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Gross-Pitaevskii equation on R? :
i0u + Au = (Ju|? — )u, (t,z) € R x R4,
u’tzo = Uo,

with the non-vanishing boundary condition :

lim |u(x)| = 1.
|z|— 00

Hamiltonian with Ginzburg-Landau energy

1 1
E(u) = 3 /Rd |Vu|? dz + Z/Rd(|u|2 —1)2dx.

N



Global well-posedness (GWP) results

e R : Zhidkov (1987) in Zhidkov spaces :

X*(R) := {u € L®(R) : 0%u € L*(R),1 < |a| < k}.
Gallo (2004) in the Zhidkov space X1 (R)

o R2 R3: Béthuel, Saut (1999) in 1+ H?
Goubet (2007) in the Zhidkov space X?(R?)
Gallo (2008) in ug + H* if E(ug) < o
Gérard (2006) in the energy space

Eap :={u: F(u) < oo}

o R*: Gérard (2006) in the energy space such that Vu € LfJOCLi
in the case of small energy data

Remark : New difficulty on R* in the case of large energy data :
the cubic nonlinearity is energy-critical (H!-critical)



The energy space

o On R3 R* Gérard (2006) also proved :

Ear(®?) = {u=a +v‘ ol = 1,v € H'(R?), [v]? +2Re(av) € L2(RY)}.

° uy =a+ vy € Egp implies u(t) = a+v(t) € Egp for all t € R.

o If o = ¢, by the gauge invariance u — e~ %

Then, © = 1 + v and v satisfies

u, we can assume 0 =0, a = 1.

i0iv + Av = |[v]?v + 2Re(v)v + |v|* + 2Re(v),
U’t:O =g :=ug — 1.

e OnR*:ve H'(RY) C L*(R*) = |v]? € L? = Rew € L*(RY).

Eap(RY) = {u =14v:ve H (RY)+iH. (R ")}

1 1
E(1+v):§/ |Vv|2dx+1/ (Io]? + 2Re(v))” da.
R4 R4



Global well-posedness for arbitrarily large data on R*

Theorem (Killip, Oh, P., Visan 2011)

The Gross—Pitaevskii equation is globally well-posed in the energy space
Eap(RY).

Two ingredients in the proof :

e Global well-posedness of energy-critical defocusing nonlinear Schrodinger

equation on R* :

: — a2
(NLS) 0w + Aw = |'ul)| 'LZ
w(0) = wo € H'(R*).

e Perturbation theory : treat the equation of v as

U’t:O = Yo,

{i@tv + Av = |v|?v + e,

where the error e := 2 Re(v)v + |v]? + 2 Re(v) is small on small intervals.



Scaling invariance

o If w is solution of the cubic NLS equation :
i0yw + Aw = |w|*w
then w (¢, z) := Aw(\?t, \z) is also solution of cubic NLS.
o Notice that w | g ey = A2 wol| - gy

o If wy € H*(R?), then the equation is

o critical if ||wd || gs = |lwol| g+, that is s = 5. = ¢ — 1

2
o subcritical if |wy ||z — 00 as A — oo, that is s > s = 4 — 1

o supercritical if [Jwd] 75 — 0 as A — oo, that is s < s. = 41

o Cubic NLS on R* is critical for wy € H*(R*) = H'(R*)
Quintic NLS on R? is also critical for wy € H*(R3) = H'(R?)



Stricharz estimates

o Dispersive estimate : [le”wo| o gay < -5 woll 11 (gay
t2
e For any interval I C R, we define the Strichartz norm
lwllscry = ”w”S(Ide) :ZSUPHWHL;JLg(Jdey

d
r

[M]ISH

where the supremum is taken over all admissible pairs (g, ), % +
o N(I x RY) denotes the dual space of S(I x R%)
e Homogeneous Strichartz estimate :
itA

w0l 1 0, S 02

e Inhomogeneous Strichartz estimate :
t ,
H/ ez(tft )AF(t/) dt/
to

o Admissible pairs on R* : (00,2), (2,4), (6,%2)
12

e By the Sobolev embedding W5 (R*) c L(R*), we have

lwllag (ra < 1Vl 2

< ||F||N(lek<d)-
S(IxR4)

B (IxR4)



The energy-critical NLS

e Locally well-posed : Cazenave-Weissler (1989)
o Globally well-posed for small data :
Duhamel formula :

t
w(t) = e Pwy — z/ e =8 2w (s)ds
0

Using Strichartz estimates :

[Vl 12 S IIVe wol| +w* Vel 4
LSL,> (IxR%) LSL 5 (IxR4) L2L3 (IXR4)
< itA
IV @unl g Il Il
< ||V€’tAw0|| + |Vl
(I xR%) LéL, 3 (Ix R4)
o if [ Ve 12 is small, we can close the argument :
LOL,5 ([0,T]xR%)
T depends on the profile of the initial data wo, not only on E(wo)
e Since ||[Ve S wo|| 12 < [Jwol| g1 g4y We can also close the argument
LSL,5 (RxR%)
when |lwoll ;1 s small = GWP for small data

(W6 ([Thmin, Timax] xr1) < C = global well-posedness



Main results on defocusing energy-c

e Bourgain (1999) : GWP + scattering, quintic NLS on R? with radial data

e induction on energy
o localized Morawetz estimate

6
// Ml e < 112w
1 Jiaigin/ 12|

by localizing [, [ ‘lu;‘lﬁ dx < (supye; [|w(t)|| g1/2)? of Lin and Strauss (1978)

o Grillakis (2000) : global regularity for quintic NLS on R?® with radial data

o Colliander, Keel, Staffilani, Takaoka, and Tao (2008) : removed the radial
assumption on R3

e Ryckman, Visan (2007) : GWP and scattering for cubic NLS on R*
e Visan (2010) : simpler method for GWP + scattering for cubic NLS on R*

e Kenig, Merle (2006) : focusing energy-critical NLS on R3, R R® : GWP
+ scattering for radial data with energy and kynetic energy smaller than
those of the stationary solution



Cubic NLS on R* (Ryckman, Vigan)

e Goal : prove the existence of a global solution w € CyH! N L¢ , such that

lwlize  mxrey < C(E(wo))
o Define

M(E) := sup {||wHL?I(IxR4) : I C R compact, w solution with E(u) < E}

e By contradiction : assume there exists a critical energy E..it such that
M(Ecrit) = 00
@ Then there exists a blowup solution w, with E(w,) = Eeyt,
Tmaz 0
/ / lw.|®dzdt = / |w.|®dzdt = oo
0 R4 Trin J R4

which is almost periodic :

Vewa[2de + / €21 (2, 6)|2de < .

/\w—w(t)\ZC(n)/N(t) [£]1=C(n)N(t)
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e Frequency-localized Morawetz inequality (ONLY true for w,) :

P *t P «(t, _
// / | P> yw. (t, )| >3Nw( y)? dedydt < pN .
R4 JR4 \17—3/|

e obtained by localizing in frequency the interaction Morawetz estimate

[w(t, 2)|*|lw(t, y)|*
//w /sz |z — y[? drdydt S Hw||L;>°H1(1xR4)

o ||Ponwillp2 < [|P>nws|lg1 < 4 by the frequency localization of w.

o This shows that
Hw*,hiHL3 L(ToxRY) X C771/3

o As a consequence, we obtain [[w.|[ys < C' == contradiction!
.



Cubic NLS on R? (Visan)

o By contradiction and using concentration-compactness = there exists a
blowup solution w, which is almost periodic :

Vo Pde + / €21 (1, 6)|2de < .

/\I*I(t)\zc(n)/l\’(t) [€1=2C(n)N(t)

o After rescaling, we can assume N(¢) > 1
e Rapid frequency-cascade scenario : fOT"“”” N(t)~tdt < oo

Quasi-soliton scenario : fOT’"” N(t)~ldt = o0

o In both cases we get a contradiction using long time Strichartz estimates
in the spirit of Dodson :

B 1/2
IV Pesrlizngsny S 1+ M2 ([ Mo ar)
i I

e For the quasi-soliton scenario we also use the frequency-localized
Morawetz estimate



Perturbation theory

Lemma (Colliander, Keel, Staffilani, Takaoka, and Tao 2008)

Let I be a compact time interval and v be a solution on I x R* of the perturbed
equation i0;v + Av = |v|?v + e. Suppose

HU”L?J(IXR‘l) <L,

HU”LgOH;(IxR% < FEo.

Then there exists g = eo(Eo, L) > 0 such that, if for some 0 < & < g9 and for

some tg € I we have
lv(to) — w(to)ll g1 ray < €

IVelln(rxray < €,

then, there exists a solution w to cubic NLS on I x R* with data w(to) at time

to with the properties
IVw — Vvl s1xray< C(Eo, L)e

(IVwl|s(rxray < C(Eo, L),

where C(Ey, L) > 0 is a non-decreasing function of Ey and L.




Strategy : GWP of Gross-Pitaevskii equation on R*

e We prove that there exists T' = T(E(vp)) such that if the solution v exists
on [0,T], then
ol _tompersy < C(E(w0))

@ This shows that there exists only a finite number of subintervals

I, C [0, T] such that [0,T] = U I, and

||U||L6 (I xR4) ~ 1

e By a contraction mapping argument, we can then prove local
well-posednes on each subinterval I, and thus on [0, 7]

e We built a local solution on [0,T}], where Ty =T = T(E(vg)). Next, we
build a solution on [T7,T3]. By conservation of energy we have

Ty =Ty = T(E(v(Th))) = T(E(vo)),

which gives a solution on [T, 27T]. Recursively, we extend it to [0, c0).
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e For w, the solution of cubic NLS, we have |[Vw|| < C(E(vo))

LOL, s (RxR4) —

e We divide [0, 00) into J = J(n, E(vg)) subintervals I; = [t;,tj41] such that

Vw ~
l HLGL 1y

o The linear evolution will still be small
Ve ) B (t)| <2

LSL, 5 (I; xR4)

On Iy = [0, 1] we have :

e By the Strichartz estimates and using vo = v(tg) = w(tp), we have

Vol 12 SIVe™woll 12 4PVl 4
5 ~ 675 273
LILS (Io) LSLS (Io) L2LE (o)

+ oVl s 12 4+ |Vl
L5 L, (Io)

L}LZ(Ig)

S+ Vol w2 +T1/2||Vv|| 2 +TE(w)"?
LYLS (Io) (

tL (Io La® (Io)

e Ifn<land T =T(n,E(v )) small enough, then

||1}||Le o) SV v|| (1 : < 3n = control on the L{ , — norm
z 0



By the conservation of energy :

||1)H2L?QH1 < 2E(v) = 2E(v) = control on the L{® H, — norm

v(0) = w(0) = the initial data on Iy = [0, #;] are trivially close

The error is e = 2vRe(v) + [v|> + 2Re(v). Then,

IVelln(re) < ||UVV||L? L2 oty + IVl L1 L2 (1 xRy

<TY?|Vol? 2 + TE(vo)"/?
)

LSL,? (IgxR*

5 T1/2771/2 +TE('U0)1/2

If e and T'=T(n,¢, E(vg)) are sufficiently small we have

IVelln(r,) < € = small error

By the Perturbation Lemma on Ij : ||[Vw — Vl|s(1,) < C(E(vo))e. Thus,
[w(t1) = v(t)ll g < [[Vw = Vollsy) < C(E(vo))e

— the initial data on I; = [t1, 2] are close



e At each step the bound for [[w(t;) — v(t;)| ;1 may grow, but its ultimate
size is C(J, E(vg))e and we still have

C(J, E(vp))e < eg, if € is sufficiently small

@ Recursively, we obtain ||Vv||LGL12/5 < 3npforall 1 <j<J. Thus,
t Mz

(I;)

lolleg  oirixasy < 1900 g,1275 g0 1ymy < T01 B(w0)) - 31 < C(E(wo)).

e Finally, notice that we chose T' = T'(¢,n, E(vy)) = T(E(vg))



Cubic-quintic NLS with non-vanishing BC on R?

{iatu + Au = (Jul? = 1)(|Jul? = r2)u,

ul,_y = uo,
with 7# < 1 and boundary condition :

lim |u(z)| = 1.
|z|—o0

If wu =1+ v, then v satisfies

10w + Av = |[v|*v + R(v), (t,z) € R x R3,
U|t=0 = 0.
where
R(v) = |v|* + 4|v|*v Re(v) + 4|v|* Re(v) + v|v|*v 4 4v Re(v)?
+ 7[v|> + 4Re(v)® 4 2yv Re(v) + 27 Re(v).
and y=1-—7rf>0.
The quintic nonlinearity is energy-critical in R3.
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Global well-posedness of cubic-quintic NLS on R3?

Hamiltonian equation of energy
E(1+v) / |Vo|? dz + ~ / (|U\2+2Re(v))2dx+%/ (|v|2—|—2Re(v))3d1’.
3 R3

The energy is NOT sign definite = it does NOT control |[v]| 7.
However, we will see that E(v) and || Re(v)||z2 control ||v]| ..

We then define the energy space as :

Eoq :={u=1+v:|E(l+v)| <oo,|Re(v)|r2ms) < oo}

Theorem (Killip, Oh, P., Visan 2011)

The cubic-quintic NLS is globally well-posed in the energy space Ecq(R?).

Proof : As before we treat our equation as a perturbation of the energy-critical
quintic NLS on R3.
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CODtI’Ol Of H’UHHl(R:s)

There exists Co = Co(7y) > 0 such that

/ |Vv|2dx+/ |v|6dx+’y/ |v|4d1;§E(v)+C0/ |Re(v)|? d.
RS RS RS RS

Idea of proof :

o < 2([o]? + 2Re(v))” + 8|Re(v)[2 < 8[%(|v\2 +2Re(v))” + |Re(u)|2}.

Corollary

Ec(R?) =1+ (HLu(R?) +iH-, (R?) N LA(R?).

real eal

Corollary

0123 sy < M(0) = B@) +Co | [Re(w)

Problem : M(v) is not a conserved quantity 00 ) on



M (v) can be controled on any finite time interval

Let v be a solution to the cubic-quintic NLS on a time interval [0,7]. Then,
M (v(t)) < M(vg)e®t

for all t € [0,7] and some Cy > 0.

Proof : We have that
at/ \Re(v)|2dx:2/ Re(v) 9, Re(v) dz
R3 R3

= -2 [ Re(v)Im(Av)dz+2 /RS Re(v) Im (Jv|*v + R(v)) d

R3

By interpolation and Young’s inequality, we bound the RHS by C1 M (v).
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Strategy in the case of cubic-quintic NLS

e We rely on

01| e 1 (0.1 xs) < M (00)e“™ = C(E(vo), || Re(vo)||z2, 7) =: N(vo, 7).

e Goal : for and 0 < 7 < 00, there exists a solution on [0, 7]. We do not
attempt to prove directly the existence of a solution on [0, ), as we did
for the Gross-Pitaevskii equation.

e We prove that if such a solution exists, then there is T' = T'(N (vg, 7)) > 0
such that

VUl sy, o+7xr3) < C(N (v, 7))
as long as [Ty, To + T C [0, 7].



Scattering for the GP equation in the case of large data

o Gross-Pitaevskii equation possesses traveling waves solutions
u(z,t) = uo(x1—ct, v2, v3,T4)

that do NOT scatter

The formation of traveling waves requires a minimal energy in R%, d > 3
(Bethuel, Gravejat, Saut 2009, de Laire 2009)

Solutions with sufficiently small energy scatter (Gustafson, Nakanishi,
Tsai 2006)

Can one prove scattering up to the minimal energy of a traveling wave ?
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Work in progress : Scattering for cubic-quintic NLS

e Cubic-Quintic NLS with zero boundary condition :

100 + Av = |v|*v — |v|?v
. { t ol — o

v(0) = vg € H(R?)

e Conserved quantities — mass and energy :

M(v) :/|v|2dx, E(v) :/('V;'2 +% - %)dm

e Soliton solutions of the form v(t,z) = e™'u(z), where u satisfies

Au — |ul*u + |u?u — wu = 0.

Theorem (Work in progress with Killip, Oh, Vigan)

If vg € HY(R3) has positive energy, smaller than the energy of any soliton of
mass M (vg), then the corresponding solution of the (CQ) equation scatters.
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