Global well-posedness of the Gross-Pitaevskii equation on \mathbb{R}^4

Oana Pocovnicu

Imperial College London

21st of May 2012

Joint work with R. Killip (UCLA), T. Oh (Princeton), M. Vişan (UCLA)

Analysis Seminar University of Edinburgh

Gross–Pitaevskii equation on \mathbb{R}^d :

$$\begin{cases} i\partial_t u + \Delta u = (|u|^2 - 1)u, \quad (t, x) \in \mathbb{R} \times \mathbb{R}^d, \\ u\big|_{t=0} = u_0, \end{cases}$$

with the non-vanishing boundary condition :

$$\lim_{|x| \to \infty} |u(x)| = 1.$$

Hamiltonian with Ginzburg-Landau energy

$$E(u) = \frac{1}{2} \int_{\mathbb{R}^d} |\nabla u|^2 \, dx + \frac{1}{4} \int_{\mathbb{R}^d} (|u|^2 - 1)^2 \, dx.$$

2/24

Global well-posedness (GWP) results

• \mathbb{R} : Zhidkov (1987) in Zhidkov spaces :

 $X^k(\mathbb{R}) := \{ u \in L^{\infty}(\mathbb{R}) : \partial^{\alpha} u \in L^2(\mathbb{R}), 1 \le |\alpha| \le k \}.$

Gallo (2004) in the Zhidkov space $X^1(\mathbb{R})$

• \mathbb{R}^2 , \mathbb{R}^3 : Béthuel, Saut (1999) in $1 + H^1$ Goubet (2007) in the Zhidkov space $X^2(\mathbb{R}^2)$ Gallo (2008) in $u_0 + H^1$ if $E(u_0) < \infty$ Gérard (2006) in the energy space

$$\mathcal{E}_{\rm GP} := \{u : E(u) < \infty\}$$

• \mathbb{R}^4 : Gérard (2006) in the energy space such that $\nabla u \in L^2_{t, \text{loc}} L^4_x$ in the case of small energy data

<u>Remark</u> : New difficulty on \mathbb{R}^4 in the case of large energy data : the cubic nonlinearity is energy-critical (\dot{H}^1 -critical)

The energy space

• On \mathbb{R}^3 , \mathbb{R}^4 Gérard (2006) also proved :

$$\mathcal{E}_{\mathrm{GP}}(\mathbb{R}^d) = \Big\{ u = \alpha + v \Big| \, |\alpha| = 1, v \in \dot{H}^1(\mathbb{R}^d), |v|^2 + 2\operatorname{Re}(\bar{\alpha}v) \in L^2(\mathbb{R}^d) \Big\}.$$

- $u_0 = \alpha + v_0 \in \mathcal{E}_{\mathrm{GP}}$ implies $u(t) = \alpha + v(t) \in \mathcal{E}_{\mathrm{GP}}$ for all $t \in \mathbb{R}$.
- If $\alpha = e^{i\theta}$, by the gauge invariance $u \mapsto e^{-i\theta}u$, we can assume $\theta = 0$, $\alpha = 1$. Then, u = 1 + v and v satisfies

$$\begin{cases} i\partial_t v + \Delta v = |v|^2 v + 2\operatorname{Re}(v)v + |v|^2 + 2\operatorname{Re}(v), \\ v\big|_{t=0} = v_0 := u_0 - 1. \end{cases}$$

• On
$$\mathbb{R}^4$$
: $v \in \dot{H}^1(\mathbb{R}^4) \subset L^4(\mathbb{R}^4) \Longrightarrow |v|^2 \in L^2 \Longrightarrow \operatorname{Re} v \in L^2(\mathbb{R}^4).$

$$\mathcal{E}_{\mathrm{GP}}(\mathbb{R}^4) = \left\{ u = 1 + v : v \in H^1_{\mathrm{real}}(\mathbb{R}^4) + i\dot{H}^1_{\mathrm{real}}(\mathbb{R}^4) \right\}$$

$$E(1+v) = \frac{1}{2} \int_{\mathbb{R}^4} |\nabla v|^2 \, dx + \frac{1}{4} \int_{\mathbb{R}^4} \left(|v|^2 + 2\operatorname{Re}(v) \right)^2 \, dx.$$

4/24

Global well-posedness for arbitrarily large data on \mathbb{R}^4

Theorem (Killip, Oh, P., Vişan 2011)

The Gross-Pitaevskii equation is globally well-posed in the energy space $\mathcal{E}_{GP}(\mathbb{R}^4)$.

Two ingredients in the proof :

 \bullet Global well-posedness of energy-critical defocusing nonlinear Schrödinger equation on \mathbb{R}^4 :

(NLS)
$$\begin{cases} i\partial_t w + \Delta w = |w|^2 w \\ w(0) = w_0 \in \dot{H}^1(\mathbb{R}^4). \end{cases}$$

• Perturbation theory : treat the equation of v as

$$\begin{cases} i\partial_t v + \Delta v = |v|^2 v + \mathbf{e}, \\ v\big|_{t=0} = v_0, \end{cases}$$

where the error $e := 2 \operatorname{Re}(v)v + |v|^2 + 2 \operatorname{Re}(v)$ is small on small intervals.

Scaling invariance

• If w is solution of the cubic NLS equation :

$$i\partial_t w + \Delta w = |w|^2 w$$

then $w^{\lambda}(t,x) := \lambda w(\lambda^2 t, \lambda x)$ is also solution of cubic NLS.

- Notice that $\|w_0^{\lambda}\|_{\dot{H}^s(\mathbb{R}^d)} = \lambda^{1+s-\frac{d}{2}} \|w_0\|_{\dot{H}^s(\mathbb{R}^d)}$
- If $w_0 \in \dot{H}^s(\mathbb{R}^d)$, then the equation is
 - critical if $\|w_0^{\lambda}\|_{\dot{H}^s} = \|w_0\|_{\dot{H}^s}$, that is $s = s_c = \frac{d}{2} 1$
 - subcritical if $||w_0^{\lambda}||_{\dot{H}^s} \to \infty$ as $\lambda \to \infty$, that is $s > s_c = \frac{d}{2} 1$
 - supercritical if $\|w_0^{\lambda}\|_{\dot{H}^s} \to 0$ as $\lambda \to \infty$, that is $s < s_c = \frac{d}{2} 1$
- Cubic NLS on \mathbb{R}^4 is critical for $w_0 \in \dot{H}^{s_c}(\mathbb{R}^4) = \dot{H}^1(\mathbb{R}^4)$ Quintic NLS on \mathbb{R}^3 is also critical for $w_0 \in \dot{H}^{s_c}(\mathbb{R}^3) = \dot{H}^1(\mathbb{R}^3)$

Stricharz estimates

- Dispersive estimate : $\|e^{it\Delta}w_0\|_{L^{\infty}(\mathbb{R}^d)} \leq \frac{C}{t^{\frac{d}{2}}} \|w_0\|_{L^1(\mathbb{R}^d)}$
- For any interval $I \subset \mathbb{R}$, we define the Strichartz norm

$$||w||_{S(I)} = ||w||_{S(I \times \mathbb{R}^d)} := \sup ||w||_{L_t^q L_x^r(I \times \mathbb{R}^d)},$$

where the supremum is taken over all admissible pairs (q, r), $\frac{2}{q} + \frac{d}{r} = \frac{d}{2}$ • $N(I \times \mathbb{R}^d)$ denotes the dual space of $S(I \times \mathbb{R}^d)$

• Homogeneous Strichartz estimate :

$$\left\|e^{it\Delta}w_0\right\|_{S(I\times\mathbb{R}^d)} \lesssim \|w_0\|_{L^2_x(\mathbb{R}^d)}$$

• Inhomogeneous Strichartz estimate :

$$\left\|\int_{t_0}^t e^{i(t-t')\Delta} F(t') \, dt'\right\|_{\mathcal{S}(I \times \mathbb{R}^d)} \lesssim \|F\|_{N(I \times \mathbb{R}^d)}.$$

- Admissible pairs on \mathbb{R}^4 : $(\infty, 2)$, (2, 4), $(6, \frac{12}{5})$
- By the Sobolev embedding $\dot{W}^{1,\frac{12}{5}}(\mathbb{R}^4) \subset L^6(\mathbb{R}^4)$, we have

 $\|w\|_{L^6_{t,x}(I\times \mathbb{R}^4)} \leq \|\nabla w\|_{L^6_t L^{\frac{12}{5}}(I\times \mathbb{R}^4)}.$

The energy-critical NLS

- Locally well-posed : Cazenave-Weissler (1989)
- Globally well-posed for small data : Duhamel formula :

$$w(t) = e^{it\Delta}w_0 - i\int_0^t e^{i(t-s)\Delta}|w|^2 w(s)ds$$

Using Strichartz estimates :

$$\begin{split} \|\nabla w\|_{L_{t}^{6}L_{x}^{\frac{12}{5}}(I\times\mathbb{R}^{4})} &\lesssim \|\nabla e^{it\Delta}w_{0}\|_{L_{t}^{6}L_{x}^{\frac{12}{5}}(I\times\mathbb{R}^{4})} + \|w^{2}\nabla w\|_{L_{t}^{2}L_{x}^{\frac{4}{3}}(I\times\mathbb{R}^{4})} \\ &\lesssim \|\nabla e^{it\Delta}w_{0}\|_{L_{t}^{6}L_{x}^{\frac{12}{5}}(I\times\mathbb{R}^{4})} + \|w\|_{L_{t,x}^{6}(I\times\mathbb{R}^{4})}^{2} \|\nabla w\|_{L_{t}^{6}L_{x}^{\frac{12}{5}}(I\times\mathbb{R}^{4})} \\ &\lesssim \|\nabla e^{it\Delta}w_{0}\|_{L_{t}^{6}L_{x}^{\frac{12}{5}}(I\times\mathbb{R}^{4})} + \|\nabla w\|_{L_{t}^{6}L_{x}^{\frac{12}{5}}(I\times\mathbb{R}^{4})}^{3}. \end{split}$$

- if ||∇e^{itΔ}w₀||_{L_t⁶L_x⁵([0,T]×ℝ⁴)} is small, we can close the argument : *T* depends on the profile of the initial data w₀, not only on E(w₀)
 Since ||∇e^{itΔ}w₀||_{L_t⁶L_x⁵(ℝ×ℝ⁴)} ≤ ||w₀||_{H¹(ℝ⁴)} we can also close the argument when ||w₀||_{H¹} is small ⇒ GWP for small data
- $\|w\|_{L^6_{t,x}([T_{\min},T_{\max}]\times\mathbb{R}^4)} \leq C \Longrightarrow \text{global well-posedness}$

Main results on defocusing energy-critical NLS

• Bourgain (1999) : GWP + scattering, quintic NLS on \mathbb{R}^3 with radial data

- induction on energy
- localized Morawetz estimate

$$\int_{I} \int_{|x| \leq |I|^{1/2}} \frac{|w|^6}{|x|} dx \leq |I|^{1/2} E(u)$$

by localizing $\int_I \int \frac{|w|^6}{|x|} dx \lesssim (\sup_{t \in I} ||w(t)||_{\dot{H}^{1/2}})^2$ of Lin and Strauss (1978)

- Grillakis (2000) : global regularity for quintic NLS on \mathbb{R}^3 with radial data
- \bullet Colliander, Keel, Staffilani, Takaoka, and Tao (2008) : removed the radial assumption on \mathbb{R}^3
- Ryckman, Vişan (2007) : GWP and scattering for cubic NLS on \mathbb{R}^4
- Vişan (2010) : simpler method for GWP + scattering for cubic NLS on \mathbb{R}^4
- Kenig, Merle (2006) : focusing energy-critical NLS on \mathbb{R}^3 , \mathbb{R}^4 , \mathbb{R}^5 : GWP + scattering for radial data with energy and kynetic energy smaller than those of the stationary solution

Cubic NLS on \mathbb{R}^4 (Ryckman, Vişan)

• Goal : prove the existence of a global solution $w \in C_t \dot{H}^1_x \cap L^6_{t,x}$ such that

$$||w||_{L^6_{t,x}(\mathbb{R} \times \mathbb{R}^4)} \le C(E(w_0))$$

• Define

$$M(E) := \sup \left\{ \|w\|_{L^6_{t,x}(I \times \mathbb{R}^4)} : I \subset \mathbb{R} \text{ compact, } w \text{ solution with } E(u) \le E \right\}$$

- By contradiction : assume there exists a critical energy $E_{\rm crit}$ such that $M(E_{\rm crit})=\infty$
- Then there exists a blowup solution w_* with $E(w_*) = E_{\text{crit}}$,

$$\int_{0}^{T_{max}} \int_{\mathbb{R}^{4}} |w_{*}|^{6} dx dt = \int_{T_{min}}^{0} \int_{\mathbb{R}^{4}} |w_{*}|^{6} dx dt = \infty$$

which is almost periodic :

$$\int_{|x-x(t)| \ge C(\eta)/N(t)} |\nabla w_*|^2 dx + \int_{|\xi| \ge C(\eta)N(t)} |\xi|^2 |\hat{w}_*(t,\xi)|^2 d\xi \le \eta.$$

10/24

• Frequency-localized Morawetz inequality (ONLY true for w_*):

$$\int_{I} \int_{\mathbb{R}^{4}} \int_{\mathbb{R}^{4}} \frac{|P_{\geq N}w_{*}(t,x)|^{2} |P_{\geq N}w_{*}(t,y)|^{2}}{|x-y|^{3}} dx dy dt \lesssim \eta N^{-3}.$$

• obtained by localizing in frequency the interaction Morawetz estimate

$$\int_{I} \int_{\mathbb{R}^{4}} \int_{\mathbb{R}^{4}} \frac{|w(t,x)|^{2} |w(t,y)|^{2}}{|x-y|^{3}} dx dy dt \lesssim \|w\|_{L_{t}^{\infty} L^{2}(I \times \mathbb{R}^{4})}^{3} \|w\|_{L_{t}^{\infty} \dot{H}^{1}(I \times \mathbb{R}^{4})}$$

- $||P_{\geq N}w_*||_{L^2} \leq \frac{1}{N} ||P_{\geq N}w_*||_{\dot{H}^1} \leq \frac{\eta}{N}$ by the frequency localization of w_*
- This shows that

$$||w_{*,\mathrm{hi}}||_{L^3_{t,x}(I_0 \times \mathbb{R}^4)} \lesssim C \eta^{1/3}$$

• As a consequence, we obtain $||w_*||_{L^6_{t,x}} \leq C \Longrightarrow$ contradiction !

< □ ▶ < 圖 ▶ < ≧ ▶ < ≧ ▶ ≧ → ♀ 11/24

Cubic NLS on \mathbb{R}^4 (Vişan)

• By contradiction and using concentration-compactness \implies there exists a blowup solution w_* which is almost periodic :

$$\int_{|x-x(t)| \ge C(\eta)/N(t)} |\nabla w_*|^2 dx + \int_{|\xi| \ge C(\eta)N(t)} |\xi|^2 |\hat{w}_*(t,\xi)|^2 d\xi \le \eta.$$

- After rescaling, we can assume $N(t) \ge 1$
- Rapid frequency-cascade scenario : $\int_0^{T_{max}} N(t)^{-1} dt < \infty$ Quasi-soliton scenario : $\int_0^{T_{max}} N(t)^{-1} dt = \infty$
- In both cases we get a contradiction using long time Strichartz estimates in the spirit of Dodson :

$$\|\nabla P_{\leq M} w_*\|_{L^2_t L^4_x(I \times \mathbb{R}^4)} \lesssim 1 + M^{3/2} \Big(\int_I N(t)^{-1} dt \Big)^{1/2}$$

• For the quasi-soliton scenario we also use the frequency-localized Morawetz estimate

Lemma (Colliander, Keel, Staffilani, Takaoka, and Tao 2008)

Let I be a compact time interval and v be a solution on $I \times \mathbb{R}^4$ of the perturbed equation $i\partial_t v + \Delta v = |v|^2 v + e$. Suppose

 $\|v\|_{L^{6}_{t,x}(I \times \mathbb{R}^{4})} \leq L,$ $\|v\|_{L^{\infty}_{t}\dot{H}^{1}_{x}(I \times \mathbb{R}^{4})} \leq E_{0}.$

Then there exists $\varepsilon_0 = \varepsilon_0(E_0, L) > 0$ such that, if for some $0 < \varepsilon \leq \varepsilon_0$ and for some $t_0 \in I$ we have

 $\begin{aligned} \|v(t_0) - w(t_0)\|_{\dot{H}^1(\mathbb{R}^4)} &\leq \varepsilon \\ \|\nabla e\|_{N(I \times \mathbb{R}^4)} &\leq \varepsilon, \end{aligned}$

then, there exists a solution w to cubic NLS on $I \times \mathbb{R}^4$ with data $w(t_0)$ at time t_0 with the properties

 $\|\nabla w - \nabla v\|_{S(I \times \mathbb{R}^4)} \le C(E_0, L)\varepsilon$

 $\|\nabla w\|_{S(I\times\mathbb{R}^4)} \le C(E_0, L),$

where $C(E_0, L) > 0$ is a non-decreasing function of E_0 and L.

Strategy : GWP of Gross-Pitaevskii equation on \mathbb{R}^4

• We prove that there exists $T = T(E(v_0))$ such that if the solution v exists on [0, T], then

$$v \|_{L^6_{t,x}([0,T] \times \mathbb{R}^4)} \le C(E(v_0))$$

• This shows that there exists only a finite number of subintervals

$$I_k \subset [0,T]$$
 such that $[0,T] = \bigcup_{k=1}^N I_k$ and
 $\|v\|_{L^6_{t,x}(I_k \times \mathbb{R}^4)} \sim \eta$

- By a contraction mapping argument, we can then prove local well-posednes on each subinterval I_k , and thus on [0, T]
- We built a local solution on $[0, T_1]$, where $T_1 = T = T(E(v_0))$. Next, we build a solution on $[T_1, T_2]$. By conservation of energy we have

$$T_2 - T_1 = T(E(v(T_1))) = T(E(v_0)),$$

which gives a solution on [T, 2T]. Recursively, we extend it to $[0, \infty)$.

Proof

- For w, the solution of cubic NLS, we have $\|\nabla w\|_{L^{6}_{2}L^{\frac{12}{5}}(\mathbb{R}\times\mathbb{R}^{4})} \leq C(E(v_{0}))$
- We divide $[0,\infty)$ into $J = J(\eta, E(v_0))$ subintervals $I_j = [t_j, t_{j+1}]$ such that

$$\left\|\nabla w\right\|_{L_t^6 L_x^{\frac{12}{5}}(I_j \times \mathbb{R}^4)} \sim \eta$$

• The linear evolution will still be small

$$\left\|\nabla e^{i(t-t_j)\Delta}w(t_j)\right\|_{L_t^6L_x^{\frac{12}{5}}(I_j\times\mathbb{R}^4)} \le 2\eta$$

On $I_0 = [0, t_1]$ we have :

• By the Strichartz estimates and using $v_0 = v(t_0) = w(t_0)$, we have $\begin{aligned} \|\nabla v\|_{L_t^6 L_x^{\frac{12}{5}}(I_0)} &\lesssim \|\nabla e^{it\Delta} v_0\|_{L_t^6 L_x^{\frac{12}{5}}(I_0)} + \|v^2 \nabla v\|_{L_t^2 L_x^{\frac{4}{3}}(I_0)} \\ &+ \|v \nabla v\|_{L_t^{\frac{6}{5}} L_x^{\frac{12}{7}}(I_0)} + \|\nabla v\|_{L_t^1 L_x^2(I_0)} \\ &\lesssim 2\eta + \|\nabla v\|_{L_t^6 L_x^{\frac{12}{5}}(I_0)} + T^{1/2} \|\nabla v\|_{L_t^6 L_x^{\frac{12}{5}}(I_0)}^2 + TE(v_0)^{1/2} \end{aligned}$

• If $\eta \ll 1$ and $T = T(\eta, E(v_0))$ small enough, then

 $\|v\|_{L^6_{t,x}(I_0)} \le \|\nabla v\|_{L^6_t L^{\frac{12}{5}}_x(I_0)} \le 3\eta \Longrightarrow \text{ control on the } L^6_{t,x} - \operatorname{norm}_{\mathbb{C}} = 0$

• By the conservation of energy :

$$\|v\|_{L_t^{\infty}\dot{H}^1}^2 \leq 2E(v) = 2E(v_0) \Longrightarrow$$
 control on the $L_t^{\infty}\dot{H}_x^1$ – norm

• $v(0) = w(0) \Longrightarrow$ the initial data on $I_0 = [0, t_1]$ are trivially close

• The error is
$$e = 2v \operatorname{Re}(v) + |v|^2 + 2 \operatorname{Re}(v)$$
. Then,
 $\|\nabla e\|_{N(I_0)} \lesssim \|v \nabla v\|_{L_t^{\frac{6}{5}} L_x^{\frac{12}{7}}(I_0 \times \mathbb{R}^4)} + \|\nabla v\|_{L_t^{\frac{1}{4}} L_x^2(I_0 \times \mathbb{R}^4)}$
 $\lesssim T^{1/2} \|\nabla v\|_{L_t^{\frac{6}{6}} L_x^{\frac{12}{5}}(I_0 \times \mathbb{R}^4)}^2 + TE(v_0)^{1/2}$
 $\lesssim T^{1/2} \eta^{1/2} + TE(v_0)^{1/2}$

• If ε and $T = T(\eta, \varepsilon, E(v_0))$ are sufficiently small we have $\|\nabla e\|_{N(I_0)} \le \varepsilon \Longrightarrow \text{ small error}$

• By the Perturbation Lemma on $I_0 : \|\nabla w - \nabla v\|_{S(I_0)} \le C(E(v_0))\varepsilon$. Thus, $\|w(t_1) - v(t_1)\|_{\dot{H}^1} \le \|\nabla w - \nabla v\|_{S(I_0)} \le C(E(v_0))\varepsilon$

 \implies the initial data on $I_1 = [t_1, t_2]$ are close

• At each step the bound for $||w(t_j) - v(t_j)||_{\dot{H}^1}$ may grow, but its ultimate size is $C(J, E(v_0))\varepsilon$ and we still have

 $C(J, E(v_0))\varepsilon \leq \varepsilon_0$, if ε is sufficiently small

17/24

• Recursively, we obtain $\|\nabla v\|_{L^6_t L^{12/5}_x(I_j)} \leq 3\eta$ for all $1 \leq j \leq J$. Thus, $\|v\|_{L^6_{t,x}([0,T] \times \mathbb{R}^4)} \leq \|\nabla v\|_{L^6_t L^{12/5}_x([0,T] \times \mathbb{R}^4)} \leq J(\eta, E(v_0)) \cdot 3\eta \leq C(E(v_0)).$

• Finally, notice that we chose $T = T(\varepsilon, \eta, E(v_0)) = T(E(v_0))$

Cubic-quintic NLS with non-vanishing BC on \mathbb{R}^3

$$\begin{cases} i\partial_t u + \Delta u = (|u|^2 - 1)(|u|^2 - r_1^2)u, \\ u|_{t=0} = u_0, \end{cases}$$

with $r_1^2 < 1$ and boundary condition :

$$\lim_{|x| \to \infty} |u(x)| = 1$$

If u = 1 + v, then v satisfies

$$\begin{cases} i\partial_t v + \Delta v = |v|^4 v + \mathcal{R}(v), \quad (t, x) \in \mathbb{R} \times \mathbb{R}^3, \\ v|_{t=0} = v_0. \end{cases}$$

where

$$\mathcal{R}(v) = |v|^4 + 4|v|^2 v \operatorname{Re}(v) + 4|v|^2 \operatorname{Re}(v) + \gamma |v|^2 v + 4v \operatorname{Re}(v)^2 + \gamma |v|^2 + 4 \operatorname{Re}(v)^2 + 2\gamma v \operatorname{Re}(v) + 2\gamma \operatorname{Re}(v).$$

and $\gamma = 1 - r_1^2 > 0$. The quintic nonlinearity is energy-critical in \mathbb{R}^3 .

・ロ > ・ (日) 、 (目) 、 (目) 、 (目) 、 (目) 、 (日) 、 (H) , (H) ,

Global well-posedness of cubic-quintic NLS on \mathbb{R}^3

Hamiltonian equation of energy

$$E(1+v) = \frac{1}{2} \int_{\mathbb{R}^3} |\nabla v|^2 \, dx + \frac{\gamma}{4} \int_{\mathbb{R}^3} \left(|v|^2 + 2\operatorname{Re}(v) \right)^2 \, dx + \frac{1}{6} \int_{\mathbb{R}^3} \left(|v|^2 + 2\operatorname{Re}(v) \right)^3 \, dx.$$

The energy is NOT sign definite \implies it does NOT control $||v||_{\dot{H}^1}$. However, we will see that E(v) and $||\operatorname{Re}(v)||_{L^2}$ control $||v||_{\dot{H}^1}$. We then define the energy space as :

$$\mathcal{E}_{CQ} := \{ u = 1 + v : |E(1+v)| < \infty, \|\operatorname{Re}(v)\|_{L^2(\mathbb{R}^3)} < \infty \}.$$

Theorem (Killip, Oh, P., Vişan 2011)

The cubic-quintic NLS is globally well-posed in the energy space $\mathcal{E}_{CQ}(\mathbb{R}^3)$.

Proof : As before we treat our equation as a perturbation of the energy-critical quintic NLS on \mathbb{R}^3 .

Control of $||v||_{\dot{H}^1(\mathbb{R}^3)}$

Lemma

There exists $C_0 = C_0(\gamma) > 0$ such that

$$\int_{\mathbb{R}^3} |\nabla v|^2 \, dx + \int_{\mathbb{R}^3} |v|^6 \, dx + \gamma \int_{\mathbb{R}^3} |v|^4 \, dx \lesssim E(v) + C_0 \int_{\mathbb{R}^3} |\operatorname{Re}(v)|^2 \, dx.$$

Idea of proof :

$$|v|^{4} \leq 2(|v|^{2} + 2\operatorname{Re}(v))^{2} + 8|\operatorname{Re}(v)|^{2} \leq 8\left[\frac{1}{4}(|v|^{2} + 2\operatorname{Re}(v))^{2} + |\operatorname{Re}(v)|^{2}\right].$$

Corollary

$$\mathcal{E}_{CQ}(\mathbb{R}^3) = 1 + \left(H^1_{\text{real}}(\mathbb{R}^3) + i\dot{H}^1_{\text{real}}(\mathbb{R}^3) \right) \cap L^4(\mathbb{R}^3).$$

Corollary

$$\|v\|_{L_t^{\infty}\dot{H}_x^1(\mathbb{R}\times\mathbb{R}^3)}^2 \le M(v) := E(v) + C_0 \int_{\mathbb{R}^3} |\mathrm{Re}(v)|^2$$

<u>Problem</u> : M(v) is not a conserved quantity

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Lemma

Let v be a solution to the cubic-quintic NLS on a time interval $[0, \tau]$. Then,

$$M(v(t)) \le M(v_0)e^{C_1 t}$$

for all $t \in [0, \tau]$ and some $C_1 > 0$.

Proof : We have that

$$\partial_t \int_{\mathbb{R}^3} |\operatorname{Re}(v)|^2 dx = 2 \int_{\mathbb{R}^3} \operatorname{Re}(v) \partial_t \operatorname{Re}(v) dx$$
$$= -2 \int_{\mathbb{R}^3} \operatorname{Re}(v) \operatorname{Im}(\Delta v) dx + 2 \int_{\mathbb{R}^3} \operatorname{Re}(v) \operatorname{Im}\left(|v|^4 v + \mathcal{R}(v)\right) dx$$

By interpolation and Young's inequality, we bound the RHS by $C_1 M(v)$.

• We rely on

$$\|v\|_{L^{\infty}\dot{H}^{1}([0,\tau]\times\mathbb{R}^{3})} \leq M(v_{0})e^{C_{1}\tau} = C(E(v_{0}), \|\operatorname{Re}(v_{0})\|_{L^{2}}, \tau) =: N(v_{0}, \tau).$$

- Goal : for and $0 < \tau < \infty$, there exists a solution on $[0, \tau]$. We do not attempt to prove directly the existence of a solution on $[0, \infty)$, as we did for the Gross-Pitaevskii equation.
- We prove that if such a solution exists, then there is $T = T(N(v_0, \tau)) > 0$ such that

$$\|\nabla v\|_{S([T_0,T_0+T]\times\mathbb{R}^3)} \le C(N(v_0,\tau))$$

as long as $[T_0, T_0 + T] \subset [0, \tau]$.

Scattering for the GP equation in the case of large data

• Gross-Pitaevskii equation possesses traveling waves solutions

$$u(x,t) = u_0(x_1 - ct, x_2, x_3, x_4)$$

that do NOT scatter

- The formation of traveling waves requires a minimal energy in \mathbb{R}^d , $d \ge 3$ (Bethuel, Gravejat, Saut 2009, de Laire 2009)
- Solutions with sufficiently small energy scatter (Gustafson, Nakanishi, Tsai 2006)
- Can one prove scattering up to the minimal energy of a traveling wave?

Work in progress : Scattering for cubic-quintic NLS

• Cubic-Quintic NLS with zero boundary condition :

(CQ)
$$\begin{cases} i\partial_t v + \Delta v = |v|^4 v - |v|^2 v \\ v(0) = v_0 \in H^1(\mathbb{R}^3) \end{cases}$$

• Conserved quantities – mass and energy :

$$M(v) = \int |v|^2 dx, \quad E(v) = \int \left(\frac{|\nabla v|^2}{2} + \frac{|v|^6}{6} - \frac{|v|^4}{4}\right) dx.$$

• Soliton solutions of the form $v(t, x) = e^{i\omega t}u(x)$, where u satisfies

$$\Delta u - |u|^4 u + |u|^2 u - \omega u = 0.$$

Theorem (Work in progress with Killip, Oh, Vişan)

If $v_0 \in H^1(\mathbb{R}^3)$ has positive energy, smaller than the energy of any soliton of mass $M(v_0)$, then the corresponding solution of the (CQ) equation scatters.