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Gross–Pitaevskii equation on Rd :{
i∂tu+ ∆u = (|u|2 − 1)u, (t, x) ∈ R× Rd,
u
∣∣
t=0

= u0,

with the non-vanishing boundary condition :

lim
|x|→∞

|u(x)| = 1.

Hamiltonian with Ginzburg-Landau energy

E(u) =
1

2

∫
Rd

|∇u|2 dx+
1

4

∫
Rd

(|u|2 − 1)2 dx.
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Global well-posedness (GWP) results

R : Zhidkov (1987) in Zhidkov spaces :

Xk(R) := {u ∈ L∞(R) : ∂αu ∈ L2(R), 1 ≤ |α| ≤ k}.

Gallo (2004) in the Zhidkov space X1(R)

R2, R3 : Béthuel, Saut (1999) in 1 +H1

Goubet (2007) in the Zhidkov space X2(R2)

Gallo (2008) in u0 +H1 if E(u0) <∞
Gérard (2006) in the energy space

EGP := {u : E(u) <∞}

R4 : Gérard (2006) in the energy space such that ∇u ∈ L2
t,locL

4
x

in the case of small energy data

Remark : New difficulty on R4 in the case of large energy data :
the cubic nonlinearity is energy-critical (Ḣ1-critical)
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The energy space

On R3, R4 Gérard (2006) also proved :

EGP(Rd) =
{
u = α+ v

∣∣∣ |α| = 1, v ∈ Ḣ1(Rd), |v|2 + 2 Re(ᾱv) ∈ L2(Rd)
}
.

u0 = α+ v0 ∈ EGP implies u(t) = α+ v(t) ∈ EGP for all t ∈ R.

If α = eiθ, by the gauge invariance u 7→ e−iθu, we can assume θ = 0, α = 1.
Then, u = 1 + v and v satisfies{

i∂tv + ∆v = |v|2v + 2 Re(v)v + |v|2 + 2 Re(v),

v
∣∣
t=0

= v0 := u0 − 1.

On R4 : v ∈ Ḣ1(R4) ⊂ L4(R4) =⇒ |v|2 ∈ L2 =⇒ Re v ∈ L2(R4).

EGP(R4) =
{
u = 1 + v : v ∈ H1

real(R4) + iḢ1
real(R4)

}
E(1 + v) =

1

2

∫
R4

|∇v|2 dx+
1

4

∫
R4

(
|v|2 + 2 Re(v)

)2
dx.
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Global well-posedness for arbitrarily large data on R4

Theorem (Killip, Oh, P., Vişan 2011)

The Gross–Pitaevskii equation is globally well-posed in the energy space
EGP(R4).

Two ingredients in the proof :

Global well-posedness of energy-critical defocusing nonlinear Schrödinger
equation on R4 :

(NLS)

{
i∂tw + ∆w = |w|2w
w(0) = w0 ∈ Ḣ1(R4).

Perturbation theory : treat the equation of v as{
i∂tv + ∆v = |v|2v + e,

v
∣∣
t=0

= v0,

where the error e := 2 Re(v)v + |v|2 + 2 Re(v) is small on small intervals.
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Scaling invariance

If w is solution of the cubic NLS equation :

i∂tw + ∆w = |w|2w

then wλ(t, x) := λw(λ2t, λx) is also solution of cubic NLS.

Notice that ‖wλ0 ‖Ḣs(Rd) = λ1+s− d
2 ‖w0‖Ḣs(Rd)

If w0 ∈ Ḣs(Rd), then the equation is

critical if ‖wλ0 ‖Ḣs = ‖w0‖Ḣs , that is s = sc = d
2
− 1

subcritical if ‖wλ0 ‖Ḣs →∞ as λ→∞, that is s > sc = d
2
− 1

supercritical if ‖wλ0 ‖Ḣs → 0 as λ→∞, that is s < sc = d
2
− 1

Cubic NLS on R4 is critical for w0 ∈ Ḣsc(R4) = Ḣ1(R4)

Quintic NLS on R3 is also critical for w0 ∈ Ḣsc(R3) = Ḣ1(R3)
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Stricharz estimates

Dispersive estimate : ‖eit∆w0‖L∞(Rd) ≤ C

t
d
2

‖w0‖L1(Rd)

For any interval I ⊂ R, we define the Strichartz norm

‖w‖S(I) = ‖w‖S(I×Rd) := sup ‖w‖Lq
tL

r
x(I×Rd),

where the supremum is taken over all admissible pairs (q, r), 2
q + d

r = d
2

N(I × Rd) denotes the dual space of S(I × Rd)
Homogeneous Strichartz estimate :∥∥eit∆w0

∥∥
S(I×Rd)

. ‖w0‖L2
x(Rd)

Inhomogeneous Strichartz estimate :∥∥∥∥∫ t

t0

ei(t−t
′)∆F (t′) dt′

∥∥∥∥
S(I×Rd)

. ‖F‖N(I×Rd).

Admissible pairs on R4 : (∞, 2), (2, 4), (6, 12
5 )

By the Sobolev embedding Ẇ 1, 125 (R4) ⊂ L6(R4), we have

‖w‖L6
t,x(I×R4) ≤ ‖∇w‖

L6
tL

12
5 (I×R4)

.
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The energy-critical NLS

Locally well-posed : Cazenave-Weissler (1989)
Globally well-posed for small data :
Duhamel formula :

w(t) = eit∆w0 − i
∫ t

0

ei(t−s)∆|w|2w(s)ds

Using Strichartz estimates :

‖∇w‖
L6

tL
12
5

x (I×R4)
. ‖∇eit∆w0‖

L6
tL

12
5

x (I×R4)
+ ‖w2∇w‖

L2
tL

4
3
x (I×R4)

. ‖∇eit∆w0‖
L6

tL
12
5

x (I×R4)
+ ‖w‖2L6

t,x(I×R4)‖∇w‖
L6

tL
12
5

x (I×R4)

. ‖∇eit∆w0‖
L6

tL
12
5

x (I×R4)
+ ‖∇w‖3

L6
tL

12
5

x (I×R4)
.

if ‖∇eit∆w0‖
L6

tL
12
5

x ([0,T ]×R4)
is small, we can close the argument :

T depends on the profile of the initial data w0, not only on E(w0)
Since ‖∇eit∆w0‖

L6
tL

12
5

x (R×R4)
≤ ‖w0‖Ḣ1(R4) we can also close the argument

when ‖w0‖Ḣ1 is small =⇒ GWP for small data

‖w‖L6
t,x([Tmin,Tmax]×R4) ≤ C =⇒ global well-posedness
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Main results on defocusing energy-critical NLS

Bourgain (1999) : GWP + scattering, quintic NLS on R3 with radial data
induction on energy
localized Morawetz estimate∫

I

∫
|x|.|I|1/2

|w|6

|x| dx . |I|1/2E(u)

by localizing
∫
I

∫ |w|6
|x| dx . (supt∈I ‖w(t)‖Ḣ1/2)2 of Lin and Strauss (1978)

Grillakis (2000) : global regularity for quintic NLS on R3 with radial data

Colliander, Keel, Staffilani, Takaoka, and Tao (2008) : removed the radial
assumption on R3

Ryckman, Vişan (2007) : GWP and scattering for cubic NLS on R4

Vişan (2010) : simpler method for GWP + scattering for cubic NLS on R4

Kenig, Merle (2006) : focusing energy-critical NLS on R3, R4, R5 : GWP
+ scattering for radial data with energy and kynetic energy smaller than
those of the stationary solution
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Cubic NLS on R4 (Ryckman, Vişan)

Goal : prove the existence of a global solution w ∈ CtḢ1
x ∩ L6

t,x such that

‖w‖L6
t,x(R×R4) ≤ C(E(w0))

Define

M(E) := sup
{
‖w‖L6

t,x(I×R4) : I ⊂ R compact, w solution with E(u) ≤ E
}

By contradiction : assume there exists a critical energy Ecrit such that
M(Ecrit) =∞

Then there exists a blowup solution w∗ with E(w∗) = Ecrit,∫ Tmax

0

∫
R4

|w∗|6dxdt =

∫ 0

Tmin

∫
R4

|w∗|6dxdt =∞

which is almost periodic :∫
|x−x(t)|≥C(η)/N(t)

|∇w∗|2dx+

∫
|ξ|≥C(η)N(t)

|ξ|2|ŵ∗(t, ξ)|2dξ ≤ η.
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Frequency-localized Morawetz inequality (ONLY true for w∗) :∫
I

∫
R4

∫
R4

|P≥Nw∗(t, x)|2|P≥Nw∗(t, y)|2

|x− y|3
dxdydt . ηN−3.

obtained by localizing in frequency the interaction Morawetz estimate∫
I

∫
R4

∫
R4

|w(t, x)|2|w(t, y)|2

|x− y|3 dxdydt . ‖w‖3L∞
t L2(I×R4)‖w‖L∞

t Ḣ1(I×R4)

‖P≥Nw∗‖L2 ≤ 1
N
‖P≥Nw∗‖Ḣ1 ≤ η

N
by the frequency localization of w∗

This shows that
‖w∗,hi‖L3

t,x(I0×R4) . Cη1/3

As a consequence, we obtain ‖w∗‖L6
t,x
≤ C =⇒ contradiction !
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Cubic NLS on R4 (Vişan)

By contradiction and using concentration-compactness =⇒ there exists a
blowup solution w∗ which is almost periodic :∫

|x−x(t)|≥C(η)/N(t)

|∇w∗|2dx+

∫
|ξ|≥C(η)N(t)

|ξ|2|ŵ∗(t, ξ)|2dξ ≤ η.

After rescaling, we can assume N(t) ≥ 1

Rapid frequency-cascade scenario :
∫ Tmax

0
N(t)−1dt <∞

Quasi-soliton scenario :
∫ Tmax

0
N(t)−1dt =∞

In both cases we get a contradiction using long time Strichartz estimates
in the spirit of Dodson :

‖∇P≤Mw∗‖L2
tL

4
x(I×R4) . 1 +M3/2

(∫
I

N(t)−1dt
)1/2

For the quasi-soliton scenario we also use the frequency-localized
Morawetz estimate
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Perturbation theory

Lemma (Colliander, Keel, Staffilani, Takaoka, and Tao 2008)

Let I be a compact time interval and v be a solution on I ×R4 of the perturbed
equation i∂tv + ∆v = |v|2v + e. Suppose

‖v‖L6
t,x(I×R4) ≤ L,

‖v‖L∞
t Ḣ1

x(I×R4) ≤ E0.

Then there exists ε0 = ε0(E0, L) > 0 such that, if for some 0 < ε ≤ ε0 and for
some t0 ∈ I we have

‖v(t0)− w(t0)‖Ḣ1(R4) ≤ ε

‖∇e‖N(I×R4) ≤ ε,

then, there exists a solution w to cubic NLS on I ×R4 with data w(t0) at time
t0 with the properties

‖∇w −∇v‖S(I×R4)≤ C(E0, L)ε

‖∇w‖S(I×R4) ≤ C(E0, L),

where C(E0, L) > 0 is a non-decreasing function of E0 and L.
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Strategy : GWP of Gross-Pitaevskii equation on R4

We prove that there exists T = T (E(v0)) such that if the solution v exists
on [0, T ], then

‖v‖L6
t,x([0,T ]×R4) ≤ C(E(v0))

This shows that there exists only a finite number of subintervals

Ik ⊂ [0, T ] such that [0, T ] =

N⋃
k=1

Ik and

‖v‖L6
t,x(Ik×R4) ∼ η

By a contraction mapping argument, we can then prove local
well-posednes on each subinterval Ik, and thus on [0, T ]

We built a local solution on [0, T1], where T1 = T = T (E(v0)). Next, we
build a solution on [T1, T2]. By conservation of energy we have

T2 − T1 = T (E(v(T1))) = T (E(v0)),

which gives a solution on [T, 2T ]. Recursively, we extend it to [0,∞).
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Proof

For w, the solution of cubic NLS, we have ‖∇w‖
L6

tL
12
5

x (R×R4)
≤ C(E(v0))

We divide [0,∞) into J = J(η,E(v0)) subintervals Ij = [tj , tj+1] such that

‖∇w‖
L6

tL
12
5

x (Ij×R4)
∼ η

The linear evolution will still be small

‖∇ei(t−tj)∆w(tj)‖
L6

tL
12
5

x (Ij×R4)
≤ 2η

On I0 = [0, t1] we have :

By the Strichartz estimates and using v0 = v(t0) = w(t0), we have

‖∇v‖
L6

tL
12
5

x (I0)
. ‖∇eit∆v0‖

L6
tL

12
5

x (I0)
+ ‖v2∇v‖

L2
tL

4
3
x (I0)

+ ‖v∇v‖
L

6
5
t L

12
7

x (I0)
+ ‖∇v‖

L1
tL2

x(I0)

. 2η + ‖∇v‖3
L6

tL
12
5

x (I0)
+ T 1/2‖∇v‖2

L6
tL

12
5

x (I0)
+ TE(v0)1/2

If η � 1 and T = T (η,E(v0)) small enough, then

‖v‖L6
t,x(I0) ≤ ‖∇v‖

L6
tL

12
5

x (I0)
≤ 3η =⇒ control on the L6

t,x − norm
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By the conservation of energy :

‖v‖2L∞
t Ḣ1 ≤ 2E(v) = 2E(v0) =⇒ control on the L∞t Ḣ

1
x − norm

v(0) = w(0) =⇒ the initial data on I0 = [0, t1] are trivially close

The error is e = 2vRe(v) + |v|2 + 2 Re(v). Then,

‖∇e‖N(I0) . ‖v∇v‖
L

6
5
t L

12
7

x (I0×R4)
+ ‖∇v‖L1

tL
2
x(I0×R4)

. T 1/2‖∇v‖2
L6

tL
12
5

x (I0×R4)
+ TE(v0)1/2

. T 1/2η1/2 + TE(v0)1/2

If ε and T = T (η, ε, E(v0)) are sufficiently small we have

‖∇e‖N(I0) ≤ ε =⇒ small error

By the Perturbation Lemma on I0 : ‖∇w −∇v‖S(I0) ≤ C(E(v0))ε. Thus,

‖w(t1)− v(t1)‖Ḣ1 ≤ ‖∇w −∇v‖S(I0) ≤ C(E(v0))ε

=⇒ the initial data on I1 = [t1, t2] are close
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At each step the bound for ‖w(tj)− v(tj)‖Ḣ1 may grow, but its ultimate
size is C(J,E(v0))ε and we still have

C(J,E(v0))ε ≤ ε0, if ε is sufficiently small

Recursively, we obtain ‖∇v‖
L6

tL
12/5
x (Ij)

≤ 3η for all 1 ≤ j ≤ J . Thus,

‖v‖L6
t,x([0,T ]×R4) ≤ ‖∇v‖L6

tL
12/5
x ([0,T ]×R4)

≤ J(η,E(v0)) · 3η ≤ C(E(v0)).

Finally, notice that we chose T = T (ε, η, E(v0)) = T (E(v0))
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Cubic-quintic NLS with non-vanishing BC on R3

{
i∂tu+ ∆u = (|u|2 − 1)(|u|2 − r2

1)u,

u
∣∣
t=0

= u0,

with r2
1 < 1 and boundary condition :

lim
|x|→∞

|u(x)| = 1.

If u = 1 + v, then v satisfies{
i∂tv + ∆v = |v|4v +R(v), (t, x) ∈ R× R3,

v
∣∣
t=0

= v0.

where

R(v) = |v|4 + 4|v|2vRe(v) + 4|v|2 Re(v) + γ|v|2v + 4vRe(v)2

+ γ|v|2 + 4 Re(v)2 + 2γvRe(v) + 2γ Re(v).

and γ = 1− r2
1 > 0.

The quintic nonlinearity is energy-critical in R3.
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Global well-posedness of cubic-quintic NLS on R3

Hamiltonian equation of energy

E(1 + v) =
1

2

∫
R3

|∇v|2 dx+
γ

4

∫
R3

(
|v|2 + 2 Re(v)

)2
dx+

1

6

∫
R3

(
|v|2 + 2 Re(v)

)3
dx.

The energy is NOT sign definite =⇒ it does NOT control ‖v‖Ḣ1 .

However, we will see that E(v) and ‖Re(v)‖L2 control ‖v‖Ḣ1 .

We then define the energy space as :

ECQ := {u = 1 + v : |E(1 + v)| <∞, ‖Re(v)‖L2(R3) <∞}.

Theorem (Killip, Oh, P., Vişan 2011)

The cubic-quintic NLS is globally well-posed in the energy space ECQ(R3).

Proof : As before we treat our equation as a perturbation of the energy-critical
quintic NLS on R3.
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Control of ‖v‖Ḣ1(R3)

Lemma

There exists C0 = C0(γ) > 0 such that∫
R3

|∇v|2 dx+

∫
R3

|v|6 dx+ γ

∫
R3

|v|4 dx . E(v) + C0

∫
R3

|Re(v)|2 dx.

Idea of proof :

|v|4 ≤ 2
(
|v|2 + 2 Re(v)

)2
+ 8|Re(v)|2 ≤ 8

[
1
4

(
|v|2 + 2 Re(v)

)2
+ |Re(v)|2

]
.

Corollary

ECQ(R3) = 1 +
(
H1

real(R3) + iḢ1
real(R3)

)
∩ L4(R3).

Corollary

‖v‖2
L∞

t Ḣ1
x(R×R3)

≤M(v) := E(v) + C0

∫
R3

|Re(v)|2

Problem : M(v) is not a conserved quantity
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M(v) can be controled on any finite time interval

Lemma

Let v be a solution to the cubic-quintic NLS on a time interval [0, τ ]. Then,

M(v(t)) ≤M(v0)eC1t

for all t ∈ [0, τ ] and some C1 > 0.

Proof : We have that

∂t

∫
R3

|Re(v)|2 dx = 2

∫
R3

Re(v) ∂t Re(v) dx

= −2

∫
R3

Re(v) Im(∆v) dx+ 2

∫
R3

Re(v) Im
(
|v|4v +R(v)

)
dx

By interpolation and Young’s inequality, we bound the RHS by C1M(v).
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Strategy in the case of cubic-quintic NLS

We rely on

‖v‖L∞Ḣ1([0,τ ]×R3) ≤M(v0)eC1τ = C
(
E(v0), ‖Re(v0)‖L2 , τ

)
=: N(v0, τ).

Goal : for and 0 < τ <∞, there exists a solution on [0, τ ]. We do not
attempt to prove directly the existence of a solution on [0,∞), as we did
for the Gross-Pitaevskii equation.

We prove that if such a solution exists, then there is T = T (N(v0, τ)) > 0
such that

‖∇v‖S([T0,T0+T ]×R3) ≤ C(N(v0, τ))

as long as [T0, T0 + T ] ⊂ [0, τ ].

22 / 24



Scattering for the GP equation in the case of large data

Gross-Pitaevskii equation possesses traveling waves solutions

u(x, t) = u0(x1−ct, x2, x3, x4)

that do NOT scatter

The formation of traveling waves requires a minimal energy in Rd, d ≥ 3
(Bethuel, Gravejat, Saut 2009, de Laire 2009)

Solutions with sufficiently small energy scatter (Gustafson, Nakanishi,
Tsai 2006)

Can one prove scattering up to the minimal energy of a traveling wave ?
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Work in progress : Scattering for cubic-quintic NLS

Cubic-Quintic NLS with zero boundary condition :

(CQ)

{
i∂tv + ∆v = |v|4v − |v|2v
v(0) = v0 ∈ H1(R3)

Conserved quantities – mass and energy :

M(v) =

∫
|v|2dx, E(v) =

∫ ( |∇v|2
2

+
|v|6

6
− |v|

4

4

)
dx.

Soliton solutions of the form v(t, x) = eiωtu(x), where u satisfies

∆u− |u|4u+ |u|2u− ωu = 0.

Theorem (Work in progress with Killip, Oh, Vişan)

If v0 ∈ H1(R3) has positive energy, smaller than the energy of any soliton of
mass M(v0), then the corresponding solution of the (CQ) equation scatters.
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