The Szego equation seen as the resonant dynamics of

a non-linear wave equation

Oana Pocovnicu

Université Paris-Sud 11, Orsay, France

September 8th, 2011

Workshop HANDDY
Berder



The cubic Szegd equation
(SE) i0pu = T, (Jul*u), u(t,z) € C, (t,z) € RxR,

where I1; is the Szeg6 projector onto non-negative frequencies, was recently
introduced by Gérard and Grellier who study it on T

e mathematical model of a non-dispersive Hamiltonian equation

e completely integrable

o It exhibits growth of high Sobolev norms ||u(t)| g= —> oo if ¢ — oo and

s > 1/2. More precisely, there are solutions (ug = x—ﬂ - +2z) such that

()]s ~ 27

N~



The Szego equation as the first approximation of NLW

Theorem (P ’11)
Let Wy € H (R), s > % Let v be the solution of the NLW on R

o o _ 2
(NIW) 10w — |D|v = |v]*v
v(0) = eWy.

Denote by u the solution of the Szegd equation

i0yu = Ty (Jul?u)
u(0) = eWp.

Assume that ||u(t)||gs < Ce(log(a—lg)) for0<a <1 andé >0 small.

12«
Then, if 0 <t < giz (log(%)> we have that

&

() — e~ 1P u(t) 7+ < Ce>C0%,




Growth of high Sobolev norms for solutions of NLW

Corollary (P ’11)

Let0<e <1, s> 3, and § > 0 sufficiently small. Let Wy € H$(R) be the
rational function . Denote by v be the solution of the NLW
equation on R

(NLW)

i0v — |DJv = |v|?v
’U(O) = EW().

Then, for ﬁ(log(g%))m <t< E%(log(a%))m, we have that

lv(®) | &+ m) 5 =
TN ®) C( = ) 1.
O = C\8GE) >

Remark: In order to show arbitrarily large growth of the solution, one needs
an approximation at least for a time 0 < ¢ < E;W, where 5 > 0.



o Ifvg € HY*(R), [lvo|l /e = & = 2H (v(t)) — M (v(t)) = 2H (vo) — M (vp):
2Dl (8), - (1) + 30O} = 3 ool = O,

Thus [[vo— ()] 1.2y = O(2).
@ Moreover,

o 2w = 3 (1 K22k
k<-1
<2 ) |Kl[8(k)|* < 2llo- @)l r1/2(z) = O(").
k<1
and thus ||1/_ (t)||H1/2('1T) = 0(82).
o On R, we ONLY have [[v_(t)[| f1/2g) = O(e?)



The renormalization group (RG) method

o It is most often used to find a long-time approximate solution to a
perturbed equation

e It was introduced by Chen, Goldenfeld, and Oono (1994) in theoretical
physics

@ The RG method was justified mathematically for ODEs by De Ville,
Harkin, Holzer, Josic, Kaper; Ziane and for some PDEs (Navier-Stokes
equations, Swift-Hohenberg equation, quadratic NLS) by Temam, Moise,
Petcu, Wirosoetisno, Abou Salem

e Gérard and Grellier (2011) proved analogous results on the torus T using
the theory of Birkhoff normal forms



e Change of variables w(t) = LelPty(t) in NLW:

(NLW?) {(%w = —ie2eil DIt (|e=ilDlty 2=l Dlty) =: 2 f(w, 1)

w(0) = Wp.
e Naive perturbation expansion:

w(t) = wO ) + 2w (t) + *wP (1) + ...
e Taylor expansion:
fw,t) = f(w,8) + f(w® ) (wt) —w @) + ...
= f(w®,t) + 2 f" (w®, )w (1) + ...

o Identifying the powers of e:

&gw(o) = 0
By = f(w®(t),1)

@ Then,

w(t) = Wy + 2w (t) + 0(e*)= Wy + &2 /t f(Wo, s)ds + O(e*).
0



F(fw,)(€) = — i / / O €269) (6 Vi ()i (£ ) s dad,

£=61—82+¢3

where ¢(&, &1, 82,83) := €] — 6] + [&2] — [€s]-
f(w7t) = fres(w) + fosc(w7t)7

frea(w) : = —iF ! / / (6B (E2)(Es)dér dEndés,

{¢p=0,6=£1—€2+€3}
fore(w, 1) : = —iF / / MO €268) (6 VT (6 ) (€ ) dbr dEndis
{¢#0,6=£1—€2+€3}
Then, w(t) = Wo + &2t fres(Wo) + €2 [} fose(Wo, 8)ds + O(h).

The term Wy + €2t fres(Wo) is a secular term. We consider the renormalization

roup equation:
srotb ed AW = 2 fos(W)
W(0) = Wy
An approximation for the solution will be
wapp( + € / fosc

= Foee (W(t),1)



Special property of NLW: many resonances

The set {$(£,€1,62,&3) = 0} C R? has non-zero measure for fixed €.
It is the subset of R? such that &;, &, and &3 have the same sign as ¢ and
=& —&L+&(or & =Cor s =9).

freslw) = —iF ! / / (60 (€)1 (€ ) der dErdEs

{#=0,6=€1—-€2+€3}

= iF MLes / / o (60T (€)1 4 (€ ) dér dEndEs
§=€1—&2+¢€3

S e [ 0@ @) (@i deadsa
§=81—82+€3
Thus, fres(w) =t (H+(|w+|2w+) + H—(‘w— |2’LU_)).
We choose Wy such that II_(W,) = 0. Projecting onto the negative
frequencies:
iOW_ = I (|[W_|*W_)
W_(0) = 0.
Then W_(t) = 0 for all ¢t € R and W (t) = W () satisfies:
10, W = 2T (|W[*W)
W(0) = Wo.



Estimates on Fis.(W, )

[ Fose (W (8), )l L2 (ry < CVE

Foc(W (0),5,8) = =iLco [ [ 268 (1,601 (1, )W (1, €0)1e, 3.6,20061d6ads
£=£1—&2+E3
If§ < 07 £17£2a§3 Z 0) then ¢(£7§17£27£3) = |£| - |§1| + |£2| - |§3| = _25

Then,
—2ite _ |

E&wmeZAﬁ&wm@am:iﬁg;ﬂmvwmm@.

) :/_ sin (tf)|].—(|1/V|2W)(§)|2d€

L2(R) &2

<|lrawew| / i szﬁt@ 2

*n 6 6
t dn < Ct||W < Ctl|W(t
st | < CHW sy < CHW Oy

oy = [P .0

Fosc(W(1), )

< H\W|

< Ct.
10/ 1



| Fose (W (£), D)l -y < CIW I3 for s > 1

IF(W W) ()| de

sin?(t€)
€2

0 2
< [ eenEwrEwe P

0
ForeW (0 O = [ €

2 2
< [wew| <|wewl < I
<wewl, . < [weEw ] < 17

Therefore, || Fosc(W (£), )] gr=r) < C(VE + |[W] %S(R))

If |W ()] s m) < C(log(ﬁ;))l1 and 0 <t < E%(log(s%)) “, we have that

1 «
lwapp(®llz- < C(10g(55))

1 [
lwapp (B) 11+ = W + &> Fose (W, ) [+ < W[ + 2 CVE+ 2| W e < C(log( )

11/1



Proof of the theorem

Set z(t) := w(t) — wapp(t). Using Duhamel’s formula we have:

t

at0) =¢? [ (1) 5) = Fl (o). )ds = [ (O (s)9) = ). 0))ds

0

-t /t D Fose(W(5), 8) - fres(W(s))ds =: I+ II 4 III.
0

e < [ o)l (o) s+ npo )l Y
< & [ a(r (o) + latnpn() e e
<& [ et (Ielfe + (108(5)) ")
Using W(s) = tapp(s) = —=*Foe(W(5), 5),

T e < €8] Fose(t, W) |lrrs (IW 7= + lewappl3r-)
1 2«
< CeM(Vi+ W) (Tog(5))

gd



12«
Assuming that [|z(¢)||gs <1and 0 <t < %(log(%)) , we have:

1 2(1-2a) 1 .\ 2«
lo(t) - <0=* (10g( ) / lo(r)llasdr + = Tog( ;) ) (ros(5))
By Gronwall’s inequality it follows that
2a
3 _« ce2 | 1og( L 1 3 _& o
=) e < Ca(log(gié))z e (rst) < C*s(log(s—a)) 2% Clos(Gs)

3o
< Cs(log(i)) 2o L < 'm0,
This yields
[w(t) —W(t) - s () < Ce'~°.
Since

li—2q)
< CEWE+ W) < 0= (log(5)) < CetmCus

we obtain
w(t) = W ()| gy < Ce' 0.

i|D|t

With the change of variables v = ce™ w and u = W, we obtain:

[v(t) — e P u(t) | oy < Ce*°.



Theorem (Second order approximation)

Let Wy € H(T), s > 1/2, be such that the solution of the Szego equation with

initial condition eWy is bounded by a(log(s%)> .

Denote by v the solution of the NLW equation on T with initial condition eWy.

Let W e C(R, H{(T)) be the solution of the following equation on T:

0 = I (WPW)-TL (WP ST (IWPW)) — 3T, (W2 ST (WEW))
W(O) =Wy = eWp.

Consider
Vapp(t) = €~ PF(W(t) + Fosc(W(1), 1))

1—2a
Then, if 0 <t < E% (log(g%)) , we have

[0(2) = vapp ()| 7+ < 7.




