A two-soliton with transient turbulent regime for a focusing cubic nonlinear half-wave equation on \mathbb{R}

Oana Pocovnicu

Heriot-Watt University

October 7th, 2016

Joint work with P. Gérard (Orsay), E. Lenzmann (Basel), P. Raphaël (Nice)

PDE seminar
Imperial College London

Dispersion relation

- general linear evolution equation on \mathbb{R} :
(*)

$$
\partial_{t} u+P\left(\frac{\partial}{\partial x}\right) u=0
$$

where $P: \mathbb{C} \mapsto \mathbb{C}$ is such that $P(i \mathbb{R}) \subset i \mathbb{R}$.

- plane wave solution $u(x, t)=e^{i(k x-\omega t)}=e^{i k\left(x-\frac{\omega}{k} t\right)}$ with $k \in \mathbb{R}$ the wave number, $\omega \in \mathbb{R}$ the angular frequency, and phase velocity $\frac{\omega}{k}$:

$$
-i \omega u+P(i k) u=0
$$

- dispersion relation:

$$
\text { Phase velocity at wave number } k=\frac{\omega}{k}=\frac{P(i k)}{i k}
$$

- using the inverse Fourier transform $u_{0}(x)=\frac{1}{2 \pi} \int_{\mathbb{R}} e^{i k x} \hat{u}_{0}(k) d k$ and by superposition

$$
u(x, t)=\int_{\mathbb{R}} e^{i k\left(x-\frac{P(i k)}{i k} t\right)} \hat{u}_{0}(k) d k
$$

is a solution of $(*)$ with $u(x, 0)=u_{0}(x)$.

- $P(k)=c k, c \in \mathbb{R} \Longrightarrow$ linear advection equation: $\partial_{t} u+c \partial_{x} u=0$

$$
\frac{\omega}{k}=\frac{P(i k)}{i k}=c \Longrightarrow \text { all plane waves move with the same velocity } c
$$

- $P(k)=-i k^{2} \Longrightarrow$ linear Schrödinger equation: $i \partial_{t} u+\partial_{x}^{2} u=0$
- phase velocity:

$$
\frac{\omega}{k}=\frac{P(i k)}{i k}=k \Longrightarrow e^{i k\left(x-\frac{P(i k)}{i k} t\right)} \hat{u}_{0}(k) \text { at frequency } k \text { moves faster than }
$$ those corresponding to smaller frequencies

- $\|u(t)\|_{L^{2}}=\|u(0)\|_{L^{2}}$ and decay estimate:

$$
\|u(t)\|_{L^{\infty}} \leq \frac{C}{\sqrt{t}}\|u(0)\|_{L^{1}}
$$

- dispersive equation
- $P(k)=i|k| \Longrightarrow$ linear half-wave equation: $i \partial_{t} u-|D| u=0$

$$
\begin{aligned}
\frac{\omega}{k}=\frac{P(i k)}{i k}=\frac{|k|}{k} \Longrightarrow & \text { phase velocity } 1 \text { for positive frequencies } \\
& \text { and }-1 \text { for negative frequencies } \Longrightarrow \text { weak dispersion }
\end{aligned}
$$

Example of a nonlinear dispersive PDE

- (defocusing) nonlinear Schrödinger equation (NLS):

$$
\left\{\begin{array}{l}
i \partial_{t} u-\Delta u+|u|^{p-1} u=0 \\
\left.u\right|_{t=0}=u_{0} \in H^{1}\left(\mathbb{R}^{d}\right)
\end{array} \quad, \quad(x, t) \in \mathbb{R}^{d} \times \mathbb{R}\right.
$$

- Definition of a solution (Duhamel's formula):

$$
u(x, t)=e^{-i t \Delta} u_{0}-i \int_{0}^{t} e^{-i\left(t-t^{\prime}\right) \Delta}|u|^{p-1} u\left(x, t^{\prime}\right) d t^{\prime}
$$

Here, $e^{-i t \Delta} f$ denotes the solution of the linear Schrödinger equation $i \partial_{t} v-\Delta v=0$ with $v(0)=f$.

- NLS is a Hamiltonian PDE

$$
\partial_{t} u=i \frac{\partial E}{\partial \bar{u}}
$$

with Hamiltonian

$$
E(u(t))=\int_{\mathbb{R}^{d}} \frac{1}{2}|\nabla u(x, t)|^{2}+\frac{1}{p+1}|u(x, t)|^{p+1} d x
$$

- Conservation of Hamiltonian $E(u(t))=E(u(0))$ and $\|u(t)\|_{L^{2}}=\|u(0)\|_{L^{2}}$ $\Longrightarrow\|u(t)\|_{H^{1}} \leq C\left(u_{0}\right)$ for all t

Typical problems in the study of dispersive PDEs:

- Local well-posedness (existence, uniqueness of the solution in a space X for a short time $T>0$, and continuous dependence on the initial data)
- Existence of solutions that blow up in finite time $(T<\infty)$
- Global well-posedness $(T=\infty)$
- Behaviour of global-in-time solutions
- Scattering: a solution of the nonlinear equation asymptotically behaves like a linear solution
- Solitons: special global solutions of the form $P_{c, \omega}(t, x)=u_{0}(x-c t) e^{i t \omega}$ Note: $\left\|P_{c, \omega}(t)\right\|_{L^{\infty}}=\left\|u_{0}\right\|_{L^{\infty}}$ and $\left\|P_{c, \omega}(t)\right\|_{H^{s}}=\left\|u_{0}\right\|_{H^{s}}$ for all t and s
- Soliton resolution: solutions decompose into a finite sum of solitons and radiation as $T \rightarrow \infty$, in particular $\|u(t)\|_{H^{s}} \leq C_{s}$ for all t and s
- "Weak turbulence" expressed as $\lim \sup _{t \rightarrow \infty}\|u(t)\|_{H^{s}}=\infty$ for large s

Cubic half-wave equation on \mathbb{R}

- Focusing half-wave equation:
$(\mathrm{HW}) \quad i \partial_{t} u-|D| u=-|u|^{2} u, \quad x \in \mathbb{R}, \quad u(t, x) \in \mathbb{C}$, where $\widehat{D \mid f}(\xi)=|\xi| \hat{f}(\xi)$.
- PDEs with nonlocal dispersion appear in physics:
- models of wave turbulence (Majda-McLaughlin-Tabak 1997),
- continuum limit of lattice points, gravitational collapse.
- Applying $i \partial_{t}+|D|$ to both sides of $\mathrm{HW} \Longrightarrow$ a nonlinear wave equation:

$$
\partial_{t}^{2} u-\Delta u=-|u|^{4} u+2|u|^{2}|D| u+\left[|D|, u^{2}\right] \bar{u}
$$

- HW is a Hamiltonian PDE, $\partial_{t} u=i \frac{\partial E}{\partial \bar{u}}$, with

$$
E(u(t)):=\frac{1}{2}\left\||D|^{\frac{1}{2}} u(t)\right\|_{L^{2}}^{2}-\frac{1}{4}\|u(t)\|_{L^{4}}^{4}
$$

- Conserved Hamiltonian/energy $E(u(t))=E(u(0))$ and mass:

$$
M(u(t)):=\|u(t)\|_{L^{2}}^{2}=M(u(0))
$$

Well-posedness theory

- Gérard-Grellier 2010, Krieger-Lenzmann-Raphaël 2012:
local well-posedness in $H^{s}(\mathbb{R}), s \geq \frac{1}{2}$ with blowup alternative

$$
T<\infty \text { implies } \lim _{t \nearrow T}\|u(t)\|_{H^{\frac{1}{2}}}=\infty
$$

- L^{2}-critical equation, i.e. invariant under the scaling symmetry

$$
u_{\lambda}(t, x)=\lambda^{\frac{1}{2}} u(\lambda t, \lambda x)
$$

which leaves the L^{2}-norm invariant $\left\|u_{\lambda}(t, \cdot)\right\|_{L^{2}}=\left\|u\left(\lambda^{2} t, \cdot\right)\right\|_{L^{2}}$

- Best constant in the Gagliardo-Nirenberg inequality:

$$
\|u\|_{L^{4}}^{4} \leq C_{*}\left\|\left.D D\right|^{\frac{1}{2}} u\right\|_{L^{2}}^{2}\|u\|_{L^{2}}^{2}
$$

is attained by the ground state W and $C_{*}=\frac{2}{\|W\|_{L^{2}}^{2}}$

- Ground state $W \in H^{\frac{1}{2}}(\mathbb{R})$: the unique (Frank-Lenzmann 2013) positive, radially symmetric solution of $|D| W+W-|W|^{2} W=0$
- By energy and mass conservation:

$$
E\left(u_{0}\right)=E(u(t)) \geq \frac{1}{2}\left(1-\frac{\left\|u_{0}\right\|_{L^{2}}^{2}}{\|W\|_{L^{2}}^{2}}\right)\left\||D|^{\frac{1}{2}} u(t)\right\|_{L^{2}}^{2}
$$

\Longrightarrow for $u_{0} \in H^{\frac{1}{2}}$ with $\left\|u_{0}\right\|_{L^{2}}<\|W\|_{L^{2}} \Longrightarrow\|u(t)\|_{H^{\frac{1}{2}}} \leq C\left(E\left(u_{0}\right), M\left(u_{0}\right)\right), \forall t$

Well-posedness theory (continued)

Krieger-Lenzmann-Raphaël 2012:

- Global well-posedness in $H^{s}(\mathbb{R}), s \geq \frac{1}{2}$, for $\left\|u_{0}\right\|_{L^{2}}<\|W\|_{L^{2}}$
- HW admits minimal mass blowup solutions (solutions that stop existing in finite time of minimal mass $\left.\|u\|_{L^{2}}=\|W\|_{L^{2}}\right)$

Approximation by the cubic Szegó equation on \mathbb{R}

Cubic Szegő equation on \mathbb{R} :

$$
i \partial_{t} v=\Pi_{+}\left(|v|^{2} v\right), \quad \text { where } \quad \widehat{\Pi_{+} f}(\xi)=\mathbf{1}_{\xi \geq 0} \hat{f}(\xi) .
$$

- Introduced by Gérard-Grellier 2008: mathematical toy model of a non-dispersive nonlinear Hamiltonian PDE
- Hamiltonian PDE with Hamiltonian $E(u)=\|u\|_{L^{4}}^{4}$.

Also conserves mass $M(u):=\|u\|_{L^{2}}^{2}$ and momentum $P(u):=(D u, u)$

- Globally well-posed in $H_{+}^{s}, s \geq \frac{1}{2}$:

$$
H_{+}^{s}(\mathbb{R}):=\left\{f \in H^{s}(\mathbb{R}): \operatorname{supp} \hat{f} \subset[0, \infty)\right\}
$$

- Completely integrable model \Longrightarrow significant information is available
- Infinitely many conservation laws, all controlled by the $H^{\frac{1}{2}}$-norm \Longrightarrow no information about higher Sobolev norms

Theorem (P. 2013, Approximation of HW by the Szegő equation)

For well-prepared initial data $u(0) \in H_{+}^{s}$ with $s \geq 1,\|u(0)\|_{H^{s}}=\varepsilon \ll 1$, HW is approximated in $H^{s}(\mathbb{R})$ by the Szegő equation for a long time.

- By Duhamel's formula

$$
u(t)=e^{-i t|D|} u_{0}-i \int_{0}^{t} e^{-i\left(t-t^{\prime}\right)|D|}\left(|u|^{2} u\right)\left(t^{\prime}\right) d t^{\prime}
$$

- With $z(t):=e^{i t|D|} u(t)$ the interaction representation:

$$
z(t)=u_{0}-i \int_{0}^{t} e^{i t^{\prime}|D|}\left|e^{-i t^{\prime}|D|} z\left(t^{\prime}\right)\right| e^{-i t^{\prime}|D|} z\left(t^{\prime}\right) d t^{\prime}
$$

- Taking the Fourier transform of both sides:

$$
\begin{aligned}
& \hat{z}(\xi, t)=\hat{u}_{0}(\xi)-i \int_{0}^{t} \iint_{\xi_{1}-\xi_{2}+\xi_{3}=\xi} e^{i t^{\prime}\left(|\xi|-\left|\xi_{1}\right|+\left|\xi_{2}\right|-\left|\xi_{3}\right|\right)} \hat{z}\left(\xi_{1}, t^{\prime}\right) \overline{\hat{z}\left(\xi_{2}, t^{\prime}\right)} \hat{z}\left(\xi_{3}, t^{\prime}\right) d \xi_{2} d \xi \\
& =\hat{u}_{0}(\xi)+i \int_{0}^{t} \iint_{\xi_{1}-\xi_{2}+\xi_{3}=\xi} \mathbf{1}_{|\Phi|>0} \frac{e^{i t^{\prime} \Phi}}{i \Phi} \partial_{t}\left[\hat{z}\left(\xi_{1}, t^{\prime}\right) \overline{\hat{z}\left(\xi_{2}, t^{\prime}\right)} \hat{z}\left(\xi_{3}, t^{\prime}\right)\right] d \xi_{2} d \xi_{3} d t^{\prime} \\
& \quad-i \int_{0}^{t} \iint_{\xi_{1}-\xi_{2}+\xi_{3}=\xi} \mathbf{1}_{\Phi=0} \hat{z}\left(\xi_{1}, t^{\prime}\right) \overline{\hat{z}\left(\xi_{2}, t^{\prime}\right)} \hat{z}\left(\xi_{3}, t^{\prime}\right) d \xi_{2} d \xi_{3} d t^{\prime}
\end{aligned}
$$

- Resonant frequencies for HW:

$$
\Phi:=|\xi|-\left|\xi_{1}\right|+\left|\xi_{2}\right|-\left|\xi_{3}\right|=0 \quad \text { and } \quad \xi-\xi_{1}+\xi_{2}-\xi_{3}=0
$$

$\Longrightarrow \xi, \xi_{1}, \xi_{2}, \xi_{3}$ have the same sign

- The cubic Szegő equation is the resonant equation corresponding to HW
- Hence, heuristically speaking, the dynamics of HW is dictated for a long time by that of the Szegő equation

Weak turbulence - Growth of high Sobolev norms

- weak turbulence: out-of-equilibrium statistics of random nonlinear waves
- it appeared in plasma physics, water waves: Zakharov 1960s
- similar to the hydrodynamical turbulence of Kolmogorov
- in the physical space: dynamics moves to smaller and smaller scales causing a chaotic behaviour
- "forward energy cascade": energy moves from lower frequencies to higher and higher frequencies
- the energy cascade implies growth of high Sobolev norms

$$
\limsup _{t \rightarrow \infty}\|u(t)\|_{H^{s}}=\limsup _{t \rightarrow \infty}\left\|\langle\xi\rangle^{s} \hat{u}(t, \xi)\right\|_{L^{2}}=\infty \text { for } s \text { large }
$$

Results on growth of high Sobolev norms

Defocusing nonlinear Schrödinger equations on \mathbb{T}^{d} :
(NLS)

$$
i \partial_{t} u+\Delta u=|u|^{p-1} u
$$

- Conservation laws \Longrightarrow the H^{1}-norm is bounded in time
- What happens to H^{s}-norms for $s>1$?
- Upper bounds: Bourgain 1996, Staffilani 1997, Sohinger 2010, Colliander-Kwon-Oh 2012

$$
\|u(t)\|_{H^{s}} \lesssim(1+|t|)^{c(s-1)}
$$

- Examples of growing solutions: Bourgain 1995, 1996, 2004, Kuksin 1997
- Colliander-Keel-Staffilani-Takaoka-Tao 2010: cubic NLS on \mathbb{T}^{2} : arbitrarily large growth in finite time:
- Fix $s>1$. For any $\varepsilon \ll 1$ and any $N \gg 1$, there exists $T>0$ and a solution u of NLS such that

$$
\|u(0)\|_{H^{s}} \leq \varepsilon, \quad\|u(T)\|_{H^{s}} \geq N
$$

- Hani 2011, Guardia-Kaloshin 2012, Guardia 2012, Hani-Pausader-Tzvetkov-Visciglia 2013, Haus-Procesi 2014, Guardia-Haus-Procesi 2015
- The behaviour of the solution for $t>T$ remains unknown

Solitons for the Szegő equation on \mathbb{R}

Solitons are special solutions of the form $u(t, x)=u_{0}(x-c t) e^{-i \omega t}$.

Theorem (P. 2011, Classification of solitons on Szegő equation)

Solitons for the Szegő equation on \mathbb{R} :

$$
u(t, x)=\alpha Q^{+}\left(\frac{x-X-c t}{\lambda}\right) e^{-i\left(\gamma+\frac{2 c^{2}}{\lambda} t\right)}
$$

where $(\alpha, X, \lambda, c, \gamma) \in \mathbb{R}_{+} \times \mathbb{R} \times \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*} \times \mathbb{R}$ and $Q^{+}(x)=\frac{1}{x+\frac{i}{2}}$ satisfies

$$
D Q^{+}+Q^{+}=\Pi_{+}\left(\left|Q^{+}\right|^{2} Q^{+}\right)
$$

- All the solitons of the Szegő equation on \mathbb{R} are rational functions with one simple pole in the lower half-plane

Growth of high Sobolev norms for Szegő equation on \mathbb{R}

Theorem (P. 2011, Infinite growth for Szegő equation on \mathbb{R})

There exists a modulated two-soliton solution of the cubic Szegő equation on \mathbb{R} :

$$
u(t, x):=\alpha_{1}(t) Q^{+}\left(\frac{x-x_{1}(t)}{\lambda_{1}(t)}\right) e^{-i \gamma_{1}(t)}+\alpha_{2}(t) Q^{+}\left(\frac{x-x_{2}(t)}{\lambda_{2}(t)}\right) e^{-i \gamma_{2}(t)}+\varepsilon(t, x)
$$

with $\lim _{t \rightarrow \infty}\|\varepsilon(t, \cdot)\|_{H^{s}}=0$, such that

$$
\|u(t, \cdot)\|_{H^{s}} \sim t^{2 s-1} \rightarrow \infty \quad \text { as } \quad t \rightarrow \infty, \quad s>1 / 2
$$

In particular,

$$
\begin{aligned}
& \alpha_{1}(t) \sim 1, \quad \lambda_{1}(t) \sim 1, \quad x_{1}(t) \sim t \\
& \alpha_{2}(t) \sim 1, \quad \lambda_{2}(t) \sim \frac{1}{t^{2}}, \quad x_{2}(t)=O(1)
\end{aligned}
$$

- consequence of the complete integrability of the Szegő equation
- due to multiplicity of eigenvalues of a Hankel operator
- Gérard-Grellier 2010-2015: growth for the Szegő equation on \mathbb{T} is generic

Finite time growth of high Sobolev norms for HW on \mathbb{R}

- Upper bound, Thirouin 2015: $\|u(t)\|_{H^{1}} \leq C e^{C t^{2}}$.

Theorem (P. 2013, CKSTT-type result)

Let $0<\varepsilon \ll 1$. There exists a solution of HW such that

$$
\|u(0)\|_{H^{1}}=\varepsilon \ll 1 \quad \text { and } \quad\|u(T)\|_{H^{1}} \geq \frac{1}{\varepsilon} \gg 1
$$

where $T \sim e^{\frac{c}{\varepsilon^{3}}}$.
Proof: Combines:

- growth of high Sobolev norms for the Szegő equation,
- long time approximation of HW by the Szegő equation,
- HW is a L^{2}-critical equation

Remarks:

- Gérard-Grellier: Analogous growth result for HW on \mathbb{T}
- The behaviour of u for $t>T$ remains unknown

Main result

Theorem (Gérard, Lenzmann, P., Raphaël, 2016)

Let $0<\varepsilon \ll 1$. There exist $T>0$ and a solution of HW such that

$$
\|u(0)\|_{H^{1}}=\varepsilon \ll 1 \quad \text { and } \quad\|u(t)\|_{H^{1}} \geq \frac{1}{\varepsilon} \gg 1 \quad \text { for all } t \geq T .
$$

Main result restated

Theorem (Gérard, Lenzmann, P., Raphaël, 2016)

There exist $0<\delta, \eta_{*} \ll 1$ universal constants such that the following hold. For all $0<\eta<\eta_{*}$, we define the times:

$$
1 \ll T_{\text {in }}=\frac{1}{\eta^{2 \delta}} \ll T_{\eta}^{-}=\frac{\delta}{\eta} .
$$

Then, there exists a modulated two-soliton solution $u \in \mathcal{C}\left(\left[T_{\mathrm{in}},+\infty\right), H^{1}\right)$ of HW with:

- turbulent regime: for $t \in\left[T_{\mathrm{in}}, T_{\eta}^{-}\right]$the H^{1}-norm grows:

$$
\|u(t)\|_{H^{1}}=\frac{t^{2}}{\eta}(1+O(\sqrt{\delta}))
$$

- saturation regime: $\|u(t)\|_{H^{1}}=\frac{1}{\eta^{3}} e^{O\left(\frac{1}{\delta}\right)}$ for all $t \in\left[T_{\eta}^{-}, \infty\right)$.

Mass-subcritical solitons for HW

- Krieger-Lenzmann-Raphaël 2012: for $\beta \in(0,1)$ there exists a soliton for HW:

$$
u_{\beta}(t, x)=Q_{\beta}\left(\frac{x-\beta t}{1-\beta}\right) e^{-i t}, \quad \text { where } \quad \frac{|D|-\beta D}{1-\beta} Q_{\beta}+Q_{\beta}-\left|Q_{\beta}\right|^{2} Q_{\beta}=0
$$

- in the singular relativistic limit $\beta \rightarrow 1$, the equation for Q_{β} reduces to the equation of the Szegő profile Q^{+}:

$$
D Q+Q-\Pi_{+}\left(|Q|^{2} Q\right)=0, \quad Q=\Pi_{+}(Q)
$$

- there exists a unique family of solitons u_{β} with $\lim _{\beta{ }_{\beta 1}} Q_{\beta}=Q^{+}$in $H^{s}, s \geq 0$
- solitons u_{β} have arbitrarily small mass as $\beta \rightarrow 1$:

$$
\left\|u_{\beta}\right\|_{L^{2}} \sim \sqrt{1-\beta}\left\|Q^{+}\right\|_{L^{2}} \rightarrow 0
$$

- focusing L^{2}-critical NLS does not admit mass-subcritical solitons: all solutions with a subcritical mass scatter (Dodson 2011, Killip-Tao-Vişan 2009, Killip-Vişan-Zhang 2008)

Growth mechanism

- the modulated two-soliton solution:

$$
u(t, x)=\frac{e^{-i \gamma_{1}(t)}}{\lambda_{1}^{\frac{1}{2}}(t)} Q_{\beta_{1}(t)}\left(\frac{x-x_{1}(t)}{\lambda_{1}(t)\left(1-\beta_{1}(t)\right)}\right)+\frac{e^{-i \gamma_{2}(t)}}{\lambda_{2}^{\frac{1}{2}}(t)} Q_{\beta_{2}(t)}\left(\frac{x-x_{2}(t)}{\lambda_{2}(t)\left(1-\beta_{2}(t)\right)}\right)+\varepsilon(t, x)
$$

with $\|\varepsilon(t, \cdot)\|_{H^{1}} \lesssim \frac{1}{\sqrt{N} t \frac{N}{8}}$, for some $N \gg 1$.

- the mechanism for turbulence is the concentration of the second soliton:

$$
1-\beta_{2}(t)=\frac{\eta}{t^{2}}(1+O(\sqrt{\delta})) \text { for } T_{\text {in }} \leq t \leq T_{\eta}^{-},
$$

- stabilization for large times: $1-\beta_{2}(t)=\eta^{3} e^{O\left(\frac{1}{\delta}\right)}$ for $t \geq T_{\eta}^{-}$
- the first soliton remains unchanged under the evolution

Comments

- The rate of concentration is explicit and consistent with that for the Szegő eqn.
- No infinite growth as in the case of the Szegő equation !
- The two solitons interact strongly in the turbulent regime:

$$
\left|x_{2}-x_{1}\right| \ll 1,
$$

but drift away from each other over time, in the saturation regime:

$$
\left|x_{2}-x_{1}\right| \sim \eta t \geq \delta
$$

- For the Szegő equation: $Q^{+}(x) \sim \frac{1}{\langle x\rangle}$
- For HW, Q_{β} decays faster:

$$
Q_{\beta}(x) \sim \frac{1}{\langle x\rangle(1+(1-\beta)\langle x\rangle)}
$$

\Longrightarrow the interaction between the two waves weakens from $\frac{1}{R}$ to $\frac{1}{R^{2}}$ in the stationary regime, where $R:=\frac{x_{2}-x_{1}}{\lambda_{1}\left(1-\beta_{1}\right)} \gg 1$.

Method of proof: modulation analysis

- used by many authors: Buslaev-Perelman, Merle, Raphaël, Martel, Rodnianski, Krieger, Schlag, Tataru, Chiron-Rousset, ...
- successfully used to construct finite time blowup solutions for NLS: Merle-Raphaël 2004, 2005
- also used to construct multi-soliton solutions: Merle 1990, Martel 2005, Martel-Merle 2006, ...
- here we generalize the strategy developed by Krieger, Martel, and Raphaël (2009) to build a nondispersive two-soliton for the Hartree equation
- first instance when modulation analysis is used to prove growth of high Sobolev norms

Strategy of proof

- Step I: Construction of an approximate solution, using modulation analysis

$$
u^{\text {app }}=u_{1}+u_{2}
$$

where

$$
u_{j}(t, x):=\frac{1}{\lambda_{j}^{\frac{1}{2}}(t)} V_{j}^{(N)}\left(y_{j}:=\frac{x-x_{j}(t)}{\lambda_{j}(t)\left(1-\beta_{j}(t)\right)}, \mathcal{P}(t)\right) e^{i \gamma_{j}(t)}
$$

with $\mathcal{P}(t)=\left(\lambda_{1}, \lambda_{2}, \beta_{1}, \beta_{2}, \Gamma:=\gamma_{2}-\gamma_{1}, x_{2}-x_{1}\right)$, such that:

$$
i \partial_{t} u_{j}-|D| u_{j}+u_{j}\left|u_{j}\right|^{2}=O\left(\frac{1}{t^{N}\left\langle y_{j}\right\rangle}\right), \quad N \gg 1
$$

- Step II: Study of the finite system of ODEs satisfied by the modulation parameters: $\lambda_{j}(t), \beta_{j}(t), x_{j}(t), \gamma_{j}(t), j=1,2$
- Step III: Construction of the exact solution
- write the exact solution as " u app + remainder"
- control of remainder: energy estimate for a localized energy functional around two-solitons

Proof: I. Construction of an approximate solution

$$
u^{\mathrm{app}}(t, x):=u_{1}(t, x)+u_{2}(t, x)=\sum_{j=1}^{2} \frac{1}{\lambda_{j}^{\frac{1}{2}}(t)} V_{j}^{(N)}\left(y_{j}:=\frac{x-x_{j}(t)}{\lambda_{j}(t)\left(1-\beta_{j}(t)\right)}, \mathcal{P}(t)\right) e^{i \gamma_{j}(t)},
$$

where $\mathcal{P}(t)=\left(\lambda_{1}, \lambda_{2}, \beta_{1}, \beta_{2}, \Gamma:=\gamma_{2}-\gamma_{1}, R:=\frac{x_{2}-x_{1}}{\lambda_{1}\left(1-\beta_{1}\right)}\right)$.

$$
u|u|^{2}=u_{1}\left(\left|u_{1}\right|^{2}+2\left|u_{2}\right|^{2}+u_{1} \overline{u_{2}}\right)+u_{2}\left(\left|u_{2}\right|^{2}+2\left|u_{1}\right|^{2}+u_{2} \overline{u_{1}}\right)
$$

Using a cut off: $\chi(x)=1$ for $|x| \leq \frac{1}{4}$, support $(\chi) \subset\left[-\frac{1}{2}, \frac{1}{2}\right]$

$$
\chi_{R}(x)=\chi\left(\frac{y_{1}}{R}\right)=\chi\left(1+\frac{\mu b}{R} y_{2}\right),
$$

where $\mu=\frac{\lambda_{2}}{\lambda_{1}}$ and $b=\frac{1-\beta_{2}}{1-\beta_{1}}$.
On supp $\left(\chi_{R}\right):\left|\frac{y_{1}}{R}\right| \leq \frac{1}{2} \Longleftrightarrow\left|x-x_{1}\right| \leq \frac{\left|x_{2}-x_{1}\right|}{2} \Longrightarrow$ we are "close" to the first soliton

$$
i \partial_{t} u^{\mathrm{app}}-|D| u^{\mathrm{app}}-u^{\mathrm{app}}\left|u^{\mathrm{app}}\right|^{2}=\sum_{j=1}^{2} \frac{1}{\lambda_{j}(t)^{\frac{3}{2}}} \mathcal{E}_{j}^{(N)}\left(y_{j}(t), \mathcal{P}(t)\right) e^{i \gamma_{j}(t)}
$$

$$
\begin{aligned}
\mathcal{E}_{1}^{(N)} & =i \partial_{t} \mathcal{P} \cdot \nabla_{\mathcal{P}} V_{1}^{(N)}-\frac{\left(|D|-\beta_{1} D\right) V_{1}^{(N)}}{1-\beta_{1}}-V_{1}^{(N)}+V_{1}^{(N)}\left|V_{1}^{(N)}\right|^{2}-i M_{1}^{(N)} \Lambda V_{1}^{(N)} \\
& -\frac{i}{1-\beta_{1}}\left[\left(x_{1}\right)_{t}-\beta_{1}\right] \partial_{y_{1}} V_{1}^{(N)}+i B_{1}^{(N)} y_{1} \partial_{y_{1}} V_{1}^{(N)}-\left[\lambda_{1}\left(\gamma_{1}\right)_{t}-1\right] V_{1}^{(N)} \\
& +\chi_{R}\left[\frac{2}{\mu} V_{1}^{(N)}\left|V_{2}^{(N)}\right|^{2}+\frac{e^{-i \Gamma}}{\sqrt{\mu}}\left(V_{1}^{(N)}\right)^{2} \overline{V_{2}^{(N)}}+\frac{2 e^{i \Gamma}}{\sqrt{\mu}}\left|V_{1}^{(N)}\right|^{2} V_{2}^{(N)}+\frac{e^{2 i \Gamma}}{\mu} \overline{V_{1}^{(N)}}\left(V_{2}^{(N)}\right.\right. \\
\mathcal{E}_{2}^{(N)} & =i \partial_{t} \mathcal{P} \cdot \nabla_{\mathcal{P}} V_{2}^{(N)}-\frac{\left(|D|-\beta_{2} D\right) V_{2}^{(N)}}{1-\beta_{2}}-V_{2}^{(N)}+V_{2}^{(N)}\left|V_{2}^{(N)}\right|^{2}-i M_{2}^{(N)} \Lambda V_{2}^{(N)} \\
& -\frac{i}{1-\beta_{2}}\left[\left(x_{2}\right)_{t}-\beta_{2}\right] \partial_{y_{2}} V_{2}^{(N)}+i B_{2}^{(N)} y_{2} \partial_{y_{2}} V_{2}^{(N)}-\left[\lambda_{2}\left(\gamma_{2}\right)_{t}-1\right] V_{2}^{(N)} \\
& +\left(1-\chi_{R}\right)\left[2 \sqrt{\mu} e^{-i \Gamma} V_{1}^{(N)}\left|V_{2}^{(N)}\right|^{2}+\mu e^{-2 i \Gamma}\left(V_{1}^{(N)}\right)^{2} \overline{V_{2}^{(N)}}+2 \mu V_{2}^{(N)}\left|V_{1}^{(N)}\right|^{2}+\sqrt{t}\right.
\end{aligned}
$$

where $\Lambda_{x}=x \partial_{x}$ and we set

$$
\left(\lambda_{j}\right)_{t}=: M_{j}^{(N)}(\mathcal{P}), \quad \frac{\left(\beta_{j}\right)_{t}}{1-\beta_{j}}=: \frac{B_{j}^{(N)}(\mathcal{P})}{\lambda_{j}}
$$

We look for solutions of

$$
\mathcal{E}_{1}=\mathcal{E}_{2}=0
$$

The time dependence of the parameters of translation and phase is frozen:

$$
\left(x_{j}\right)_{t}=\beta_{j}, \quad\left(\gamma_{j}\right)_{t}=\frac{1}{\lambda_{j}^{4}}
$$

Expansion of the approximate solution

Equation $\mathcal{E}_{j}=0$ writes:

$$
\frac{\left(|D|-\beta_{j} D\right) V_{j}^{(N)}}{1-\beta_{j}}+V_{j}^{(N)}-V_{j}^{(N)}\left|V_{j}^{(N)}\right|^{2}=i \partial_{t} \mathcal{P} \cdot \nabla_{\mathcal{P}} V_{j}^{(N)}+\ldots
$$

Expansion:

$$
V_{j}^{(N)}=Q_{\beta_{j}}+\sum_{n=1}^{N} T_{j, n}\left(y_{j}, \mathcal{P}\right), \quad M_{j}^{(N)}(\mathcal{P})=\sum_{n=0}^{N} M_{j, n}(\mathcal{P}), \quad B_{j}^{(N)}=\sum_{n=0}^{N} B_{j, n}(\mathcal{P})
$$

Case $n=0: ~ T_{j, 0}=Q_{\beta_{j}}\left(y_{j}\right), \quad M_{j, 0}=B_{j, 0}=0, \quad j=1,2$

$$
\begin{aligned}
\left|\mathcal{E}_{1}^{(0)}\left(y_{1}\right)\right| & \left.=\left.\chi_{R}\left|\frac{2}{\mu} Q_{\beta_{1}}\left(y_{1}\right)\right| Q_{\beta_{2}}\left(y_{2}\right)\right|^{2}+\frac{e^{-i \Gamma}}{\sqrt{\mu}} Q_{\beta_{1}}^{2} \overline{Q_{\beta_{2}}}+2 \frac{e^{i \Gamma}}{\sqrt{\mu}}\left|Q_{\beta_{1}}\right|^{2} Q_{\beta_{2}}+\frac{e^{2 i \Gamma}}{\mu} \overline{Q_{\beta_{1}}} Q_{\beta_{2}}^{2} \right\rvert\, \\
& \lesssim \chi_{R} \frac{1}{\left\langle y_{1}\right\rangle\left\langle y_{2}\right\rangle} \lesssim \frac{1}{R\left\langle y_{1}\right\rangle} \sim \frac{1}{t\left\langle y_{1}\right\rangle}, \quad \text { since }\left|y_{2}\right| \gg \text { on the support of } \chi_{R}
\end{aligned}
$$

Case $n=1$: Elliptic equation for $T_{j, 1}$:

$$
\mathcal{L}_{\beta_{j}} T_{j, 1}=-i M_{j, 1} \Lambda Q_{\beta_{j}}+i B_{j, 1}\left[y_{j} \partial_{y} Q_{\beta_{j}}+\left(1-\beta_{j}\right) \partial_{\beta_{j}} Q_{\beta_{j}}\right]+\text { remainder }
$$

where $\Lambda f=\frac{f}{2}+y \partial_{y} f$ and $\mathcal{L}_{\beta_{j}}$ is the linearized operator around $Q_{\beta_{j}}$:

$$
\mathcal{L}_{\beta_{j}} f:=\frac{|D|-\beta D}{1-\beta_{j}} f+f-2\left|Q_{\beta_{j}}\right|^{2} f-Q_{\beta_{j}}^{2} \bar{f}
$$

- based on explicit computations for the Szegő equation (P. 2012):
- $\operatorname{ker} \mathcal{L}_{\beta_{j}}=\operatorname{span}\left\{i Q_{\beta_{j}}, \partial_{y} Q_{\beta_{j}}\right\}$
- $\mathcal{L}_{\beta_{j}}$ is coercive on the orthogonal complement of $\operatorname{ker} \mathcal{L}_{\beta_{j}}$
- solvability condition $=$ RHS of the elliptic equation orthogonal to $\operatorname{ker} \mathcal{L}_{\beta_{j}}$
- The two solvability conditions determine $M_{j, 1}$ and $B_{j, 1}$

Case $n \geq 2$: Plugging in $V_{j}^{(n)}=V_{j}^{(n-1)}+T_{j, n}$ for $2 \leq n \leq N$:

$$
\begin{aligned}
\mathcal{E}_{j}^{(n)}= & -\mathcal{L}_{\beta_{j}} T_{j, n}+\mathcal{E}_{j}^{(n-1)}-i M_{j, n} \Lambda Q_{\beta_{j}} \\
& +i B_{1, n}\left(y_{j} \partial_{y} Q_{\beta_{j}}+\left(1-\beta_{j}\right) \partial_{\beta_{j}} Q_{\beta_{j}}\right)+i \frac{1-\mu}{\mu} \partial_{\Gamma} T_{j, n} \\
& +\mathcal{E} r r_{j}^{(n)}\left(V_{j}^{(n-1)}, M_{j}^{(n-1)}, B_{j}^{(n-1)}, T_{j, n}, M_{j, n}, B_{j, n}\right)
\end{aligned}
$$

where $\mathcal{E r r}{ }_{j}^{(n)}$ encodes the interaction terms of $T_{j, n}, M_{j, n}, B_{j, n}$ with functions of decay at least $\frac{1}{R}$. We solve the elliptic equation

$$
\mathcal{L}_{\beta_{j}} T_{j, n}-i \frac{1-\mu}{\mu} \partial_{\Gamma} T_{j, n}=\mathcal{E}_{j}^{(n-1)}-i M_{j, n} \Lambda Q_{\beta_{j}}+i B_{1, n}\left[y_{j} \partial_{y} Q_{\beta_{j}}+\left(1-\beta_{j}\right) \partial_{\beta_{j}} Q_{\beta_{j}}\right]
$$

- at each step we need to solve for $T_{j, n}$ and determine $M_{j, n}, B_{j, n}$ and "get control" on these as well as on a high number of their derivatives
- we also need to show that $\mathcal{E}_{j}^{(n)}$ is "smaller" than $T_{j, n}$
- we introduce a notion of admissibility to keep track of these:

A function f is admissible with respect to the bubble j if $\forall \alpha \in \mathbb{N}^{7} \exists A_{\alpha}>0$

$$
\left\|\langle y\rangle\left(1-\left(1-\beta_{j}\right)\langle y\rangle\right) \Lambda_{y}^{\alpha_{1}} \Lambda_{R}^{\alpha_{2}} \partial_{\lambda_{1}}^{\alpha_{3}} \partial_{\lambda_{2}}^{\alpha_{4}} \partial_{\Gamma}^{\alpha_{5}} \tilde{\Lambda}_{\beta_{1}}^{\alpha_{6}} \tilde{\Lambda}_{\beta_{2}}^{\alpha_{7}} f(\cdot, \mathcal{P})\right\|_{L^{\infty}} \leq A_{\alpha},
$$

where $\Lambda_{x}=x \partial_{x}$ and $\tilde{\Lambda}_{\beta_{k}}=\left(1-\beta_{k}\right) \partial_{\beta_{k}}$.

- we show that $b^{-1} R^{n} T_{1, n}$ is 1 -admissible and $R^{n} T_{2, n}$ is 2 -admissible (and similar statements hold for $M_{j, n}$ and $B_{j, n}$)
- also $b^{-1} R^{n+1} \mathcal{E}_{1}^{(n)}$ is 1 -admissible and $R^{n+1} \mathcal{E}_{2}^{(n)}$ is 2 -admissible
- we develop a stability theory (under multiplication, change of variables, convolution...) for admissible functions
- we invert \mathcal{L}_{β} in the class of invertible functions. This follows using multiplier estimates and the coercivity of $\mathcal{L}_{\beta_{j}}$:

$$
\|f\|_{H^{\frac{1}{2}}} \leq C\left(\left\|\mathcal{L}_{\beta} f\right\|_{H^{-\frac{1}{2}}}+\left|\left(f, i Q_{\beta}\right)\right|+\left|\left(f, \partial_{x} Q_{\beta}\right)\right|\right) .
$$

II. Study of the finite system of ODEs

$(S)^{(N)}\left\{\begin{array}{l}\left(x_{j}^{(N)}\right)_{t}=\beta_{j}^{(N)}, \quad\left(\gamma_{j}^{(N)}\right)_{t}=\frac{1}{\lambda_{j}^{(N)}}, \\ \left(\lambda_{j}^{(N)}\right)_{t}=M_{j}^{(N)}\left(\mathcal{P}^{(N)}\right), \quad \frac{\left(\beta_{j}^{(N)}\right)_{t}}{1-\beta_{j}^{(N)}}=\frac{B_{j}^{(N)}\left(\mathcal{P}^{(N)}\right)}{\lambda_{j}^{(N)}}, \quad j=1,2, \\ \Gamma^{(N)}=\gamma_{2}^{(N)}-\gamma_{1}^{(N)}, \quad R^{(N)}=\frac{x_{2}^{(N)}-x_{1}^{(N)}}{\lambda_{1}^{(N)}\left(1-\beta_{1}^{(N)}\right)}\end{array}\right.$
For $0<\delta, \eta_{*} \ll 1$ and $0<\eta<\eta_{*}$, we define the times

$$
T_{\mathrm{in}}=\frac{1}{\eta^{2 \delta}}<T_{\eta}^{-}=\frac{\delta}{\eta}
$$

We solve the system with data at $t=T_{\eta}^{-}$:

$$
\left\{\begin{array}{l}
\lambda_{1}^{(N)}=1, \quad \lambda_{2}^{(N)}=1 \text { i.e. } \mu=1 \\
\gamma_{2}^{(N)}=0, \quad \Gamma^{(N)}=0 \text { i.e. } \gamma_{1}^{(N)}=0 \\
1-\beta_{1}^{(N)}=\eta, \quad b^{(N)}=\frac{1}{\left(T_{\eta}^{-}\right)^{2}} \text { i.e. } 1-\beta_{2}^{(N)}=\frac{\eta}{\left(T_{\eta}^{-}\right)^{2}} \\
x_{1}^{(N)}=0, \quad R^{(N)}=T_{\eta}^{-} \quad \text { i.e. } x_{2}^{(N)}=T_{\eta}^{-} \eta=\delta
\end{array}\right.
$$

Decay of Q_{β}

To study this system of ODEs, we need to have a precise description of the decay properties of Q_{β}. First, with $Q^{+}(x):=\frac{2}{2 x+i}$,

$$
\left\|Q_{\beta}-Q^{+}\right\|_{H^{1}}=O\left((1-\beta)^{\frac{1}{2}}|\log (1-\beta)|^{\frac{1}{2}}\right)
$$

Secondly, as $x \rightarrow \infty$, we have the asymptotics:

$$
Q_{\beta}(x)=\frac{c_{\beta}}{x} F\left(-\frac{1-\beta}{1+\beta} x\right)+O\left(\frac{1}{x^{2}}\right)
$$

where $F(x)=\int_{0}^{\infty} \frac{\alpha e^{-\alpha}}{\alpha-i x} d \alpha$ and $c_{\beta}:=\frac{i}{2 \pi} \int_{\mathbb{R}}\left|Q_{\beta}(x)\right|^{2} Q_{\beta}(x) d x$. Now,

$$
c_{\beta}=1+O((1-\beta)|\log (1-\beta)|)
$$

- $F(x)=1+O(x|\log x|)$ as $x \rightarrow 0$, so for $(1-\beta)|x| \ll 1$:

$$
Q_{\beta}(x)=\frac{1}{x}(1+O((1-\beta)|\log (1-\beta)|))\left(1+O((1-\beta) x|\log (1-\beta) x|)+O\left(\frac{1}{x^{2}}\right)\right.
$$

- In general, we have $|F(x)| \lesssim \frac{1}{|x|}$, so for $(1-\beta)|x| \gtrsim 1$:

$$
\left|Q_{\beta}(x)\right| \lesssim \frac{1}{(1-\beta)|x|^{2}}
$$

We refine $B_{2}^{(N)}:=B_{2,1}+\ldots B_{2, N}=O\left(\frac{1}{R}\right)$ to

$$
B_{2}^{(N)}=2 \operatorname{Re}\left(\overline{Q_{\beta_{1}}(R)} e^{i \Gamma}\right)+O\left(\frac{|1-\mu|+R^{-1}}{R\left(1+\left(1-\beta_{1}\right) R\right)}\right)
$$

Step 1: $t \in\left[T_{\mathrm{in}}, T_{\eta}^{-}\right]$(turbulent regime)
We prove by a bootstrap argument that:

$$
\left\{\begin{array}{l}
\left|\lambda_{j}^{(N)}(t)-1\right| \lesssim \frac{\eta^{\delta}}{t}, \quad j=1,2, \\
\left|1-\beta_{1}^{(N)}(t)-\eta\right| \lesssim \eta^{1+\delta}, \\
1-\beta_{2}^{(N)}(t)=\eta \frac{1+O(\sqrt{\delta})}{t^{2}} \\
\frac{\left|R^{\left(N^{\prime}\right)}(t)-t\right|}{\eta^{(} t} \eta^{\delta} \\
\left|\Gamma^{(N)}(t)\right| \lesssim \eta^{\delta}+\eta t|\log \eta t|
\end{array}\right.
$$

By bootstrap assumption: $R \sim t \leq \frac{\delta}{\eta}$. Then, we have

$$
0<\left(1-\beta_{1}\right) R \lesssim \eta t \lesssim \delta \ll 1
$$

Thus, for $t \in\left[T_{\mathrm{in}}, T_{\eta}^{-}\right], Q_{\beta_{1}}(R)=\frac{1}{t}+O\left(\frac{\eta^{\delta}}{t}+\eta|\log \eta t|\right)$

Control of the speed $1-\beta_{2}$ in the turbulent regime

$$
B_{2}^{(N)}=\frac{2 \cos \Gamma}{t}+O\left(\frac{\eta^{\delta}}{t}+\eta|\log \eta t|\right)
$$

By bootstrap assumption we have

$$
\cos \Gamma=1+O\left(\Gamma^{2}\right)=1+O\left((\eta t|\log \eta t|)^{2}\right)
$$

and thus,

$$
\frac{\left(\beta_{2}\right)_{t}}{1-\beta_{2}}=\frac{B_{2}}{\lambda_{2}}=\frac{2}{t}+O\left(\frac{\eta^{\delta}}{t}+\eta|\log \eta t|\right)
$$

Integrating (backward) from T_{η}^{-}to t :

$$
-\log \left(\frac{1-\beta_{2}\left(T_{\eta}^{-}\right)}{1-\beta_{2}(t)}\right)=2 \log \left(\frac{T_{\eta}^{-}}{t}\right)+O(\sqrt{\delta})
$$

and so

$$
1-\beta_{2}(t)=\frac{\eta}{t^{2}}(1+O(\sqrt{\delta})) .
$$

Control of the phase in the turbulent regime

Main difficulty: keep the phase shift $\Gamma(t)$ small for $t \in\left[T_{\mathrm{in}}, T_{\eta}^{-}\right]$

$$
\Gamma_{t}=\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{1}}, \quad\left(\lambda_{1}\right)_{t}=M_{1}^{(N)}, \quad\left(\lambda_{2}\right)_{t}=M_{2}^{(N)}
$$

Thus,

$$
\Gamma_{t t}=\frac{\left(\lambda_{1}\right)_{t}}{\lambda_{1}^{2}}-\frac{\left(\lambda_{2}\right)_{t}}{\lambda_{2}^{2}}=\frac{M_{1}^{(N)}}{\lambda_{1}^{2}}-\frac{M_{2}^{(N)}}{\lambda_{2}^{2}}=O\left(\frac{1}{t^{2}}\right)
$$

We need to integrate twice to recover Γ in the presence of $\frac{1}{t^{2}}$ decay only \Longrightarrow sharp estimates for $M_{1}^{(N)}$ and $M_{2}^{(N)}$ required to avoid logarithmic losses Setting $v:=1-\mu=\frac{\lambda_{1}-\lambda_{2}}{\lambda_{1}}$, we get

$$
\left\{\begin{array}{l}
\Gamma_{t}=v+R_{\Gamma}(t) \\
v_{t}=\frac{2 v}{t}-\frac{2 \Gamma}{t^{2}}+\frac{\eta}{t}+R_{v}(t)
\end{array}\right.
$$

with $\left|R_{\Gamma}(t)\right|+\left|R_{v}(t)\right| \lesssim \frac{\eta^{\delta}}{t^{2}}+K^{2} \eta^{2}|\log \eta t|^{2}$. We now solve this and get

$$
|\Gamma(t)| \lesssim \eta^{\delta}+\eta t|\log \eta t| .
$$

Remark: the construction of a two-soliton solution without growth of high Sobolev norms is easier: we don't need to control the phase on $\left[T_{\text {in }}, T_{\eta}^{-}\right]$, we simply prescribe asymptotic conditions at ∞ and integrate backward in time

Step 2: $t \in\left[T_{\eta}^{-}, \infty\right)$ (saturation regime)
By the bootstrap assumption,

$$
R \sim t \geq T_{\eta}^{-}=\frac{\delta}{\eta} \sim \frac{\delta}{1-\beta_{1}}
$$

Thus, for $t \geq T_{\eta}^{-}$we have $R\left(1-\beta_{1}\right) \gtrsim \delta$ and therefore

$$
\left|Q_{\beta_{1}}(R)\right| \lesssim \frac{1}{\left(1-\beta_{1}\right) R^{2}} \sim \frac{1}{\eta t^{2}}
$$

Then,

$$
B_{2}^{(N)}=2 \operatorname{Re}\left(\overline{Q_{\beta_{1}}(R)} e^{i \Gamma}\right)+O\left(\frac{|1-\mu|+R^{-1}}{R\left(1+\left(1-\beta_{1}\right) R\right)}\right)=O\left(\frac{1}{\eta t^{2}}\right)
$$

Integrating (forward) from T_{η}^{-}to t the equation

$$
\frac{\left(\beta_{2}\right)_{t}}{1-\beta_{2}}=\frac{B_{2}}{\lambda_{2}}
$$

we obtain

$$
\left|\log \left(\frac{\left(1-\beta_{2}\right)(t)}{\left(1-\beta_{2}\right)\left(T_{\eta}^{-}\right)}\right)\right| \lesssim \frac{1}{\eta T_{\eta}^{-}} \lesssim \frac{1}{\delta}
$$

which shows that

$$
1-\beta_{2}(t)=\eta^{3} e^{O\left(\frac{1}{\delta}\right)}
$$

Remark: for $t \geq T_{\eta}^{-}$, the phase shift Γ grows, but this does not affect the dynamics of β_{2}

III. Construction of the exact solution

Let a sequence $T_{n} \rightarrow+\infty$ and consider $u_{n}(t)$ the solution of:

$$
\left\{\begin{array}{l}
i \partial_{t} u_{n}-|D| u_{n}=-\left|u_{n}\right|^{2} u_{n}, \\
u_{n}\left(T_{n}\right)=\sum_{j=1}^{2} \frac{1}{\lambda_{j}^{\frac{1}{2}}(t)} V_{j}^{(N)}\left(y_{j}:=\frac{x-x_{j}(t)}{\lambda_{j}(t)\left(1-\beta_{j}(t)\right)}, \mathcal{P}(t)\right) e^{i \gamma_{j}(t)}=: \Phi_{\tilde{\mathcal{P}}(N)\left(T_{n}\right)}^{(N)}(x)
\end{array}\right.
$$

Decompose

$$
u_{n}(t, x)=\Phi_{\tilde{\mathcal{P}}(t)}^{(N)}(x)+\varepsilon(t, x)
$$

where ε satisfies suitable orthogonality conditions. Main goal:

$$
\forall n \geq 1, \quad \forall t \in\left[T_{\mathrm{in}}, T_{n}\right], \quad\|\varepsilon(t, \cdot)\|_{H^{1}} \leq \frac{1}{t^{\frac{N}{8}}}
$$

With $b:=\frac{1-\beta_{2}}{1-\beta_{1}}$, consider cutoff functions ζ and θ such that

$$
\begin{aligned}
& \zeta(t, x)= \begin{cases}\beta_{1} & \text { for } y_{1} \leq \frac{(1-b) R}{2} \\
\beta_{2} & \text { for } y_{1} \geq(1-b) R\end{cases} \\
& \theta(t, x)=\left\{\begin{array}{lll}
\frac{1}{\lambda_{1}} & \text { for } y_{1} \leq \frac{(1-b) R}{2} \\
\frac{1}{\lambda_{2}} & \text { for } & y_{1} \geq(1-b) R
\end{array}\right.
\end{aligned}
$$

and define the localized energy functional:

$$
\mathcal{G}(t) \varepsilon:=\frac{1}{2}(|D| \varepsilon-\zeta D \varepsilon, \varepsilon)+\frac{1}{2}(\theta \varepsilon, \varepsilon)+\frac{1}{4}\left[\int_{\mathbb{R}}\left(|\varepsilon+\Phi|^{4}-|\Phi|^{4}\right) d x-\left(4 \varepsilon, \Phi|\Phi|^{2}\right)\right]_{\substack{ }}
$$

Coercivity of the energy functional

Precise definition of ζ. Consider a smooth nonincreasing function

$$
\Psi_{1}\left(z_{1}\right)= \begin{cases}1 & \text { for } z_{1} \leq \frac{1}{4} \\ \left(1-z_{1}\right)^{10} & \text { for } \frac{1}{2} \leq z_{1} \leq 1 \\ 0 & \text { for } z_{1} \geq 1\end{cases}
$$

$\Phi_{1}\left(z_{1}\right):=\psi_{1}+b(t)\left(1-\Psi_{1}\right)$ and, with $y_{1}:=\frac{x-x_{1}}{\lambda_{1}\left(1-\beta_{1}\right)}$,

$$
\phi(t, x):=\phi_{1}\left(t, y_{1}\right)=\Psi_{1}\left(z_{1}=\frac{y_{1}}{R(t)(1-b(t))}\right)
$$

Then, we set $\zeta(t, x):=\beta_{1}(t)+\left(1-\beta_{1}\right)(1-\phi(t, x))$. With $\varepsilon^{+}:=\Pi_{+} \varepsilon, \varepsilon^{-}:=\varepsilon-\varepsilon^{+}$:

$$
\left.\left.\mathcal{G}(t) \varepsilon \gtrsim\left(1-\beta_{1}\right) \int_{\mathbb{R}} \phi| | D\right|^{\frac{1}{2}} \varepsilon^{+}\right|^{2} d x+\left\|\varepsilon^{-}\right\|_{\dot{H}^{\frac{1}{2}}}^{2}+\|\varepsilon\|_{L^{2}}^{2}
$$

- relies on a careful localization of the kinetic energy
- the coercivity of the limiting Szegő quadratic form (P. 2012) is also key $\mathcal{L}_{+} u:=D u+u-\Pi_{+}\left(2\left|Q^{+}\right|^{2} u+\left(Q^{+}\right)^{2} \bar{u}\right)$ for all $u \in H_{+}^{\frac{1}{2}}:$

$$
\left(\mathcal{L}_{+} u, u\right) \geq c_{0}\|u\|_{H_{+}^{\frac{1}{2}}}^{2}-\frac{1}{c_{0}}\left[\left(u, \partial_{y} Q^{+}\right)^{2}+\left(u, i Q^{+}\right)^{2}\right]
$$

- one looses control of $\left\|\varepsilon^{+}\right\|_{\dot{H}^{\frac{1}{2}}}$ as $\beta_{1} \rightarrow 1$: singular bifurcation $Q_{\beta} \mapsto Q^{+}$

Energy estimates

We prove using a bootstrap argument that

$$
\mathcal{G}(t) \lesssim \frac{1}{N t^{\frac{N}{2}}} \text { for } t \in\left[T_{\mathrm{in}}, T_{n}\right]
$$

Using coercivity this implies the bound

$$
\|\varepsilon(t)\|_{H^{\frac{1}{2}}} \lesssim \frac{1}{\sqrt{N} t^{\frac{N}{4}}}
$$

To prove the bound on \mathcal{G}, we use the following energy estimate

$$
\left|\frac{d}{d t} \mathcal{G}(t)\right| \lesssim \frac{1}{t} \mathcal{G}(t)+\frac{C}{t^{N}}
$$

Remarks:

- the localization creates large errors that we need to control \Longrightarrow our cutoff functions need to be carefully chosen
- also, we need to exploit some subtle cancellations, for example when treating terms such as $\left(\left(\partial_{t} \zeta+\partial_{x} \zeta\right) D \varepsilon^{+}, \varepsilon^{+}\right)$
- we rely heavily on commutator estimates involving nonlocal operators, Π_{+}, and cutoff functions, for eg.

$$
\left\|\left[|D|^{\frac{1}{2}}, \chi\right] f\right\|_{L^{2}} \lesssim\left\|\partial_{x} \chi\right\|_{L^{1}}^{\frac{1}{2}}\left\|\partial_{x}^{2} \chi\right\|_{L^{1}}^{\frac{1}{2}}\|f\|_{L^{2}}
$$

- we need an approximation of high order $N \gg 1$ to close the bootstrap for $\mathcal{G}(t)$

Conclusions

- Difficulties:

- detailed study of the decay properties of Q_{β}
- dramatic influence of the phase shift Γ
- nonlocal nature of the problem and slow decay of Q_{β}
\Longrightarrow the two solitons are strongly coupled
- the limiting Szegő problem arises in the form of various estimates for $\Pi_{ \pm} \varepsilon$
- Open problems:
- existence of a solution with $\lim _{t \rightarrow \infty}\|u(t)\|_{H^{1}}=\infty$
- existence of solutions with different growth rates, genericity
- growth of high Sobolev norms for other problems with nonlocal dispersion

