +1, by definition it means that there exists a sequence of ini-

tial data un(0) with E(un)  Ec such that kunkL10

t,x

(I⇥R3

)

! +1. Without loss

of generality, by translating un in time, we can have that kunkL10

t,x

((I\R+

)⇥R3

)

=

kunkL10

t,x

((I\R�
)⇥R3

)

! +1. The goal is to extract a blowup solution from this se-

quence. The main tool is the following:

Proposition 3.2 (Palais - Smale condition). Let un : In ⇥R3 ! C be a sequence of
solutions to NLS with E(un) ! Ec such that

lim
n!1

kunkL10

t,x

((I\R+

)⇥R3

)

= lim
n!1

kunkL10

t,x

((I\R�
)⇥R3

)

! 1.

Then the sequence un(0) has a converging subsequence in Ḣ1 modulo scaling and
spatial translations.

Proof. Using Theorem 2.3, we write

un =
JX

j=1

(�jn)
� 1

2

�
S(tjn)�

j
�✓x� xj

n

�jn

◆
+ wJ

n =
JX

j=1

S(tjn)T
j
n�

j + wJ
n .

By 12 and 13, we get that

(28) lim
n!1

E(un)�
JX

j=1

E(S(tjn)�
j)� E(rJn) = 0.
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Scenario 1: supj lim supn!1 E(S(tjn)�
j) = Ec.

By 12, if J⇤ = 1, we have that limj!1 k�j
nk ˙H1

= 0, which implies that there exists
J
0

2 N such that E(S(tjn)�
j) < 1

2

Ec for j > J
0

. The same holds trivially if J⇤ < 1,
just by taking J

0

= J⇤ + 1.
Therefore, up to passing to a subsequence in n, we have that for a certain j

0

 J
0

,
limn E(S(tj0n �

j
0)) = Ec. In this case, by (28), we get that for every j 6= j

0

,

0 = lim sup
n

E(S(tjn)�
j) & lim sup

n

���j
��2

˙H1

,

so we have that J⇤ = 1. Again by (28), this implies kr1nk ˙H1

! 0. If t1n ⌘ 0 we
obtain our desired compactness, so we just need to prove that t1n 6! ±1. In the case
t1n ! 1, we have that

krS(t)unk
L10

t

L
30

13

x

(R+⇥R3

)

.
��rS(t)�1

��
L10

t

L
30

13

x

([t1
n

,+1)⇥R3

)

+
��rS(t)w1

n

��
L10

t

L
30

13

x

(R+⇥R3

)

! 0

as n ! 1. Therefore, ũ = S(t)un satisfies (PNLS) on R+⇥R3 with e = �|ũ|4ũ, and

krekN0

. krek
L2L

6

5

. kũk4L10

t,x

krũk
L10

t

L
30

13

x

. krũk5
L10

t

L
30

13

x

! 0

as n ! 0. Therefore, by Theorem 2.10 applied to un and ũ, we have that, for n big
enough,

(29) kunkL10

t,x

(R+⇥R3

)

. 1 + kũkL10

t,x

(R+⇥R3

)

. 1 + kun(0)k ˙H1

. 1,

which contradicts our hypothesis. An analogous argument holds for tn ! �1.

Scenario 2: supj lim supn!1 E(S(tjn)�
j)  Ec � 2�.

Fix J < +1. Then, for n su�ciently large, E(S(tjn)�
j)  Ec � � 8j  J . Define vj

in the following way:

• If tjn ⌘ 0, then vj is the maximal solution to NLS with initial data �j. Since
E(�j) < Ec, this solution is defined on the whole real line,

• If tjn ! +1, then vj is the solution to NLS that scatters to �j when t ! +1
(which existence is guaranteed by Theorem 2.5),

• If tjn ! �1, then vj is the solution to NLS that scatters to �j when t ! �1
(which existence is guaranteed by Theorem 2.5).

Let vjn(t) = T j
nv

j
⇣

t

(�j

n

)

2

+ tjn

⌘
. This is still a solution to NLS, and satisfies

lim
n!1

��vjn(0)� S
�
tjn
�
T j
n�

j
��

˙H1

= 0,

therefore for n big enough, E(vjn)  (lim supE(S(t)�j) + �
2

)  Ec � �
2

, so vjn is
defined for all times and from Proposition 2.4 we get kvjnkL10

t,x

.E
c

,�,L(E
c

� �

2

)

k�k
˙H1

.
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Now consider

ũJ
n :=

JX

j=1

vjn + S(t)wJ
n .

Because of Theorem 2.3, points 11,15 and 12, we have that
(30)��ũJ

n

��
L10

.
����vjn

��
L10

��
l10
j

+
��S(t)wJ

n

��
L10

. kk�k
˙H1

kl2 + "J . kunk ˙H1

+ "J .
p
Ec+ "J .

Claim I: limn!1
��ũJ

n(0)� un(0)
�� = 0.

��ũJ
n(0)� un(0)

��2
˙H1

=

�����

JX

j=1

vjn(0)� S(tjn)T
j
n�

j

�����

2

˙H1

! 0.

Claim II: For J big enough (depending on "),

lim sup
n!1

�����|ũ
J
n|4ũJ

n �
JX

j=1

|vjn|4vjn

�����
L2

t

˙W
1,

6

5

x

 "

�����|ũ
J
n|4ũJ

n �
JX

j=1

|vjn|4vjn

�����
L2

t

˙W
1,

6

5

x

.
X

j 6=k

X

l+m+p+q+1=5

���(rvjn)(v
j
n)l(vjn)

m(vkn)
p(vkn)

q
���
L2

t

L
6

5

x

(I)

+
X

j,k

X

l+m+p+q+1=5

���(S(t)rwJ
n)(v

j
n)l(vjn)

m(vkn)
p(vkn)

q
���
L2

t

L
6

5

x

(II)

+
X

j,k

X

l+m+p+q+2=5

���(rvjn)S(t)w
J
n(v

j
n)l(vjn)

m(vkn)
p(vkn)

q
���
L2

t

L
6

5

x

(III)

+
X

j,k

X

l+m+p+q+2=5

���(rvjn)S(t)w
J
n(v

j
n)l(vjn)

m(vkn)
p(vkn)

q
���
L2

t

L
6

5

x

(IV)

We have that:
I: Because of Theorem 2.3, point 15, I ! 0.
II: II . PJ

j=1

��(rS(t)wJ
n)|vjn|4

��
L2L

6

5

! 0 because of Theorem 2.3, point 14 (by

approximating |vj| in L10 with functions with space-time compact support).
III + IV:

III + IV .
JX

j=1

��|rvjn||vjn|3S(t)wJ
n

��
L2L

6

5

.
��vjn
��
L10

t

L
30

13

x

��vjn
��3
L10

t,x

��wJ
n

�� . "J
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because of Lemma 2.6 and Theorem 2.3, point 11.
Therefore, taking J such that "  "

1

(2
p
Ec, C

p
Ec) and n big enough, we can

apply Theorem 2.10 with ũ = ũn and u = un, getting that kunkL10

.
p
Ec. But we

know that kunkL10

! +1, contradiction. ⇤
Theorem 3.3 (Existence of minimal counterexample). Suppose Theorem 1.1 fails
to be true. Then there exists a maximal solution u : I ⇥ R3 ! C to the defocusing
energy-critical NLS with E(u) = Ec, which blows up in both time directions in the
sense that

kukL10

t,x

((I\R�
)⇥R3

)

= kukL10

t,x

((I\R+

)⇥R3

)

= 1,

and whose orbit {u(t)|t 2 I} is precompact in Ḣ1 modulo scaling and spacial trans-
lations

Proof. Let un with E(un) " Ec, kunkL10

t,x

((I\R+

)⇥R3

)

= kunkL10

t,x

((I\R�
)⇥R3

)

! +1. Be-

cause of Proposition 3.2, up to rescaling and translating un, we can assume un(0) ! �
in Ḣ1. In particular, E(�) = Ec.
Let u : I⇥R3 ! C the maximal solution with initial data �. Applying Theorem 2.10
with ũ = u and u

0

= un(0), we get that kukL10

t,x

((I\R+

)⇥R3

)

= kukL10

t,x

((I\R+

)⇥R3

)

= +1.

Finally, let (tn)n2N be a sequence in I. Because of Lemma 2.7, kukL10

t,x

(K⇥R3

)

< +1,

so we have
kukL10

t,x

((I\{t<t
n

})⇥R3

)

= kukL10

t,x

((I\{t>t
n

})⇥R3

)

= +1.

Hence we can apply Proposition 3.2 to the sequence u(tn), obtaining that u(tn) has
a converging subsequence modulo scaling and translations, from which we get the
precompactness. ⇤

What we just proved to exist in Theorem 3.3 can be already considered a minimal
blowup solution, and of course proving Theorem 1.1 is equivalent to proving that
this solution cannot exist. However, this solution does not have all the properties we
need yet, and a further study os needed to discover the general behavior of almost
periodic solutions and to build a blowup solution with slightly stronger features.

Proposition 3.4. Let {u(t)} ⇢ Ḣ1 be precompact modulo dilations and translations.
Then we have

(1) For every ⌘ > 0, there exists C(⌘) such that
Z

|x�x(t)|�C(⌘)

N(t)

|ru(t)(x)|2 dx  ⌘,

Z

|⇠|�C(⌘)N(t)

|⇠û(t)|2  ⌘

(2) For every ⌘ > 0, there exists c(⌘) such that
Z

|x�x(t)| c(⌘)

N(t)

|ru(t)(x)|2 dx  ⌘,

Z

|⇠|c(⌘)N(t)

|⇠û(t)|2  ⌘
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Proof.

(1) Let ũ(t) be the rescaling and translation of u(t), in such a way that {ũ(t)}
is precompact in Ḣ1. Suppose by contradiction that there exists ⌘ > 0 such
that for every n 2 N, there exists tn for which

Z

|x�x(t)|� n

N(t

n

)

|ru(tn)(x)|2 dx > ⌘ ,
Z

|x|>n

|rũ(tn)|2 > ⌘.

Because of precompactness, up to subsequences we have that ũ(tn) ! ũ in
Ḣ1. Let M > 0 such that

R
|x|>M

|rũ|2 < ⌘. Then we have

⌘ >

Z

|x|>M

|rũ|2 = lim
n!1

Z

|x|>M

|rũ(tn)|2
big enoguh n

� ⌘,

contradiction.
The other inequality is analogous: if it fails, then on a sequence

Z

|⇠|�n

���⇠[̃u(tn)
���
2

� ⌘,

and

⌘ >

Z

|⇠|�M

���⇠b̃u
���
2

= lim
n!1

Z

|⇠|�M

���⇠[̃u(tn)
���
2

big enoguh n

� ⌘.

(2) As before, by contradiction on a suitable sequence we have
Z

|x| 1

n

|ru(tn)(x)|2 dx � ⌘

and

⌘ >

Z

|x| 1

M

|ru(x)|2 dx = lim
n!1

Z

|x| 1

M

|ru(tn)(x)|2 dx
big enoguh n

� ⌘,

and, for the last inequality
Z

|⇠| 1

n

���⇠[̃u(tn)
���
2

� ⌘

on a sequence and

⌘ >

Z

|⇠| 1

M

���⇠b̃u
���
2

= lim
n!1

Z

|⇠| 1

M

���⇠[̃u(tn)
���
2

big enoguh n

� ⌘.

⇤
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Lemma 3.5 (Local constancy of N(t)). Let u be an almost periodic solution to NLS.
Then there exists � = �(u) such that for every t

0

in I we have:

[t
0

� �N(t
0

)�2, t
0

+ �N(t
0

)�2] ⇢ I(31)

N(t) ⇠u N(t
0

) whenever |t� t
0

|  �N(t
0

)2.(32)

Proof. Let {ũ(tn)} a precompact family of rescaling and translations of u(tn), which
existence is given by almost periodicity modulo symmetries.
Suppose by contradiction that (31) fails. Then there exists tn such that tn 2 I and
tn ± 1

n
N(tn)�2 62 I. Up to subsequences, the sign is constant, we will consider just

+ (the � is analogous).
Let vn : In ⇥ R3 ! C be the maximal solution with initial data ũ(tn). Since vn is
given by rescaling and translations of u(t � tn), we have that 0 2 In,

1

n
62 In. Up

to subsequences, ũn(tn) ! v
0

in Ḣ1. Let v : I ⇥ R3 ! C be the solution to NLS
starting from v

0

. Therefore, by Theorem 2.10, if K = [0, b] is a compact subinterval
of I, then K ⇢ In for n big enough. But b > 1

n
62 In, contradiction.

Now take � smaller then the one determined for (31) to hold, and suppose (32)
fails. Then there exists tn, t0n such that sn := (tn � t0n)N(tn)2 ! 0 but N(t

n

)

N(t0
n

)

! 0 or
N(t

n

)

N(t0
n

)

! 1. As before, let vn the solution to NLS with initial data ũ(tn), and let v

be the solution to NLS with initial data v
0

= limn!1 ũ(tn). Because of N(t
n

)

N(t0
n

)

! 0

or N(t
n

)

N(t0
n

)

! 1, we have that vn(sn) * 0 in Ḣ1. By Duhamel, Strichartz, Hölder,
Lemma 2.6 and Theorem 2.10, we have that

kvn(sn)� v
0

k  kvn(sn)� vn(0)k ˙H1

+ kvn(0)� v
0

k
˙H1

. kvnk4L10

t,x

([0,s
n

]⇥R3

)

kvnk
L10

x

˙W
1,

30

13

x

([0,s
n

]⇥R3

)

+ kvn(0)� v
0

k
˙H1

. kvk4L10

t,x

([0,s
n

]⇥R3

)

C
⇣
E, 2 kvkL10

t,x

([0,s
n

]⇥R3

)

⌘
+ kvn(0)� v

0

k
˙H1

! 0

as n ! 1. Therefore, by coherence of the limits, we have that v
0

= 0, so u(tn) = 0
and E(u(tn)) = E(u

0

) = 0, which implies u
0

= 0, contradiction. ⇤

Remark 3.6. Covering I with intervals I
0

3 0 = t
0

, It
1

3 t
1

, . . . , It
n

3 tn, . . . as in
(31) with |tn+1

� tn| & N(tn)�2 and changing N(t) in such a way that N(t) ⌘ N(tn)
on [tn, tn+1

], the set {u(t)} is still precompact modulo this new family of scaling (and
the old family of symmetries). Therefore, we can assume N(t) constant on intervals
Jk = [tk, tk+1

] of size ⇠ N�2

k .
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Corollary 3.7. Let u : (0, T
max

) ⇥ R3 ! C be a maximal forward in time solution
to NLS. Then

If T
max

< 1, then N(t) &u |T
max

� t|� 1

2(33)

If T
max

= 1, then 8t, t
0

, N(t) &u min{N(t
0

), |t� t
0

|� 1

2}(34)

Proof. If T
max

< +1, then because of (31) we have T
max

> t
0

+�N(t
0

)�2 ) N(t
0

) &u

|T
max

� t
0

|� 1

2 .
If T

max

= 1, we either have t > t
0

+ �N(t
0

)�2 or N(t) ⇠ N(t
0

), from which
respectively N(t) &u |t� t

0

|� 1

2 or N(t) &u N(t
0

). ⇤
Lemma 3.8. Let u : I ⇥R3 ! C be an almost periodic solution to NLS, such that I
contains at least one full interval Jk. Let (q, r) be Strichartz admissible (2

q
+ 3

r
= 3

2

).
Then

krukq
Lq

t

Lr

x

.u 1 +

Z

I

N(t)2dt .u

Z

I

N(t)2dt.

Proof. Let Jk = [tk, tk+1

] an interval such thatN ⌘ Nk on Jk. Because of Remark 3.6,R
J
k

N2

k &u 1. Using Strichartz, Hölder, Sobolev and Bernstein inequality, we have
that

kuk
L10

t

˙W
30

13

x

([t
k

,t]⇥R3

)

.
��S(t)(ut

0

)>C(⌘)N
k

��
L1
t

˙H1

x

([t
k

,t]⇥R3

)

+
��S(t)(ut

0

)C(⌘)N
k

��
L10

t

˙W
1,

30

13

x

([t
k

,t]⇥R3

)

+ kuk5
L10

t

˙W
1,

30

13

x

([t
k

,t]⇥R3

)

.
��(ut

0

)>C(⌘)N
k

��
˙H1

+ |Jk|
1

10C(⌘)
1

5N
1

5

k kut
0

k
˙H1

+ kuk5
L10

t

˙W
1,

30

13

x

([t
k

,t]⇥R3

)

 ⌘ + |Jk|
1

10C(⌘)
1

5N
1

5

k kut
0

k
˙H1

+ kuk5
L10

t

˙W
1,

30

13

x

([t
k

,t]⇥R3

)

.u |Jk|
1

10C(⌘)
1

5N
1

5

k + kuk5
L10

t

˙W
1,

30

13

x

([t
k

,t]⇥R3

)

if ⌘ .
R
J
k

N2

k .
Since kuk

L10

t

˙W
30

13

x

([t
k

,t]⇥R3

)

is continuos in t, this implies that kuk
L10

t

˙W
30

13

x

(J
k

⇥R3

)

.u

|Jk|
1

10C(⌘)
1

5N
1

5

k , and taking the 10-th power, this implies

kuk10
L10

t

˙W
30

13

x

([t
k

,t]⇥R3

)

.u

Z

I

N(t)2.

For the general case, it is enough to prove the statement for q = 2, r = 6, and then
using Hölder combined with krukL1

t

L2

x

= kuk
˙H1

&u 1 (which is true because the
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energy E(u) is conserved), and recalling that
R
I
N(t)2dt &u 1 as well. We have that,

by the usual Duhamel, Strichartz, Hölder and Sobolev,

kuk2L2

t

˙W 1,6

x

(I⇥R3

)

. ku
0

k2
˙H1

+ kuk10
L10

t

˙W
1,

30

13

x

.u 1 +

Z

I

N(t)2 .u

Z

I

N(t)2.

⇤
Proposition 3.9 (No waste Duhamel). Let u : I ⇥ R3 ! C be a maximal solution
to NLS periodic modulo symmetries. Then S(�t)u(t)* 0 weakly in Ḣ1. Therefore,
we have

(35) u(t) = i lim
T!T

max

Z T

t

S(t� s)|u(s)|4u(s)ds,

where the limit is intended weakly in Ḣ1.

Proof. If T
max

< +1, then by Corollary 3.7 we have N(T ) ! 1 as T ! T
max

, so
S(�T )u(T )* 0 as T ! T

max

.
If T

max

= +1, let � 2 C1
c . We want to prove that

hru(T ),rS(T )�i ! 0

as T ! T
max

. Up to subsequences, because of precompactness,

N(T )�
1

2u
�
T,N(T )�1(x� x(t))

�
! u in Ḣ1 as T ! 1,

so
hru(T ),rS(T )�i �

D
ru,N(t)�

3

2 (rS(T )�)
�
N(t)�1(x� x(t))

�E
! 0

as T ! 1. If |x(t)| ! 1, then N(t)�
3

2 (rS(T )�) (N(t)�1(x� x(t))) * 0, so we
have the thesis. Otherwise, because of Lemma 2.2 and Corollary 3.7 we have that
for every ball B = {|x|  r} and T big enough,

���N(T )�
3

2 (rS(T )�)
�
N(T )�1(x� x(t))

����
L2

(B)

.
����N(T )�

3

2 (2iT )�
3

2 ei
�

�N(T )

�1

(x�x(T ))

�

�

2

/4T N(T )�1(x� x(T ))

2T
�̂

✓
N(t)�1(x� x(T ))

2T

◆����
L2

(B)

|x|,|x(t)| bounded and N(T ).T� 1

2 ,

.
���T� 5

4 k�kL1

���
L2

(B)

! 0

as T ! 1. Therefore, N(t)�
3

2 (rS(T )�) (N(t)�1(x� x(t))) * 0, and we have the
thesis also in this case. ⇤

Now, up to changing our blowup solution, we can add a further property to u,
namely, that N(t) � 1 8t.
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Theorem 3.10. Suppose Theorem 1.1 fails to be true. Thene there exists an almost
periodic modulo symmetries solution u : J ⇥ Rd ! C such that kukL10

t,x

(I⇥R3

)

= 1
and N(t) � 1 for all t 2 J .

Proof. Let v : I ⇥R3 ! C as in Theorem 3.3. We will construct u starting from this
v. Let J

1

⇢ J
2

⇢ · · · ⇢ J an exhaustion in compact intervals of J . Since v 2 Ct(Ḣ1),
{u(t)|t 2 Jn} is compact in Ḣ1, and therefore N(t) is bounded from above and below
on Jn. Let tk 2 Jn such that 2N(tn) � N(t) for all t 2 Jn. Let vn : In ⇥ R3 ! C be
the normalization of v centered in tn:

vn(t, x) = N(t)
1

2v(N(tn)
2(t� tn), N(tn)(x+ x(t))),

With In = {t|tn + N(tn)�2t 2 Jn}. Up to subsequences, we have that vn(0) ! u
0

.
Let u : I = (�T�, T+

) ⇥ R3 ! C be the maximal solution with initial data u
0

. Let
K ⇢ I be an interval such that kukL10

t,x

(K⇥R3

)

< 1. Then from Theorem 2.10, we

have kvnkL10

t,x

(K\I
n

⇥R3

)

 C(K, u) for n big enough. Since moreover kvnkL10

t,x

(I
n

⇥R3

)

=

kvkL10

t,x

(J
n

⇥R3

)

! 1, we have that In 6⇢ K for n large enough. Since they are both

intervals containing 0, this leads to two cases:

(1) K \ R+ ⇢ In or
(2) K \ R� ⇢ In.

Therefore, up to further subsequences and time reversal, we can assume (0, t) ⇢ In
for every t < T

+

and n big enough (notice that kukL10

t,x

([0,t]⇥R3

)

< 1). Let us rename

I = (0, T
+

) and restrict u to I ⇥ R3. We have that

(1) u is almost periodic: u(t) = limn!1 vn(t) = N(t)
1

2v(N(tn)2(t�tn), N(tn)(x+
x(t))), so the family {u(t)} is contained in the closure of {v(t)} modulo
symmetries.

(2) kukL10

t,x

= 1 : if not, because of Lemma 2.8, T
+

= +1, K = R+ is a valid

choice and so In � R+. Therefore, by Theorem 2.10, there exists a constant
C such that

C > kvnkL10

t,x

(R+⇥R3

)

= kvkL10

t,x

({t�t
n

}⇥R3

)

= 1,

contradiction,
(3) Nu(t) is bounded from below: obviously, Nu(t) is bounded from below on

[0, t] for all t < T
+

. Let now t ! T
+

. Then we have

⌘ �
Z

|⇠|c(⌘)N(t)

|⇠v̂(t)|2 =
Z

|⇠|c(⌘)
N(t

n

+N(t

n

)

�2

t)

N(t

n

)

|⇠v̂n(t)|2

t2J
n

�
Z

|⇠| 1

2

c(⌘)

|⇠v̂n(t)|2
n big enough⇠

Z

|⇠| 1

2

c(⌘)

|⇠û(t)|2.
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But since kuk
˙H1

& 1 and
R
|⇠|C(�)N

u

(t)
|⇠û(t)|2  �, we cannot have N(t) ! 0

on a sequence (otherwise, C(�)N(t)  1

2

c(⌘) and we get a contradiction).

Now, since Nu(t) � N
0

, up to rescaling the solution u, we can make Nu(t) � 1. ⇤
Therefore, in order to prove Theorem 1.1, we can restrict our attention to proving

the non existence of this very specific solution to NLS:

Theorem 3.11. Suppose Theorem 1.1 fails to be true. Then there exists an almost
periodic solution u : [0, T

max

)⇥ R3 ! C such that

kukL10

t,x

= +1,

Moreover, we may write [0, T
max

) =
S

k Jk with Jk being intervals where N(t) ⌘ Nk

is constant, |Jk| & N�2

k , and Nk � 1 for every k.

In order to prove that such a solution cannot exist, we define

(36) K =

Z T
max

0

N(t)�1,

and we will split the argument on the two possiibilities:

• K < +1, the rapid frequency cascade case,
• K = 1, the quasisoliton case.

4. Impossibility of rapid frequency cascade

The main technical tool for this part is the following

Theorem 4.1 (Long-time Strichartz estimate). Let u : (T
min

, T
max

) ⇥ R3 ! C be a
maximal almost periodic solution to NLS as in Theorem 3.11 and let I ⇢ (T

min

, T
max

)
be a finite interval which is a union of finitely many intervals Jk. Then for any fixed
6 < q < 1 and any frequency N > 0,

(37) A(N) :=

 
X

MN

kruMk2L2

t

L6

x

(I⇥R3

)

! 1

2

= kruNkl2
N

L2

t

L6

x

and

(38) Ãq(N) := N
3

2

���� sup
M�N

M
3

q

�1 kuM(t)kLq

x

(R3

)

����
L2

t

(I)

obey

(39) A(N) + Ãq(N) .u 1 +N
3

2K
1

2 ,

where K :=
R
I
N(t)�1dt. The implicit constant is independent on the interval I.
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Proof. First of all, notice that

kruNkL2

t

L6

x

⇠ kruNkL2

t

L6

x

l2
M

. kruNkl2
N

L2

t

L6

x

= A(N)(40)

kuNkL4

t

L1
x

Lemma 2.12

. A(N)
1

2 kukL1
x

˙H1

.u A(N)
1

2(41)

A(N)2
Lemma 2.11 + Sobolev

.u 1 + kruk10
L10

t

L
30

13

x

Lemma 3.8

.u

Z

I

N(t)2(42)

(43)

Ãq(N)
Proposition 2.13

. N
3

2

✓���|r|� 1

2u�N

���
L1
t

L2

x

+
���|r|� 1

2P�N |u|4u
���
L2

t

L
6

5

x

◆

Bernstein

. 1 + krukL2

t

L6

x

kuk4L1
t

L6

x

Lemma 3.8

.u

✓Z
N(t)2

◆ 1

2

therefore, we have the inequality

A(N) + Ãq(N) .u N
3

2K
1

2

whenever

N � sup
t2I

N(t) �
✓ R

I
N(t)2R

I
N(t)�1

◆ 1

3

.

In order to prove the thesis for N small we need and induction on scales argument,
based on the following recurrence relation:

Lemma 4.2. For ⌘ small enough,

A(N) .u 1 + c(⌘)�
3

2N
3

2K
1

2 + ⌘2Ãq(2N)(44)

Ãq(N) . 1 + c(⌘)�
3

2N
3

2K
1

2 + ⌘A(N) + ⌘2Ãq(2N)(45)

where c(⌘) is the same as in Proposition 3.4.

Proof. Rename c = c(t). Decomposing u as u = ucN(t + u>cN(t) and then u =
uN + u>N , we may write

F (u) = Ø(u2

>cN(t)u
3) + Ø(u2

cN(t)u
2

>Nu) + Ø(u2

cN(t)u
2

Nu).

Therefore we have:

(46) A(N)
Lemma 2.11 + Sobolev

. kruNkL1
t

L2

x

+
��rPNØ(u2

>cN(t)u
3)
��
L2

t

L
6

5

x

+
��rPNØ(u2

cN(t)u
2

>Nu)
��
L2

t

L
6

5

x

+
��rPNØ(u2

cN(t)u
2

Nu)
��
L2

t

L
6

5

x

Bernstein

.u 1+N
3

2

��u2

>cN(t)u
3

��
L2

t

L1

x

+N
3

2

��u2

cN(t)u
2

>Nu
��
L2

t

L1

x

+
��rPNØ(u2

cN(t)u
2

Nu)
��
L2

t

L
6

5

x

.
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Similarly,

(47)

Ãq(N)
Proposition 2.13

. N
3

2

✓���|r|� 1

2u�N

���
L1
t

L2

x

+
��u2

>cN(t)u
3

��
L2

t

L1

x

+N
3

2

��u2

cN(t)u
2

>Nu
��
L2

t

L1

x

+
���|r|� 1

2P�N(u
2

cN(t)u
2

Nu)
���
L2

t

L
6

5

x

◆

Bernstein

.u 1+N
3

2

��u2

>cN(t)u
3

��
L2

t

L1

x

+N
3

2

��u2

cN(t)u
2

>Nu
��
L2

t

L1

x

+
��rPN(u

2

cN(t)u
2

Nu)
��
L2

t

L
6

5

x

.

Therefore, the lemma is proven as soon as we prove

N
3

2

��u2

>cN(t)u
3

��
L2

t

L1

x

. c�
3

2N
3

2K
1

2(48)

N
3

2

��u2

cN(t)u
2

>Nu
��
L2

t

L1

x

. ⌘2Ãq(2N)(49)
��rPN(u

2

cN(t)u
2

Nu)
��
L2

t

L
6

5

x

. ⌘A(N).(50)

For the first one, consider Jk where N(t) ⌘ Nk. Then by Hölder, Sobolev, Bernstein
and Lemma 3.8,

N
3

2

��u2

>cN(t)u
3

��
L2

t

L1

x

(J
k

⇥R3

)

. N
3

2N
3

2

k

��u>cN(t)

��2
L4

t,x

(J
k

⇥R3

)

kuk3L2

t

L6

x

(J
k

⇥R3

)

.u N
3

2 c�
3

2N
� 3

2

k kru>cN
k

k2L4

t

L3

x

(J
k

⇥R3

)

.u N
3

2 c�
3

2N
� 1

2

k |Jk|
1

2 .

Therefore, squaring and summing over k, we get

N
3

2

��u2

>cN(t)u
3

��
L2

t

L1

x

. c�
3

2N
3

2K
1

2 .

For (49), we have by Hölder, Bernstein and Schur’s test:

(51)
��u2

>Nu
��
L2

t

L
3

2

x

.
�����

X

M
1

�M
2

�M
3

M
2

>N

kuM
1

kL2

kuM
2

kLq

kuM
3

k
L

6q

q�6

�����
L2

t

.
����� supM>N

���M
3

q

�1uM(t)
���
Lq

x

X

M
1

�M
3

✓
M

3

M
1

◆ 3

q

kruM
1

kL2

x

kruM
2

kL2

x

�����
L2

t

.u N� 3

2 Ãq(2N).

Therefore, by Hölder,

N
3

2

��u2

cN(t)u
2

>Nu
��
L2

t

L1

x

. N
3

2

��uc(⌘)N(t)

��2
L1
t

L6

x

��u2

>Nu
��
L2

t

L
3

2

x

.u ⌘
2Ãq(2N).

For (50), by Hölder we have
��rPNØ(u2

cN(t)u
2

Nu)
��
L2

t

L
6

5

x
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. kruNkL2L6

��ucN(t)

��
L1L6

kuk3L1L6

+krukL1
t

L2

x

��ucN(t)

��
L1
t

L6

x

kuNk2L4

t

L1
x

kukL1
t

L6

x

.u ⌘A(N).

⇤

Given these recursive inequalities, the proof of the theorem follows by a straight-
forward induction. ⇤

This tool is crucial for obtaining a bound on the mass of the solution u. The
precise statement is the following:

Lemma 4.3. finite mass Let u : [0, T
max

) ⇥ R3 ! C an almost periodic solution to
NLS with kukL10

t,x

= +1 and

(52) K :=

Z T
max

0

N(t)�1dt < 1.

Then for all 0 < N < 1,

(53) kuN·1

kL1
t

L2

x

+
1

N

 
X

M<N

kruMk2L2

t

L6

x

! 1

2

.u 1.

In particular,

(54) kukL1
t

L2

x

. ku1

kL1
t

L2

x

+ ku>1

kL1
t

L2

x

. ku1

kL1
t

L2

x

+ kru>1

kL1
t

L2

x

.u 1.

Proof. First of all, we have that

LHS . N�1 kukL1
˙H1

+N�1A(N/2) .u N�1(1 +N
3

2K
1

2 ) < +1,

so LHS is finite for every N . Using Proposition 3.9 and Lemma 2.11, we get

LHS . N�1 krP<NF (u)k
L2

t

L
6

5

x

+ kPN·1

F (u)k
L2

t

L
6

5

x

.

To estimate the nonlinearity, we write down

F (u) = Ø(u2

>cN(t)u
3) +Ø(ucN(t)u

2

<Nu
2) +Ø(ucN(t)u

2

1

uN·1

u) +Ø(ucN(t)u
2

>1

u2).

For the first term, using Bernstein and (48),

1

N

��rP<Nu
2

>cN(t)u
3

��
L2

t

L
6

5

x

+
��PN·1

u2

>cN(t)u
3

��
L2

t

L
6

5

x

. (N
1

2+1)
��u2

>cN(t)u
3

�� .u c�
3

2K
1

2 .
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For the second term, using Bernstein on the second term and distributing the gradi-
ent, (41), (40) Proposition 3.4 and Theorem 4.1,

1

N

��rP<NucN(t)u
2

<Nu
2

��
L2

t

L
6

5

x

+
��PN·1

ucN(t)u
2

<Nu
2

��
L2

t

L
6

5

x

. 1

N

��rucN(t)

��
L1
t

L2

x

ku<Nk2L4

t

L1
x

+
1

N

��ucN(t)

��
L1
t

L6

x

kru<NkL2

t

L6

x

kuk3L1
t

L6

x

+
1

N

��ucN(t)

��
L1
t

L6

x

ku<Nk2L4

t

L1
x

krukL1
t

L2

x

kukL1
t

L6

x

.u ⌘(1 +K
1

2 )LHS.

For the third term, using Bernstein, Theorem 4.1, (41), and Proposition 3.4,

N�1

��rP<N(ucN(t)u
2

1

uN·1

u)
��
L2

t

L
6

5

x

+
��PN·1

(ucN(t)u
2

1

uN·1

u)
��
L2

t

L
6

5

x

.
��ucN(t)

��
L1
t

L6

x

ku1

k2L4

t

L1
x

ku
1·1

kL1
t

L2

x

kukL1
t

L6

x

.u ⌘(1 +K
1

2 )LHS.

For the last term, using Bernstein, Theorem 4.1, (51), and Proposition 3.4,

N�1

��rP<NucN(t)u
2

>1

u2

��
L2

t

L
6

5

x

+
��PN·1

ucN(t)u
2

>1

u2

��
L2

t

L
6

5

x

. (N
1

2 + 1)
��ucN(t)u

2

>1

u2

��
L2

t

L1

x

.
��ucN(t)

��
L1
t

L6

x

��u2

>1

u
��
L2

t

L
3

2

x

kukL1L6

.u ⌘(1 +K
1

2 ).

Collecting all the estimates, we have that

LHS .u ⌘(1 +K
1

2 )LHS + 1 + c�
3

2K
1

2 .

Therefore, by taking ⌘ small enough, we have the thesis. ⇤
Now we are ready to prove the main result of this section:

Theorem 4.4. There are no almost periodic solutions u : [0, T
max

)⇥R3 ! C to NLS
with kukL10

t,x

= 1 and
Z T

max

0

N(t)�1dt < +1.

Proof. By contradiction, let u be such a solution. If T
max

< 1, then N(t) ! 1 as
t ! T

max

because of Corollary 3.7. The same holds when T
max

= 1: from Remark
3.6, we have that

1X

k=1

N�3

k .
Z T

max

0

N(t)�1dt < +1,
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so Nk ! 1 when k ! 1, which implies N(t) ! 1 as t ! 1.
We want to prove that the existence of such a solution is inconsistent with the
conservation of mass. We proved in Lemma 4.3 that the mass of u is finite, we will
prove that by conservation of mass this has to be 0 (which in turn implies u ⌘ 0,
which contradicts the hypothesis on the L10 norm). Using Proposition 3.9, we can
estimate

kuNkL1
t

L2

x

. kPNF (u)k
L2

t

L
6

5

x

. N
1

2 kPNF (u)kL2

t

L1

x

.

Decompose the nonlinearity as F (u) = Ø(u3

1

u2)+Ø(u3

>1

u2). By Theorem 4.1, (41),
Bernstein, and the finiteness of mass, we get

��u3

1

u2

��
L2

t

L1

x

. ku1

k2L4

t

L1
x

ku1

kL1
t

L1
x

kuk2L1
t

L2

x

.u 1.

Instead, by Theorem 4.1 and (51)
��u3

>1

u2

��
L2

t

L1

x

. kuk2L1
t

L6

x

��u3

>1

��
L2

t

L
3

2

x

.u 1.

Thus, kuNkL1
t

L2

x

.u N
1

2 . Let c = c(⌘) as in Theorem 3.4. Then we have, for

t ! T
max

, recalling that N(t) ! 1,

kukL2

x

. kuNkL2

+
��P>NucN(t)

��
L2

+
��u>cN(t)

��
L2

.u N
1

2 +N�1

��ucN(t)

��
˙H1

+ c�1N(t)�1 kuk
˙H1

.u N
1

2 +N�1⌘ + c�1N(t)�1.

This can be made as small as we want by choosing first N small, then ⌘ small
depending on N , and lastly t close to T

max

, depending on c = c(⌘). Therefore for
conservation of mass we get kukL2

= 0, contradiction. ⇤

5. Impossibility of the quasisoliton case

The main technical result which helps ruling out this case is the following:

Theorem 5.1 (Frequency - Localized interaction Morawetz estimate). Suppose
u : [0, T

max

)⇥R3 ! C is an almost periodic solution to NLS such that N(t) � 1 and
let I ⇢ [0, T

max

) be a finite union of contiguous intervals Jk as in Remark 3.6. Fix
0  ⌘

0

< 1. For N > 0 su�ciently small (depending only on u, ⌘
0

),
Z

I

Z

R3

|u>N(t, x)|4dxdt .u ⌘0(N
�3 +K),

where K :=
R
I
N(t)�1dt. The implicit constant does not depend neither on I nor on

⌘
0

.
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We will not present a full proof of this Theorem here, but we will go through the
main tools and ideas. For the proofs of the various estimates and identities, we refer
to Section 5 of [6] and their relative references.

Unlike Theorem 4.1, the argument for Theorem 5.1 does not rely just on linear
estimates on the Scrhödinger propagator S(t), but it is strongly dependent on the
sign of the nonlinearity. Namely, the whole argument relies on the identity

Proposition 5.2 (Interaction Morawetz identity). Suppose

i@t� = ���+ |�|4�+ F

and let

(55) M(t) := 2

Z Z

R3⇥R3

|�(y)|2ak(x� y)=
�
�k(x)�(x)

�
dxdy.

for some weigh a : R3 ! R. Then

@tM(t) =

Z

R3

Z

R3

✓
4

3
akk(x� y)|�(x)|6|�(y)|2(56)

+ 2ak(x� y)|�(y)|2<
�
�k(x)F(x)� Fk(x)�(x)

�
(57)

+ 4ak(x� y)=
�
F(y)�(y)

�
=
�
�k(x)�(x)

�
(58)

+ 4ajk(x� y)
�
|�(y)|2�j(x)�k(x)�=

�
�(y)�j(y)

�
=
�
�k(x)�(x)

��
(59)

� ajjkk(x� y)|�(y)|2|�(x)|2
◆
.(60)

Here subscripts denote spacial derivatives and repeated index are summed over.

The evidence of this identity is clear by making the choice a(x) = |x|, and � a
solution to NLS. In this case, F = 0, and by the fundamental theorem of calculus
we have

8⇡

Z

I

Z

R3

|�(t, x)|4dxdt  2 kM(t)kL1
t

 4 k�k3L1
t

L2

x

k�kL1
t

˙H1

x

.

Here the L4 norm arises from the term (60), and the terms (56) and (59) are positive
(the other two terms are 0). Unfortunately, we cannot obtain an L4 bound by this
inequality, since a minimal blowup solution to NLS does not need to be in L2. In order
to circumvent this problem, we restrict our attention to � = u>N . This produces
many error terms, and in particular there is an error term arising from (58) which is
not easy to bound. A possible solution to this is to truncate a, taking as a a radial
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function such that:
(61)

a(0) = 0, ar � 0, arr  0, ar =

8
<

:

1 if r  R,
1� J�1 log( r

R
) if eR  r  eJ�J

0R,
0 if eJR  r,

where J
0

� 1, J � 2J
0

, and R are parameters to be determined, bound by the
relation eJRN = 1. Moreover, we extend ar where is not defined in such a way that
|@kr ar| .k J

�1r�k for each k � 1.
Let

(62) BI :=

Z

I

Z Z

|x�y|eJ�J

0R

4

3
akk(x� y)|u>N(x)|6|u>N(y)|2dxdydt.

It turns out that BI � 0, and for N small enough,

• k(55)kL1
t

.u ⌘
3N�3,

• |
R
I
(56)� BI | . J2

0

J
(K +N�3),

• For any " > 0,
R
I
|(57)| .u," "BI + ⌘ ku>Nk4L4

t,x

+ ("�1⌘ + "
J2

0

J
)(N�3 +K),

•
R
I
|(58)| . ⌘

1

4

⇣
ku>Nk4L4

t,x

+N�3 +K
⌘
,

•
R
I
|(59)| .u

�
⌘2 + J

0

J

�
(K +N�3) + 1

J
0

BI ,

• 8⇡ ku>Nk �
R
I
(60) .u

⌘2e2J

J
(K +N�3).

Therefore, putting everything together,

8⇡ ku>Nk4L4

t,x

+BI .
✓
"+

1

J
0

◆
BI+⌘

1

4 ku>Nk4L4

t,x

+

✓
⌘

1

4 +
⌘

"
+

J2

0

J
+ ⌘2

e2J

J

◆
(N�3+K),

from which one can deduce the thesis of Theorem 5.1.
In order to conclude the argument (and therefore proving Theorem 1.1), one need
an estimate that states that ku>Nk4L4

x

cannot be too small (compared to N(t)�1).
Indeed we have

Lemma 5.3. Let u : I ⇥ R3 ! C an almost periodic solution to NLS. Then there
exists C(u) such that

N(t)

Z

|x�x(t)|C(u)

N(t)

|u|4dx &u 1.

Proof. Let M
0

= inft2I kuk2˙H1

. We have that M
0

> 0, since energy is conserved
and E(u) . kuk2

˙H1

+ kuk6
˙H1

. Let C(u) := C(M0

2

) as in Proposition 3.4. Suppose
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by contradiction that the inequality does not hold. Then there exists a sequence of
times tn such that

(63) N(tn)

Z

|x�x(t
n

)| C(u)

N(t

n

)

|u|4dx  n�1.

Let vn be the precompact family of rescalings and translates of u(tn), and up to
subsequences, let vn ! v in Ḣ1. The condition (63) becomes

Z

|x|<C(u)

|vn|4dx  n�1.

This implies that vn ! 0 in L4({|x| < C(u)}). Because of compatibility of conver-
gences, this implies that v(x) = 0 if |x| < C(u). Therefore,

M
0

 lim
n

kvnk2˙H1

= kvk2
˙H1

=

Z

|x|>C(u)

|rv|2dx = lim
n!1

Z

|x|>C(u)

|rvn|2dx  M
0

2
,

contradiction. ⇤
Now we are ready to prove the impossibility of the quasisoliton case, which is the

last possible case remaining for the minimal counterexample to Theorem 1.1.

Theorem 5.4. There are no almost periodic solutions u : [0, T
max

) ⇥ R3 ! C to
NLS with N(t) ⌘ Nk � 1 on the intervals Jk defined in Remark 3.6 which satisfies
kukL10

t,x

= +1 and

K =

Z T
max

0

N(t)�1dt = +1.

Proof. Suppose by contradiction that such a solution exists. From Theorem 5.1, we
have that, for N small enough,

Z

I

Z

R3

|u>N(t, x)|4dxdt .u ⌘0

✓
N�3 +

Z

I

N(t)�1dt

◆
.

Moreover, if N is small enough,

N(t)

Z

|x�x(t)|C(u)

N(t)

|u<N |4dx . |C(u)| kuNk4L6

x

 |C(u)|
��uNN(t)

��4
L6

x

.u ".

Therefore,
���N(t)

1

4u>N

���
L4

⇣n

|x|<C(u)

N(t)

o⌘ �
���N(t)

1

4u
���
L4

⇣n

|x|<C(u)

N(t)

o⌘�
���N(t)

1

4uN

���
L4

⇣n

|x|<C(u)

N(t)

o⌘ &u 1.

Hence we haveZ

I

N(t)�1dt .
Z

I

Z

R3

|u|4(t, x)dxdt .u ⌘0

✓
N�3 +

Z

I

N(t)�1dt

◆
,
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from which, choosing ⌘
0

small enough and N accordingly,
R
I
N(t)�1dt .u 1. Taking

the limit as I ! [0, T
max

), this implies that

K =

Z T
max

0

N(t)�1 .u 1 < +1,

contradiction. ⇤

References

[1] J. Bourgain. Global wellposedness of defocusing critical nonlinear Schrödinger equation in the
radial case. J. Amer. Math. Soc., 12(1):145–171, 1999.

[2] Thierry Cazenave and Fred B. Weissler. Some remarks on the nonlinear Schrödinger equation in
the critical case. In Nonlinear semigroups, partial di↵erential equations and attractors (Wash-

ington, DC, 1987), volume 1394 of Lecture Notes in Math., pages 18–29. Springer, Berlin, 1989.
[3] J. Colliander, M. Keel, G. Sta�lani, H. Takaoka, and T. Tao. Global well-posedness and

scattering for the energy-critical nonlinear Schrödinger equation in R3. Ann. of Math. (2),
167(3):767–865, 2008.

[4] Carlos E. Kenig and Frank Merle. Global well-posedness, scattering and blow-up for the
energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math.,
166(3):645–675, 2006.

[5] Sahbi Keraani. On the blow up phenomenon of the critical nonlinear Schrödinger equation. J.
Funct. Anal., 235(1):171–192, 2006.
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