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Dispersion relation

general linear evolution equation on R:

∂tu+ P

(
∂

∂x

)
u = 0(∗)

where P : C 7→ C is such that P (iR) ⊂ iR.

plane wave solution u(x, t) = ei(kx−ωt) = eik(x−ωk t) with k ∈ R the wave
number, ω ∈ R the angular frequency, and phase velocity ω

k :

−iωu+ P (ik)u = 0

dispersion relation:

Phase velocity at wave number k =
ω

k
=
P (ik)

ik

using the inverse Fourier transform u0(x) = 1
2π

∫
R e

ikxû0(k)dk and by
superposition

u(x, t) =

∫
R
eik(x−

P (ik)
ik t)û0(k)dk

is a solution of (∗) with u(x, 0) = u0(x).
2 / 37



P (k) = ck, c ∈ R =⇒ linear advection equation: ∂tu+ c∂xu = 0

ω

k
=
P (ik)

ik
= c =⇒ all plane waves move with the same velocity c

P (k) = −ik2 =⇒ linear Schrödinger equation: i∂tu+ ∂2
xu = 0

phase velocity:

ω

k
=
P (ik)

ik
= k =⇒ e

ik
(
x−P (ik)

ik
t
)
û0(k) at frequency k moves faster than

those corresponding to smaller frequencies

‖u(t)‖L2 = ‖u(0)‖L2 and decay estimate:

‖u(t)‖L∞ ≤
C√
t
‖u(0)‖L1 ,

dispersive equation

P (k) = i|k| =⇒ linear half-wave equation: i∂tu− |D|u = 0

ω

k
=
P (ik)

ik
=
|k|
k

=⇒ phase velocity 1 for positive frequencies

and− 1 for negative frequencies =⇒ weak dispersion
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Example of a nonlinear dispersive PDE

(defocusing) nonlinear Schrödinger equation (NLS):{
i∂tu−∆u+ |u|p−1u = 0

u|t=0 = u0 ∈ H1(Rd)
, (x, t) ∈ Rd × R.

Definition of a solution (Duhamel’s formula):

u(x, t) = e−it∆u0 − i
∫ t

0

e−i(t−t
′)∆|u|p−1u(x, t′)dt′,

Here, e−it∆f denotes the solution of the linear Schrödinger equation

i∂tv −∆v = 0 with v(0) = f .

NLS is a Hamiltonian PDE

∂tu = i
∂E

∂ū
with Hamiltonian

E(u(t)) =

∫
Rd

1

2
|∇u(x, t)|2 +

1

p+ 1
|u(x, t)|p+1dx.

Conservation of Hamiltonian E(u(t)) = E(u(0)) and ‖u(t)‖L2 = ‖u(0)‖L2

=⇒ ‖u(t)‖H1 ≤ C(u0) for all t
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Typical problems in the study of dispersive PDEs:

Local well-posedness (existence, uniqueness of the solution in a space X
for a short time T > 0, and continuous dependence on the initial data)

Existence of solutions that blow up in finite time (T <∞)

Global well-posedness (T =∞)

Behaviour of global-in-time solutions

Scattering: a solution of the nonlinear equation asymptotically behaves
like a linear solution

Solitons: special global solutions of the form Pc,ω(t, x) = u0(x− ct)eitω

Note: ‖Pc,ω(t)‖L∞ = ‖u0‖L∞ and ‖Pc,ω(t)‖Hs = ‖u0‖Hs for all t and s

Soliton resolution: solutions decompose into a finite sum of solitons and
radiation as T →∞, in particular ‖u(t)‖Hs ≤ Cs for all t and s

“Weak turbulence” expressed as lim supt→∞ ‖u(t)‖Hs =∞ for large s
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Cubic half-wave equation on R

Focusing half-wave equation:

(HW) i∂tu− |D|u = −|u|2u, x ∈ R, u(t, x) ∈ C,

where ̂|D|f(ξ) = |ξ|f̂(ξ).

PDEs with nonlocal dispersion appear in physics:

models of wave turbulence (Majda-McLaughlin-Tabak 1997),
continuum limit of lattice points, gravitational collapse.

Applying i∂t + |D| to both sides of HW =⇒ a nonlinear wave equation:

∂2
t u−∆u = −|u|4u+ 2|u|2|D|u+ [|D|, u2]ū

HW is a Hamiltonian PDE, ∂tu = i ∂E
∂ū

, with

E(u(t)) :=
1

2
‖|D|

1
2 u(t)‖2L2 −

1

4
‖u(t)‖4L4

Conserved Hamiltonian/energy E(u(t)) = E(u(0)) and mass:

M(u(t)) := ‖u(t)‖2L2 = M(u(0))
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Well-posedness theory

Gérard-Grellier 2010, Krieger-Lenzmann-Raphaël 2012:
local well-posedness in Hs(R), s ≥ 1

2
with blowup alternative

T <∞ implies lim
t↗T
‖u(t)‖

H
1
2

=∞

L2-critical equation, i.e. invariant under the scaling symmetry

uλ(t, x) = λ
1
2 u(λt, λx),

which leaves the L2-norm invariant ‖uλ(t, ·)‖L2 = ‖u(λ2t, ·)‖L2

Best constant in the Gagliardo-Nirenberg inequality:

‖u‖4L4 ≤ C∗‖|D|
1
2 u‖2L2‖u‖2L2 ,

is attained by the ground state W and C∗ = 2
‖W‖2

L2

Ground state W ∈ H
1
2 (R): the unique (Frank-Lenzmann 2013) positive,

radially symmetric solution of |D|W +W − |W |2W = 0

By energy and mass conservation:

E(u0) = E(u(t)) ≥ 1

2

(
1−
‖u0‖2L2

‖W‖2
L2

)
‖|D|

1
2 u(t)‖2L2

=⇒ for u0 ∈ H
1
2 with ‖u0‖L2 < ‖W‖L2 =⇒ ‖u(t)‖

H
1
2
≤ C(E(u0),M(u0)), ∀t
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Well-posedness theory (continued)

Krieger-Lenzmann-Raphaël 2012:

Global well-posedness in Hs(R), s ≥ 1
2 , for ‖u0‖L2 < ‖W‖L2

HW admits minimal mass blowup solutions (solutions that stop existing
in finite time of minimal mass ‖u‖L2 = ‖W‖L2)
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Approximation by the cubic Szegő equation on R
Cubic Szegő equation on R:

i∂tv = Π+(|v|2v), where Π̂+f(ξ) = 111ξ≥0f̂(ξ).

Introduced by Gérard-Grellier 2008: mathematical toy model of a
non-dispersive nonlinear Hamiltonian PDE

Hamiltonian PDE with Hamiltonian E(u) = ‖u‖4L4 .
Also conserves mass M(u) := ‖u‖2L2 and momentum P (u) := (Du, u)

Globally well-posed in Hs
+, s ≥ 1

2
:

Hs
+(R) := {f ∈ Hs(R) : supp f̂ ⊂ [0,∞)}

Completely integrable model =⇒ significant information is available

Infinitely many conservation laws, all controlled by the H
1
2 -norm

=⇒ no information about higher Sobolev norms

Theorem (P. 2013, Approximation of HW by the Szegő equation)

For well-prepared initial data u(0) ∈ Hs
+ with s ≥ 1, ‖u(0)‖Hs = ε� 1,

HW is approximated in Hs(R) by the Szegő equation for a long time.
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By Duhamel’s formula

u(t) = e−it|D|u0 − i
∫ t

0

e−i(t−t
′)|D|(|u|2u)(t′)dt′

With z(t) := eit|D|u(t) the interaction representation:

z(t) = u0 − i
∫ t

0

eit
′|D||e−it

′|D|z(t′)|e−it
′|D|z(t′)dt′

Taking the Fourier transform of both sides:

ẑ(ξ, t) = û0(ξ)− i
∫ t

0

∫∫
ξ1−ξ2+ξ3=ξ

eit
′(|ξ|−|ξ1|+|ξ2|−|ξ3|)ẑ(ξ1, t

′)ẑ(ξ2, t′)ẑ(ξ3, t
′)dξ2dξ3dt

′

= û0(ξ) + i

∫ t

0

∫∫
ξ1−ξ2+ξ3=ξ

111|Φ|>0
eit
′Φ

iΦ
∂t
[
ẑ(ξ1, t

′)ẑ(ξ2, t′)ẑ(ξ3, t
′)
]
dξ2dξ3dt

′

− i
∫ t

0

∫∫
ξ1−ξ2+ξ3=ξ

111Φ=0ẑ(ξ1, t
′)ẑ(ξ2, t′)ẑ(ξ3, t

′)dξ2dξ3dt
′

Resonant frequencies for HW:

Φ := |ξ| − |ξ1|+ |ξ2| − |ξ3| = 0 and ξ − ξ1 + ξ2 − ξ3 = 0

=⇒ ξ, ξ1, ξ2, ξ3 have the same sign

The cubic Szegő equation is the resonant equation corresponding to HW

Hence, heuristically speaking, the dynamics of HW is dictated for a long time

by that of the Szegő equation
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Weak turbulence – Growth of high Sobolev norms

weak turbulence: out-of-equilibrium statistics of random nonlinear waves

it appeared in plasma physics, water waves: Zakharov 1960s

similar to the hydrodynamical turbulence of Kolmogorov

in the physical space: dynamics moves to smaller and smaller scales
causing a chaotic behaviour

“forward energy cascade”: energy moves from lower frequencies to higher
and higher frequencies

the energy cascade implies growth of high Sobolev norms

lim sup
t→∞

‖u(t)‖Hs = lim sup
t→∞

∥∥〈ξ〉sû(t, ξ)
∥∥
L2 =∞ for s large

11 / 37



Results on growth of high Sobolev norms

Defocusing nonlinear Schrödinger equations on Td:
(NLS) i∂tu+ ∆u = |u|p−1u.

Conservation laws =⇒ the H1-norm is bounded in time

What happens to Hs-norms for s > 1?

Upper bounds: Bourgain 1996, Staffilani 1997, Sohinger 2010,
Colliander-Kwon-Oh 2012

‖u(t)‖Hs . (1 + |t|)c(s−1)

Examples of growing solutions: Bourgain 1995, 1996, 2004, Kuksin 1997

Colliander-Keel-Staffilani-Takaoka-Tao 2010: cubic NLS on T2:
arbitrarily large growth in finite time:

Fix s > 1. For any ε� 1 and any N � 1, there exists T > 0 and a
solution u of NLS such that

‖u(0)‖Hs≤ ε, ‖u(T )‖Hs≥ N.
Hani 2011, Guardia-Kaloshin 2012, Guardia 2012,
Hani-Pausader-Tzvetkov-Visciglia 2013, Haus-Procesi 2014,
Guardia-Haus-Procesi 2015

The behaviour of the solution for t > T remains unknown
12 / 37



Solitons for the Szegő equation on R

Solitons are special solutions of the form u(t, x) = u0(x− ct)e−iωt.

Theorem (P. 2011, Classification of solitons on Szegő equation)

Solitons for the Szegő equation on R:

u(t, x) = αQ+
(x−X − ct

λ

)
e−i(γ+ 2c2

λ t),

where (α,X, λ, c, γ) ∈ R+ × R× R∗+ × R∗+ × R and Q+(x) = 1
x+ i

2

satisfies

DQ+ +Q+ = Π+(|Q+|2Q+).

All the solitons of the Szegő equation on R are rational functions with
one simple pole in the lower half-plane
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Growth of high Sobolev norms for Szegő equation on R

Theorem (P. 2011, Infinite growth for Szegő equation on R)

There exists a modulated two-soliton solution of the cubic Szegő equation on R:

u(t, x) := α1(t)Q+
(x− x1(t)

λ1(t)

)
e−iγ1(t) + α2(t)Q+

(x− x2(t)

λ2(t)

)
e−iγ2(t) + ε(t, x),

with limt→∞ ‖ε(t, ·)‖Hs = 0, such that

‖u(t, ·)‖Hs∼ t2s−1 →∞ as t→∞, s > 1/2.

In particular,
α1(t) ∼ 1, λ1(t) ∼ 1, x1(t) ∼ t

α2(t) ∼ 1, λ2(t) ∼ 1

t2
, x2(t) = O(1).

consequence of the complete integrability of the Szegő equation

due to multiplicity of eigenvalues of a Hankel operator

Gérard-Grellier 2010-2015: growth for the Szegő equation on T is generic
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Finite time growth of high Sobolev norms for HW on R

Upper bound, Thirouin 2015: ‖u(t)‖H1 ≤ CeCt2 .

Theorem (P. 2013, CKSTT-type result)

Let 0 < ε� 1. There exists a solution of HW such that

‖u(0)‖H1 = ε� 1 and ‖u(T )‖H1 ≥ 1

ε
� 1,

where T ∼ e
c
ε3 .

Proof: Combines:

growth of high Sobolev norms for the Szegő equation,

long time approximation of HW by the Szegő equation,

HW is a L2-critical equation

Remarks:

Gérard-Grellier: Analogous growth result for HW on T

The behaviour of u for t > T remains unknown
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Main result

Theorem (Gérard, Lenzmann, P., Raphaël, 2016)

Let 0 < ε� 1. There exist T > 0 and a solution of HW such that

‖u(0)‖H1 = ε� 1 and ‖u(t)‖H1 ≥ 1

ε
� 1 for all t ≥ T .
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Main result restated

Theorem (Gérard, Lenzmann, P., Raphaël, 2016)

There exist 0 < δ, η∗ � 1 universal constants such that the following hold. For
all 0 < η < η∗, we define the times:

1� Tin =
1

η2δ
� T−η =

δ

η
.

Then, there exists a modulated two-soliton solution u ∈ C([Tin,+∞), H1) of
HW with:

turbulent regime: for t ∈ [Tin, T
−
η ] the H1-norm grows:

‖u(t)‖H1 =
t2

η
(1 +O(

√
δ))

saturation regime: ‖u(t)‖H1 = 1
η3 e

O( 1
δ ) for all t ∈ [T−η ,∞).
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Mass-subcritical solitons for HW

Krieger-Lenzmann-Raphaël 2012: for β ∈ (0, 1) there exists a soliton for HW:

uβ(t, x) = Qβ
(x− βt

1− β

)
e−it, where

|D| − βD
1− β Qβ +Qβ − |Qβ |2Qβ = 0

in the singular relativistic limit β → 1, the equation for Qβ reduces to the
equation of the Szegő profile Q+:

DQ+Q−Π+(|Q|2Q) = 0, Q = Π+(Q)

there exists a unique family of solitons uβ with limβ↗1 Qβ = Q+ in Hs, s ≥ 0

solitons uβ have arbitrarily small mass as β → 1:

‖uβ‖L2 ∼
√

1− β‖Q+‖L2→ 0

focusing L2-critical NLS does not admit mass-subcritical solitons: all solutions
with a subcritical mass scatter (Dodson 2011, Killip-Tao-Vişan 2009,
Killip-Vişan-Zhang 2008)
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Growth mechanism

the modulated two-soliton solution:

u(t, x) =
e−iγ1(t)

λ
1
2
1 (t)

Qβ1(t)

(
x− x1(t)

λ1(t)(1− β1(t))

)
+
e−iγ2(t)

λ
1
2
2 (t)

Qβ2(t)

(
x− x2(t)

λ2(t)(1− β2(t))

)
+ε(t, x)

with ‖ε(t, ·)‖H1 . 1
√
Nt

N
8

, for some N � 1.

the mechanism for turbulence is the concentration of the second soliton:

1− β2(t) =
η

t2
(1 +O(

√
δ)) for Tin ≤ t ≤ T−η ,

stabilization for large times: 1− β2(t) = η3eO( 1
δ

) for t ≥ T−η

the first soliton remains unchanged under the evolution
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Comments

The rate of concentration is explicit and consistent with that for the Szegő eqn.

No infinite growth as in the case of the Szegő equation !

The two solitons interact strongly in the turbulent regime:

|x2 − x1|� 1,

but drift away from each other over time, in the saturation regime:
|x2 − x1|∼ ηt ≥ δ.

For the Szegő equation: Q+(x) ∼ 1
〈x〉

For HW, Qβ decays faster:

Qβ(x) ∼ 1

〈x〉(1 + (1− β)〈x〉)
=⇒ the interaction between the two waves weakens from 1

R
to 1

R2 in the

stationary regime, where R := x2−x1
λ1(1−β1)

� 1.
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Method of proof: modulation analysis

used by many authors: Buslaev-Perelman, Merle, Raphaël, Martel,
Rodnianski, Krieger, Schlag, Tataru, Chiron-Rousset, . . .

successfully used to construct finite time blowup solutions for NLS:
Merle-Raphaël 2004, 2005

also used to construct multi-soliton solutions: Merle 1990, Martel 2005,
Martel-Merle 2006, . . .

here we generalize the strategy developed by Krieger, Martel, and Raphaël
(2009) to build a nondispersive two-soliton for the Hartree equation

first instance when modulation analysis is used to prove growth of high
Sobolev norms
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Strategy of proof

Step I: Construction of an approximate solution, using modulation analysis

uapp = u1 + u2,
where

uj(t, x) :=
1

λ
1
2
j (t)

V
(N)
j

(
yj :=

x− xj(t)
λj(t)(1− βj(t))

,P(t)
)
eiγj(t)

with P(t) = (λ1, λ2, β1, β2,Γ := γ2 − γ1, x2 − x1), such that:

i∂tuj − |D|uj + uj |uj |2 = O
( 1

tN 〈yj〉

)
, N � 1

Step II: Study of the finite system of ODEs satisfied by the modulation
parameters: λj(t), βj(t), xj(t), γj(t), j = 1, 2

Step III: Construction of the exact solution

write the exact solution as “uapp + remainder”

control of remainder: energy estimate for a localized energy functional
around two-solitons
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Proof: I. Construction of an approximate solution

uapp(t, x) := u1(t, x) + u2(t, x) =

2∑
j=1

1

λ
1
2
j (t)

V
(N)
j

(
yj :=

x− xj(t)
λj(t)(1− βj(t))

,P(t)
)
eiγj(t),

where P(t) =
(
λ1, λ2, β1, β2,Γ := γ2 − γ1, R := x2−x1

λ1(1−β1)

)
.

u|u|2 = u1(|u1|2 + 2|u2|2 + u1ū2) + u2(|u2|2 + 2|u1|2 + u2ū1)

Using a cut off: χ(x) = 1 for |x| ≤ 1
4
, support(χ) ⊂ [− 1

2
, 1

2
]

χR(x) = χ
(y1

R

)
= χ

(
1 +

µb

R
y2

)
,

where µ = λ2
λ1

and b = 1−β2
1−β1

.

On supp (χR): | y1
R
| ≤ 1

2
⇐⇒ |x− x1| ≤ |x2−x1|2

=⇒ we are “close” to the first soliton

i∂tu
app − |D|uapp − uapp|uapp|2 =

2∑
j=1

1

λj(t)
3
2

E(N)
j

(
yj(t),P(t)

)
eiγj(t).
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E(N)
1 = i∂tP · ∇PV (N)

1 − (|D| − β1D)V
(N)
1

1− β1
− V (N)

1 + V
(N)
1 |V (N)

1 |2 − iM (N)
1 ΛV

(N)
1

− i

1− β1
[(x1)t − β1]∂y1V

(N)
1 + iB

(N)
1 y1∂y1V

(N)
1 − [λ1(γ1)t − 1]V

(N)
1

+ χR

[
2

µ
V

(N)
1 |V (N)

2 |2 +
e−iΓ
√
µ

(V
(N)
1 )2V

(N)
2 +

2eiΓ
√
µ
|V (N)

1 |2V (N)
2 +

e2iΓ

µ
V

(N)
1 (V

(N)
2 )2

]
,

E(N)
2 = i∂tP · ∇PV (N)

2 − (|D| − β2D)V
(N)
2

1− β2
− V (N)

2 + V
(N)
2 |V (N)

2 |2 − iM (N)
2 ΛV

(N)
2

− i

1− β2
[(x2)t − β2]∂y2V

(N)
2 + iB

(N)
2 y2∂y2V

(N)
2 − [λ2(γ2)t − 1]V

(N)
2

+ (1− χR)
[
2
√
µe−iΓV

(N)
1 |V (N)

2 |2 + µe−2iΓ(V
(N)
1 )2V

(N)
2 + 2µV

(N)
2 |V (N)

1 |2 +
√
µeiΓ

¯
V

(N)
1 (V

(N)
2 )2

]
where Λx = x∂x and we set

(λj)t =: M
(N)
j (P),

(βj)t
1− βj

=:
B

(N)
j (P)

λj

We look for solutions of
E1 = E2 = 0

The time dependence of the parameters of translation and phase is frozen:

(xj)t = βj , (γj)t =
1

λj
.
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Expansion of the approximate solution

Equation Ej = 0 writes:

(|D| − βjD)V
(N)
j

1− βj
+ V

(N)
j − V (N)

j |V (N)
j |2 = i∂tP · ∇PV (N)

j + . . .

Expansion:

V
(N)
j = Qβj +

N∑
n=1

Tj,n(yj ,P), M
(N)
j (P) =

N∑
n=0

Mj,n(P), B
(N)
j =

N∑
n=0

Bj,n(P)

Case n = 0: Tj,0 = Qβj (yj), Mj,0 = Bj,0 = 0, j = 1, 2

|E(0)
1 (y1)| = χR

∣∣∣∣ 2µQβ1(y1)|Qβ2(y2)|2 +
e−iΓ
√
µ
Q2
β1Qβ2 + 2

eiΓ
√
µ
|Qβ1 |

2Qβ2 +
e2iΓ

µ
Qβ1Q

2
β2

∣∣∣∣
. χR

1

〈y1〉〈y2〉
.

1

R〈y1〉
∼ 1

t〈y1〉
, since |y2| � R on the support of χR

Case n = 1: Elliptic equation for Tj,1:

LβjTj,1 = −iMj,1ΛQβj + iBj,1
[
yj∂yQβj + (1− βj)∂βjQβj

]
+ remainder

where Λf = f
2

+ y∂yf and Lβj is the linearized operator around Qβj :

Lβjf :=
|D| − βD

1− βj
f + f − 2|Qβj |

2f −Q2
βjf
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based on explicit computations for the Szegő equation (P. 2012):

kerLβj = span{iQβj , ∂yQβj}

Lβj is coercive on the orthogonal complement of kerLβj

solvability condition = RHS of the elliptic equation orthogonal to kerLβj

The two solvability conditions determine Mj,1 and Bj,1

Case n ≥ 2: Plugging in V
(n)
j = V

(n−1)
j + Tj,n for 2 ≤ n ≤ N :

E(n)
j =−LβjTj,n + E(n−1)

j − iMj,nΛQβj

+iB1,n

(
yj∂yQβj + (1− βj)∂βjQβj

)
+ i

1− µ
µ

∂ΓTj,n

+ Err(n)
j (V

(n−1)
j ,M

(n−1)
j , B

(n−1)
j , Tj,n,Mj,n, Bj,n)

where Err(n)
j encodes the interaction terms of Tj,n,Mj,n, Bj,n with functions of

decay at least 1
R

. We solve the elliptic equation

LβjTj,n − i
1− µ
µ

∂ΓTj,n = E(n−1)
j − iMj,nΛQβj + iB1,n

[
yj∂yQβj + (1− βj)∂βjQβj

]
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at each step we need to solve for Tj,n and determine Mj,n, Bj,n and “get
control” on these as well as on a high number of their derivatives

we also need to show that E(n)
j is “smaller” than Tj,n

we introduce a notion of admissibility to keep track of these:

A function f is admissible with respect to the bubble j if ∀α ∈ N7 ∃Aα > 0

‖〈y〉(1− (1− βj)〈y〉)Λα1
y Λα2

R ∂α3

λ1
∂α4

λ2
∂α5

Γ Λ̃α6

β1
Λ̃α7

β2
f(·,P)‖L∞ ≤ Aα,

where Λx = x∂x and Λ̃βk = (1− βk)∂βk .

we show that b−1RnT1,n is 1-admissible and RnT2,n is 2-admissible

(and similar statements hold for Mj,n and Bj,n)

also b−1Rn+1E(n)
1 is 1-admissible and Rn+1E(n)

2 is 2-admissible

we develop a stability theory (under multiplication, change of variables,
convolution...) for admissible functions

we invert Lβ in the class of invertible functions. This follows using

multiplier estimates and the coercivity of Lβj :
‖f‖

H
1
2
≤ C

(
‖Lβf‖

H
− 1

2
+ |(f, iQβ)|+ |(f, ∂xQβ)|

)
.
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II. Study of the finite system of ODEs

(S)(N)



(x
(N)
j )t = β

(N)
j , (γ

(N)
j )t = 1

λ
(N)
j

,

(λ
(N)
j )t = M

(N)
j (P(N)),

(β
(N)
j )t

1−β(N)
j

=
B

(N)
j (P(N))

λ
(N)
j

,

Γ(N) = γ
(N)
2 − γ(N)

1 , R(N) =
x
(N)
2 −x(N)

1

λ
(N)
1 (1−β(N)

1 )

j = 1, 2,

For 0 < δ, η∗ � 1 and 0 < η < η∗, we define the times

Tin =
1

η2δ
< T−η =

δ

η

We solve the system with data at t = T−η :
λ

(N)
1 = 1, λ

(N)
2 = 1 i.e. µ = 1

γ
(N)
2 = 0, Γ(N) = 0 i.e. γ

(N)
1 = 0

1− β(N)
1 = η, b(N) = 1

(T−η )2
i.e. 1− β(N)

2 = η

(T−η )2

x
(N)
1 = 0, R(N) = T−η i.e. x

(N)
2 = T−η η = δ
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Decay of Qβ

To study this system of ODEs, we need to have a precise description of the decay
properties of Qβ . First, with Q+(x) := 2

2x+i
,

‖Qβ −Q+‖H1 = O
(

(1− β)
1
2 | log(1− β)|

1
2

)
.

Secondly, as x→∞, we have the asymptotics:

Qβ(x) =
cβ
x
F

(
−1− β

1 + β
x

)
+O

(
1

x2

)
,

where F (x) =
∫∞

0
αe−α

α−ix dα and cβ := i
2π

∫
R |Qβ(x)|2Qβ(x)dx. Now,

cβ = 1 +O((1− β)| log(1− β)|).

F (x) = 1 +O(x| log x|) as x→ 0, so for (1− β)|x| � 1:

Qβ(x) =
1

x
(1 +O((1− β)| log(1− β)|)) (1 +O((1− β)x| log(1− β)x|) +O

(
1

x2

)
In general, we have |F (x)| . 1

|x| , so for (1− β)|x| & 1:

|Qβ(x)| . 1

(1− β)|x|2 .
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We refine B
(N)
2 := B2,1 + . . . B2,N = O( 1

R ) to

B
(N)
2 = 2Re

(
Qβ1

(R)eiΓ
)

+O
( |1− µ|+R−1

R(1 + (1− β1)R)

)
Step 1: t ∈ [Tin, T

−
η ] (turbulent regime)

We prove by a bootstrap argument that:

|λ(N)
j (t)− 1| . ηδ

t , j = 1, 2,

|1− β(N)
1 (t)− η| . η1+δ,

1− β(N)
2 (t) = η 1+O(

√
δ)

t2

|R(N)(t)−t|
t . ηδ

|Γ(N)(t)| . ηδ + ηt| log ηt|

By bootstrap assumption: R ∼ t ≤ δ
η . Then, we have

0 < (1− β1)R . ηt . δ � 1

Thus, for t ∈ [Tin, T
−
η ], Qβ1(R) = 1

t +O
(
ηδ

t + η| log ηt|
)
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Control of the speed 1− β2 in the turbulent regime

B
(N)
2 =

2 cos Γ

t
+O

(
ηδ

t
+ η| log ηt|

)
By bootstrap assumption we have

cos Γ = 1 +O(Γ2) = 1 +O
(

(ηt| log ηt|)2
)
,

and thus,

(β2)t
1− β2

=
B2

λ2
=

2

t
+O

(
ηδ

t
+ η| log ηt|

)
Integrating (backward) from T−η to t:

− log

(
1− β2(T−η )

1− β2(t)

)
= 2 log

(
T−η
t

)
+O(

√
δ),

and so
1− β2(t) =

η

t2

(
1 +O(

√
δ)
)
.
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Control of the phase in the turbulent regime

Main difficulty: keep the phase shift Γ(t) small for t ∈ [Tin, T
−
η ]

Γt =
1

λ2
− 1

λ1
, (λ1)t = M

(N)
1 , (λ2)t = M

(N)
2

Thus,

Γtt =
(λ1)t
λ2

1

− (λ2)t
λ2

2

=
M

(N)
1

λ2
1

− M
(N)
2

λ2
2

= O

(
1

t2

)
We need to integrate twice to recover Γ in the presence of 1

t2
decay only

=⇒ sharp estimates for M
(N)
1 and M

(N)
2 required to avoid logarithmic losses

Setting v := 1− µ = λ1−λ2
λ1

, we get{
Γt = v +RΓ(t)

vt = 2v
t
− 2Γ

t2
+ η

t
+Rv(t)

with |RΓ(t)|+ |Rv(t)| . ηδ

t2
+K2η2| log ηt|2. We now solve this and get

|Γ(t)| . ηδ + ηt| log ηt|.

Remark: the construction of a two-soliton solution without growth of high Sobolev

norms is easier: we don’t need to control the phase on [Tin, T
−
η ], we simply prescribe

asymptotic conditions at ∞ and integrate backward in time
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Step 2: t ∈ [T−η ,∞) (saturation regime)

By the bootstrap assumption,

R ∼ t ≥ T−η =
δ

η
∼ δ

1− β1
.

Thus, for t ≥ T−η we have R(1− β1) & δ and therefore

|Qβ1(R)| . 1

(1− β1)R2
∼ 1

ηt2
.

Then,
B

(N)
2 = 2Re

(
Qβ1(R)eiΓ

)
+O

( |1− µ|+R−1

R(1 + (1− β1)R)

)
= O

(
1

ηt2

)
Integrating (forward) from T−η to t the equation

(β2)t
1− β2

=
B2

λ2

we obtain ∣∣∣∣log

(
(1− β2)(t)

(1− β2)(T−η )

)∣∣∣∣ . 1

ηT−η
.

1

δ

which shows that
1− β2(t) = η3eO( 1

δ
)

Remark: for t ≥ T−η , the phase shift Γ grows, but this does not affect the dynamics
of β2
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III. Construction of the exact solution

Let a sequence Tn → +∞ and consider un(t) the solution of:
i∂tun − |D|un = −|un|2un,
un(Tn) =

∑2
j=1

1

λ
1
2
j (t)

V
(N)
j

(
yj :=

x−xj(t)
λj(t)(1−βj(t))

,P(t)
)
eiγj(t) =: Φ

(N)

P̃(N)(Tn)
(x)

Decompose
un(t, x) = Φ

(N)

P̃(t)
(x) + ε(t, x),

where ε satisfies suitable orthogonality conditions. Main goal:

∀n ≥ 1, ∀t ∈ [Tin, Tn], ‖ε(t, ·)‖H1 ≤ 1

t
N
8

.

With b := 1−β2
1−β1

, consider cutoff functions ζ and θ such that

ζ(t, x) =

{
β1 for y1 ≤ (1−b)R

2

β2 for y1 ≥ (1− b)R ,

θ(t, x) =

{
1
λ1

for y1 ≤ (1−b)R
2

1
λ2

for y1 ≥ (1− b)R

and define the localized energy functional:

G(t)ε :=
1

2
(|D|ε− ζDε, ε) +

1

2
(θε, ε) +

1

4

[∫
R
(|ε+ Φ|4 − |Φ|4)dx− (4ε,Φ|Φ|2)

]
.
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Coercivity of the energy functional

Precise definition of ζ. Consider a smooth nonincreasing function

Ψ1(z1) =


1 for z1 ≤ 1

4

(1− z1)10 for 1
2
≤ z1 ≤ 1

0 for z1 ≥ 1

,

Φ1(z1) := ψ1 + b(t)(1−Ψ1) and, with y1 := x−x1
λ1(1−β1)

,

φ(t, x) := φ1(t, y1) = Ψ1

(
z1 =

y1

R(t)(1− b(t))

)
.

Then, we set ζ(t, x) := β1(t) + (1− β1)(1− φ(t, x)). With ε+ := Π+ε, ε
− := ε− ε+:

G(t)ε & (1− β1)

∫
R
φ
∣∣∣|D| 12 ε+

∣∣∣2 dx+ ‖ε−‖2
Ḣ

1
2

+ ‖ε‖2L2

relies on a careful localization of the kinetic energy

the coercivity of the limiting Szegő quadratic form (P. 2012) is also key

L+u := Du+ u−Π+(2|Q+|2u+ (Q+)2ū) for all u ∈ H
1
2
+ :

(L+u, u) ≥ c0‖u‖2
H

1
2
+

− 1

c0
[(u, ∂yQ

+)2 + (u, iQ+)2]

one looses control of ‖ε+‖
Ḣ

1
2

as β1 → 1: singular bifurcation Qβ 7→ Q+
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Energy estimates

We prove using a bootstrap argument that

G(t) .
1

Nt
N
2

for t ∈ [Tin, Tn]

Using coercivity this implies the bound

‖ε(t)‖
H

1
2
.

1
√
Nt

N
4

To prove the bound on G, we use the following energy estimate∣∣∣ d
dt
G(t)

∣∣∣ . 1

t
G(t) +

C

tN
Remarks:

the localization creates large errors that we need to control =⇒ our cutoff
functions need to be carefully chosen

also, we need to exploit some subtle cancellations, for example when treating
terms such as ((∂tζ + ∂xζ)Dε

+, ε+)

we rely heavily on commutator estimates involving nonlocal operators, Π+, and
cutoff functions, for eg.

‖[|D|
1
2 , χ]f‖L2 . ‖∂xχ‖

1
2

L1‖∂2
xχ‖

1
2

L1‖f‖L2

we need an approximation of high order N � 1 to close the bootstrap for G(t)
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Conclusions

Difficulties:

detailed study of the decay properties of Qβ

dramatic influence of the phase shift Γ

nonlocal nature of the problem and slow decay of Qβ

=⇒ the two solitons are strongly coupled

the limiting Szegő problem arises in the form of various estimates for Π±ε

Open problems:

existence of a solution with limt→∞ ‖u(t)‖H1 =∞

existence of solutions with different growth rates, genericity

growth of high Sobolev norms for other problems with nonlocal dispersion
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