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The cubic Szegö equation

The cubic Szegö equation

(SE) i∂tu = Π+(|u|2u), u(t, x) ∈ C, (t, x) ∈ R× R,

where Π+ is the Szegö projector onto non-negative frequencies, was
recently introduced by Gérard and Grellier who study it on T

mathematical model of a non-dispersive Hamiltonian non-linear PDE

completely integrable =⇒ we find an explicit formula for the solution

growth of high Sobolev norms ‖u(t)‖Hs →∞ if t→∞ and s > 1/2.
More precisely, there are solutions such that

‖u(t)‖Hs ∼ t2s−1.
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Motivation: NLS on the sub-Riemannian manifolds

The nonlinear Schrödinger equation

(NLS) i∂tu+ ∆u = |u|2u, u(t, x) ∈ C, x ∈M
where M is a sub-Riemannian manifold (e.g. the Heisenberg group).

NLS on the Heisenberg group lacks dispersion
⇒ classical tools break down
⇒ even the problem of well-posedness is open.

H1 = Cz × Rs, L2
rad(H1) = ⊕± ⊕∞m=0 V

±
m and ∆∣∣V ±m = ±i(2m+ 1) ∂∂s .

Denote by Π±m the projection onto V ±m . NLS is equivalent to the system:

i∂tu
±
m ± i(2m+ 1)∂su

±
m = Π±m(|u|2u).

Interaction between the cubic nonlinearity and the projector Π±m:

i∂tu = Π±m(|u|2u)
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Motivation: A non-linear wave equation

(NLW) i∂tv − |D|v = |v|2v

Apply the operator i∂t + |D| to both sides:

−∂ttv + ∆v = |v|4v + 2|v|2(|D|v)− v2(|D|v̄) + |D|(|v|2v).

No dispersion: NLW decouples into the system of transport equations:{
i(∂tv+ + ∂xv+) = Π+(|v|2v)

i(∂tv− − ∂xv−) = Π−(|v|2v).

Dynamics dominated by v+:
v(0) = v+(0), ‖v(0)‖H1/2 = ε =⇒ ‖v−(t)‖Ḣ1/2 = O(ε2).

u(t, x) = v+(t, x+ t) almost satisfies

i∂tu = Π+(|u|2u)
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Plan of the talk

1. General properties of the Szegö equation on R

2. Classification and orbital stability of solitons of the Szegö equation

3. Explicit formula for the solution of the Szegö equation and applications

(i) Soliton resolution

(ii) Example of a solution whose high Sobolev norms grow to infinity

4. The Szegö equation as the resonant dynamics of a non linear wave equation

(i) Growth of the high Sobolev norms of solutions of the nonlinear wave
equation

(ii) Second order approximation of the non linear wave equation

5. The long-time stability of solitons when adding a small Toeplitz potential
to the Szegö equation
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The Hardy space and the Szegö projector

The Hardy space and the corresponding Sobolev spaces:

L2
+(R) =

{
f holomorphic on C+

∣∣∣‖g‖L2
+(R) := sup

y>0

(∫
R
|g(x+ iy)|2dx

)1/2

<∞
}

={f ∈ L2(R)
∣∣ supp f̂ ⊂ [0,∞)}

Hs
+(R) = Hs(R) ∩ L2

+(R).

The Szegö projector on the Hardy space Π+ : L2(R)→ L2
+(R):

F(Π+f)(ξ) =

{
f̂(ξ), if ξ ≥ 0,

0, if ξ < 0.

Set Π− = I −Π+. The Szegö projector gives the name of the Szegö equation:

(SE) i∂tu = Π+(|u|2u), u(t, x) ∈ C, x ∈ R.
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Conservation laws

Symplectic form on L2
+(R):

ω(u, v) = 4Im

∫
R
uv̄.

Hamiltonian:

E(u) =

∫
R
|u|4dx,

Mass:

Q(u) =

∫
R
|u|2dx,

Momentum:
M(u) = (Du, u)L2 ≥ 0, with D = −i∂x.

The H
1/2
+ -norm of the solution is conserved:

Q(u) +M(u) = ‖u‖2
H

1/2
+

.
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The Cauchy problem

Theorem

For all u0 ∈ H1/2
+ , there exists a unique global solution u ∈ C(R, H1/2

+ ) of the
equation

(SE) i∂tu = Π+(|u|2u)

such that u(0) = u0.
Moreover, if u0 ∈ Hs

+, s > 1/2, then u ∈ C(R, Hs
+).
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Hankel and Toeplitz operators

Hankel operator of symbol u ∈ H1/2
+ : Hu : L2

+ → L2
+

Huh = Π+(uh̄)

Compact operator, C-antilinear, in particular

(Huh1, h2)L2 = (Huh2, h1)L2 .

H2
u is a compact, self-adjoint linear operator.

Toeplitz operator of symbol b ∈ L∞(R): Tb : L2
+ → L2

+

Tbh = Π+(bh)

Bounded, linear operator, self-adjoint iff b is real-valued.
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Lax pair structure

Theorem (Lax pair formulation)

u ∈ C(R, Hs
+), s > 1/2 is a solution of the Szegö equation iff

∂tHu = [Bu, Hu],

where Bu = i
2H

2
u − iT|u|2 .

Corollary

There exists an infinite sequence of conservation laws:
Jn(u) := (u,Hn−2

u u), n ≥ 2

∂tJ2n(u(t)) = 0.

In particular, J2(u) = Q(u) and J4(u) = E(u)
2 .

Remark: The conservation law of the H
1/2
+ -norm is stronger than that of J2n

J2n(u) ≤ ‖u‖2nL2n(R) ≤ ‖u‖
2n

H
1/2
+ (R)

.
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Consider the operator satisfying{
d
dt
U(t) = Bu(t)U(t)

U(0) = I.

U(t) is unitary and
Hu(t) = U(t)Hu0

U(t)∗.

The eigenvalues of Hu are conserved by the flow of the Szegö equation:

λj(t) = λj(0).

If ej(t) ∈ Ran(Hu(t)) are the eigenvectors of Hu(t) and ν(t) := |(u(t), ej(t))|,
then we have

νj(t) = νj(0).

Remark: J2n(u) =
∑
j λ

2n−2
j ν2

j .
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Classification of solitons

Definition: A soliton for the Szegö equation is a solution u for which there
exist ω, c ∈ R such that

u(x, t) = e−iωtφ(x− ct),

Theorem (P’09)

The solitons of the Szegö equation are

u(x, t) = e−i
α2µ2

4 tφC,p(x−
α2µ

2
t),

where α, µ > 0, C = αeiφ, p = a− i
µ , a, φ ∈ R and

φC,p =
C

x− p =
αeiφ

x− a+ i
µ
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Orbital stability of solitons

Theorem (P’09)

The solitons of the Szegö equation on R are orbitally stable.
More precisely, for α, µ > 0, consider the cylinder

C(α, µ) =
{ α

z − p
; |α| = α, Imp = − 1

µ

}
.

which is a submanifold in the manifold of solitons. If the sequence

{un0} ⊂ H
1/2
+ is close to the the cylinder C(α, µ), then the corresponding

sequence of solutions {un}, stays close to C(α, µ) for all times t ∈ R.

Proof includes:

Gagliardo-Nirenberg inequality: ‖u‖L4
+
≤ 1

4
√
π
‖u‖1/2

L2
+
‖u‖1/2

Ḣ
1/2
+

Profile decomposition theorem (Gérard 1998, Hmidi, Keraani 2006)
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Comparison with the solitons of the Szegö equation on T

On T (Gérard, Grellier 2010, 2011):

the solitons are rational functions z`

zN−pN , where |p| > 1,
` = 0, 1, 2, . . . , N − 1

for N = 1 and ` = 0, we recover the analogues of the solitons on R, 1
z−p ,

and they are also orbitally stable

the rest of solitons (N > 1) are unstable

one exploits the compactness of the Sobolev embedding H1(T) ⊂ L2(T)

in particular, in the case of T, the operator Au := D− 1
cT|u|2 has compact

resolvent and thus, only discrete spectrum. This is not the case on R,
where Au has continuous spectrum as well.
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Invariant finite dimensional submanifolds of L2
+

M(N) =“rational functions of degree N”

=

{
A

B

∣∣∣A,B ∈ CN [z], 0 ≤ deg(A) ≤ N − 1,deg(B) = N,

B(0) = 1, B(z) 6= 0, for all z ∈ C+ ∪ R, (A,B) = 1

}
Remarks: M(N) is 4N-dimensional real manifold⋃

N∈N∗M(N) is dense in L2
+

Theorem (Kronecker type theorem)

rk(Hu) = N if and only if u ∈M(N).

Proposition

For all N ∈ N∗, M(N) is invariant under the flow of the Szegö equation.
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Infinitesimal shift operator

Property

Let Tλ : L2
+ → L2

+ be the shift operator Tλ(f) = eiλxf , F(Tλf)(ξ) = f̂(ξ − λ).
Then, H : L2

+ → L2
+ is a Hankel operator if and only if

T ∗λH = HTλ, ∀λ > 0.

For u ∈M(N) we have Ran(Hu) ⊂M(N). We define the infinitesimal shift
operator on Ran(Hu) by:

T (f) = xf − lim
x→∞

xf(x)(1− g),

where Hug = u. Then, T ∗Hu = HuT .

Notations for u0 ∈M(N):

There exists a unique g0 ∈ Ran(Hu0
) such that u0 = Hu0

g0.

0 < λ2
1 ≤ λ2

2 ≤ · · · ≤ λ2
N eigenvalues of H2

u0

{ej}Nj=1 orthonormal basis of Ran(Hu0
) such that Hu0

ej = λjej
βj = (g0, ej).
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Explicit formula for the solution if u0 ∈M(N)

Theorem (P ’10 Explicit formula for rational function data)

Suppose u0 ∈M(N) and let g0 ∈ Ran(Hu0) be such that u0 = Hu0g0.
Let Mj = {k ∈ {1, 2, . . . , N}

∣∣Hu0
ek = λjek}. We define an operator S(t) on

Ran(Hu0
), in the basis {ej}Nj=1, by

S(t)k,j =


λj

2πi(λ2
k−λ

2
j )

(
λje

i t2 (λ2
k−λ

2
j )βjβk − λkei

t
2 (λ2

j−λ
2
k)βjβk

)
, if k /∈Mj

λ2
j

2πβjβkt+ (Tej , ek) + i
|βj |2
4π , if k ∈Mj .

Then, the following explicit formula for the solution holds:

u(t, x) =
i

2π

(
u0, e

i t2H
2
u0 (S(t)− xI)−1ei

t
2H

2
u0 g0

)
, for all x ∈ R.
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Application to inverse problems for Hankel operators

Corollary

Suppose u ∈M(N). If the eigenvalues λ2
j of H2

u are all simple and (u, ej) 6= 0,
then the symbol u can be written

u(x) =
i

2π

(
u, (T − xI)−1g

)
=

i

2π

N∑
j,k=1

λjβjβk(T − xI)−1
jk ,

where

Tej =
∑
k 6=j

λj
2πi(λ2

k − λ2
j )

(
λjβjβk − λkβjβk

)
ek + (γj + i

|βj |2

4π
)ej .

Remark: The Corollary can be extended to functions that are not necessarily
rational, satisfying u ∈ Hs

+, s > 1/2 and xu(x) ∈ L∞(R).
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Theorem (P ’10)

Let 0 < λ1 < · · · < λN and let (νj)
N
j=1 be strictly positive.

The set of all symbols u ∈ H1/2
+ such that the Hankel operator Hu is of finite

rank and admits:

• λj, 1 ≤ j ≤ N , as simple eigenvalues

• νj, 1 ≤ j ≤ N , as length of the projections of u on the eigenvectors
(νj := |(u, ej)| = λj |βj |)

is a toroidal cylinder TN × RN = (argβj)
N
j=1 × (γj)

N
j=1.

Open problem: Can one extend the above theorem to Hankel operators which
are not of finite rank?

19 / 40



Explicit formula in the spirit of the inverse scattering method, but one
does not need to apply this method since the Hankel operator in the Lax
pair is compact.

One can find an explicit formula for solutions with general initial
condition by using an approximation argument.

Gérard and Grellier (2010) give a formula for solutions of the Szegö
equation on the torus T (as a bias of introducing action-angle
coordinates). They need new spectral data given by the operator TzHu.
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Soliton resolution

M(N)s = {u ∈M(N)
∣∣ 0 < λ1 < λ2 < · · · < λN , (u, ej) 6= 0, (u, ej) 6= (u, ek)}.

Theorem (P ’10)

If u0 ∈M(N)s, then the solution of the Szegö equation is

u(t, x) =

N∑
j=1

e−itλ
2
jφCj ,pj (x−

λ2
jν

2
j

2π t) + ε(t, x)

where

φCj ,pj (x) =
Cj

x− pj
, Cj =

iλjν
2
j e
−2iφj(0)

2π
, pj = Re(cj(0))− i

ν2
j

4π
,

lim
t→±∞

‖ε(t, x)‖Hs+ = 0 for all s ≥ 0.
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Comparison with other completely integrable equations

Soliton resolution holds for KdV (Echaus, Schuur 1983) in L∞(R+):

lim
t→∞

‖ε(t, ·)‖L∞(R+) = 0,

but limt→∞ ‖ε(t, ·)‖H1(R) may not be zero.

Soliton resolution holds for one dimensional cubic NLS in L2(R)

u(t, x) = Solitons + eit∆f + ε(t, x),

where limt→∞ ‖ε(t, x)‖L2 = 0.

No soliton resolution for the Szegö equation on T (Gérard, Grellier).
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Growth of high Sobolev norms

Theorem (P ’10)

Let u0 ∈M(2) be such that H2
u0

has a double eigenvalue λ2 > 0. Then

u(t, x) =e−itλ
2

φC,p
(
x− ‖u0‖2L2

2π t
)

+ ε(t, x).

The first term is a soliton and limt→±∞ ‖ε(t, x)‖Hs+ = 0 for 0 ≤ s < 1/2.

However,

lim
t→±∞

‖ε(t, x)‖Hs+ =∞ if s > 1/2

and therefore
‖u(t)‖Hs+ →∞ as t→ ±∞ if s > 1/2.

Example of such initial condition: u0 = 1
x+i −

2
x+2i .

Open problem: Genericity of solutions whose high Sobolev norms grow to
infinity?
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This phenomenon is due to the lack of dispersion. For dispersionless NLS

i∂tu = |u|2u,

we have u(t) = u0e
−i|u0|2t and thus ‖u(t)‖Hs ∼ |t|s for s ∈ N.

More subtle situation for Szegö: the H1/2-norm is conserved. Only the
Hs-norms with s > 1/2 grow to ∞.

This shows that the energy (H1/2-norm) is supported on higher
frequencies, while the mass is supported on lower frequencies: forward
cascade.

It agrees with the predictions of weak turbulence theory (Zakharov
2001,2004): the existence of an invariant state prescribing the power
spectrum |û(n)| ∼ nα, such that reasonable classes of solutions approach
this invariant state.

For the Navier-Stokes equations: existence of turbulent flows:
Kolmogorov’s scaling law |û(n)| ∼ n−5/3
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Partial results regarding the growth of high Sobolev norms were obtained by:

Gérard, Grellier (2010) for the Szegö equation on T:

‖uε(tε)‖Hs ≥ K(tε)2s−1, for s > 1/2 and tε →∞.

Bourgain (1993, 1995, 1995) for Hamiltonian PDEs with spectrally
defined laplacian

Kuksin (1997) for small dispersion NLS −i∂tu+ ε∆u = |u|2u with odd,
periodic boundary condition on Tn

Colliander, Keel, Staffilani, Takaoka, and Tao (2010) for defocusing cubic
NLS on T2

Hani (2011) for defocusing truncated cubic NLS on T2

25 / 40



Proof: the case u0 ∈M(2) with a double eigenvalue

2πu(z, t) =
1

i

∫ ∞
0

u(x)

x− z dx =
1

2πi

∫ ∞
0

û(ξ)
1̂

x− z̄ (ξ)dξ

=

∫ ∞
0

eizξû(ξ)dξ =

∫ ∞
0

eizξ(u, eiξxg)dξ

=

∫ ∞
0

eizξ(u, eiξT g)dξ =
(
u,
( ∫ ∞

0

eiξ(T−z̄)dξ
)
g
)

= i
(
u, (T − z̄)−1g

)
Writing everything in the coordinates at t = 0, we obtain

u(t, x) =
i

2π

(
u0, e

i t2H
2
u0 (S(t)− xI)−1ei

t
2H

2
u0 g0

)
.

The operator satisfying

d

dt
U(t) = Bu(t)U(t), U(0) = I

is unitary and Hu(t) = U(t)Hu0U(t)∗. We have S(t) = U∗(t)TU(t), and this
definition depends on u(t) through U(t) =⇒ Vicious circle
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u0 ∈M(2) =⇒ rang(Hu0
) = 2 =⇒ Im(Hu0

) = vect{e1, e2}
Hu0

ej = λej for j = 1, 2

S(t) : Im(Hu0
)→ Im(Hu0

) is a 2× 2 matrix given by

S(t)jk := (S(t)ek, ej), j = 1, 2

We determine S(t)jk by computing ∂tS(t):

∂tS(t) = U∗[T,Bu]Uh+ U∗(∂tT (t))U

=
1

4π

(
(h,H2

u0
ẽ)ẽ+ (h,Hu0 ẽ)Hu0 ẽ

)
,

where ẽ = ei
t
2H

2
u0 g0 and thus

(ẽ, ej) = (ei
t
2
H2
u0 g0, ej) = (g0, e

−i t
2
H2
u0 ej) = ei

t
2
λ2

(g0, ej) = ei
t
2
λ2

βj

We obtain

∂tS(t)kj = (∂tS(t)ej , ek) =
λ2

4π

(
(ej , ẽ)(ẽ, ek) + (ẽ, ej)(ek, ẽ)

)
=
λ2

4π
(βjβk + βkβj) =

λ2

2π
βjβk

since βjβk ∈ R when ej and ek correspond to the same eigenvalue λ.
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Since β1β2 ∈ R, we have β1 = ν1e
iθ, β2 = ν2e

iθ, where νj = |βj |
We make the change of basis

e1 7→
1√

ν2
1 + ν2

2

(ν1e1 + ν2e2)

e2 7→
1√

ν2
1 + ν2

2

(ν2e1 − ν1e2)

We then replace β2 by

β̃2 = (g0, ẽ2) =
1√

ν2
1 + ν2

2

(ν2β1 − ν1β2) = 0.

We can therefore assume that β2 = 0.

Since S(t)kj = λ2

2π
βjβkt+ S(0)kj and β2 = 0, we obtain

S(t) =

(
λ2ν21
2π

t+ S11(0) S12(0)
S21(0) S22(0)

)
.
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The eigenvalues of this matrix are{
E1(t) =

λ2ν21
2π

t+ S11(0) + F (t)

E2(t) = S22(0)− F (t),

where F (t) = A
t

+ B
t2

+O( 1
t3

), A ∈ R, B /∈ R.

We have ImSjj(0) =
|βj |2

4π
. Then,{

ImE1(t) > c > 0

ImE2(t) = O( 1
t2

), quand t→∞

We have

(S(t)− xI)−1 =
1

(x− E1)(x− E2)

(
S22(t)− x −S21(t)
−S12(t) S11(t)− x

)
In conclusion

u(t, x) =
i

2π

(
u0, e

i t
2
H2
u0 (S(t)− xI)−1ei

t
2
H2
u0 g0

)
=

λ
2π
β

2

1e
−itλ2

x− Ē1(t)
+R(t, x),

where the first term tends to a soliton.
29 / 40



We have

R(t, x) :=
F̄ (t)

Ē1 − Ē2
· λ

2π
e−itλ

2

β
2

1

( 1

x− Ē1
− 1

x− Ē2

)
We compute easily ∥∥∥ 1

x− Ēj

∥∥∥
Ḣs
∼ 1

|ImEj |
2s+1

2

In particular, ∥∥∥ 1

x− Ē1

∥∥∥
Ḣs
∼ 1∥∥∥ 1

x− Ē2

∥∥∥
Ḣs
∼ t2s+1, quand t→∞

Then,
‖R(t, x)‖Ḣs ∼ t

2s−1

In conclusion, if u0 ∈M(2) is such that H2
u0

has a double eigenvalue, we
obtain

‖u(t)‖Hs ∼ t2s−1

and thus ‖u(t)‖Hs →∞ when s > 1
2 .

30 / 40



The Szegö equation as the first approximation of NLW

Theorem (P ’11)

Let W0 ∈ Hs
+(R), s > 1

2 . Let v(t) be the solution of the NLW on R

(NLW)

{
i∂tv − |D|v = |v|2v
v(0) = εW0.

Denote by u(t) the solution of the Szegö equation{
i∂tu = Π+(|u|2u)

u(0) = εW0.

Assume that ‖u(t)‖Hs ≤ Cε
(

log( 1
εδ

)
)α

for 0 ≤ α ≤ 1
2 and δ > 0 small.

Then, if 0 ≤ t ≤ 1
ε2

(
log( 1

εδ
)
)1−2α

we have that

‖v(t)− e−i|D|tu(t)‖Hs ≤ Cε2−C0δ.
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Growth of high Sobolev norms for solutions of NLW

Corollary (P ’11)

Let 0 < ε� 1, s > 1
2 , and δ > 0 sufficiently small. Let W0 ∈ Hs

+(R) be the
non-generic rational function W0 = 1

x+i −
2

x+2i . Denote by v(t) be the solution
of the NLW equation on R

(NLW)

{
i∂tv − |D|v = |v|2v
v(0) = εW0.

Then, for 1
2ε2

(
log( 1

εδ
)
) 1

4s−1 ≤ t ≤ 1
ε2

(
log( 1

εδ
)
) 1

4s−1

, we have that

‖v(t)‖Hs(R)

‖v(0)‖Hs(R)
≥ C

(
log(

1

εδ
)
) 4s−2

4s−1 � 1.

Remark: In order to show arbitrarily large growth of the solution, one needs
an approximation at least for a time 0 ≤ t ≤ 1

ε2+β
, where β > 0.
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The renormalization group (RG) method

It is most often used to find a long-time approximate solution to a
perturbed equation

It was introduced by Chen, Goldenfeld, and Oono (1994) in theoretical
physics

The RG method was justified mathematically:

(i) for ODEs: Ziane (2000); De Ville, Harkin, Holzer, Josic, Kaper (2008)

(ii) for PDEs: Navier-Stokes, Swift-Hohenberg, quadratic NLS: Moise,
Temam (2000); Moise, Ziane (2001); Petcu, Temam, Wirosoetisno (2005);
Abou Salem (2010)

Gérard and Grellier (2011) proved analogous results on the torus T using
the theory of Birkhoff normal forms
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Change of variables w(t) = 1
εe
i|D|tv(t) in NLW:

(NLW’)

{
∂tw = −iε2ei|D|t(|e−i|D|tw|2e−i|D|tw) =: ε2f(w, t)

w(0) = W0.

Naive perturbation expansion:

w(t) = w(0)(t) + ε2w(1)(t) + ε4w(2)(t) + . . .

Taylor expansion:

f(w, t) = f(w(0), t) + f ′(w(0), t)(w(t)− w(0)(t)) + . . .

= f(w(0), t) + ε2f ′(w(0), t)w(1)(t) + . . .

Identifying the powers of ε:
∂tw

(0) = 0

∂tw
(1) = f(w(0)(t), t)

. . .

Then,

w(t) = W0 + ε2w(1)(t) +O(ε4)= W0 + ε2

∫ t

0

f(W0, s)ds+O(ε4).
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F
(
f(w, t)

)
(ξ) =− i

∫∫
ξ=ξ1−ξ2+ξ3

eitφ(ξ,ξ1,ξ2,ξ3)ŵ(ξ1)ŵ(ξ2)ŵ(ξ3)dξ1dξ2dξ3,

where φ(ξ, ξ1, ξ2, ξ3) := |ξ| − |ξ1|+ |ξ2| − |ξ3|.
f(w, t) = fres(w) + fosc(w, t),

fres(w) : = −iF−1

∫∫
{φ=0,ξ=ξ1−ξ2+ξ3}

ŵ(ξ1)ŵ(ξ2)ŵ(ξ3)dξ1dξ2dξ3,

fosc(w, t) : = −iF−1

∫∫
{φ 6=0,ξ=ξ1−ξ2+ξ3}

eitφ(ξ,ξ1,ξ2,ξ3)ŵ(ξ1)ŵ(ξ2)ŵ(ξ3)dξ1dξ2dξ3.

Then, w(t) = W0 + ε2tfres(W0) + ε2
∫ t

0
fosc(W0, s)ds+O(ε4).

The term W0 + ε2tfres(W0) is a secular term. We consider the renormalization
group equation: {

∂tW = ε2fres(W )

W (0) = W0

An approximation for the solution will be:

wapp(t) = W (t) + ε2

∫ t

0

fosc(W (t), s)ds︸ ︷︷ ︸
=:Fosc(W (t),t)

.
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Special property of NLW: many resonances

The set {φ(ξ, ξ1, ξ2, ξ3) = 0} ⊂ R2 has non-zero measure for fixed ξ.
It is the subset of R2 such that ξ1, ξ2, and ξ3 have the same sign as ξ and
ξ = ξ1 − ξ2 + ξ3 (or ξ1 = ξ or ξ3 = ξ).

fres(w) =− iF−1

∫∫
{φ=0,ξ=ξ1−ξ2+ξ3}

ŵ(ξ1)ŵ(ξ2)ŵ(ξ3)dξ1dξ2dξ3

=− iF−1111ξ≥0

∫∫
ξ=ξ1−ξ2+ξ3

ŵ+(ξ1)ŵ+(ξ2)ŵ+(ξ3)dξ1dξ2dξ3

− iF−1111ξ<0

∫∫
ξ=ξ1−ξ2+ξ3

ŵ−(ξ1)ŵ−(ξ2)ŵ−(ξ3)dξ1dξ2dξ3.

Thus, fres(w) = −i
(
Π+(|w+|2w+) + Π−(|w−|2w−)

)
.

We choose W0 such that Π−(W0) = 0. Projecting onto the negative
frequencies: {

i∂tW− = ε2Π−(|W−|2W−)

W−(0) = 0.

Then W−(t) = 0 for all t ∈ R and W (t) = W+(t) satisfies:{
i∂tW = ε2Π+(|W |2W )

W (0) = W0. 36 / 40



Theorem (Second order approximation)

Let W0 ∈ Hs
+(T), s > 1/2, be such that the solution of the Szegö equation with

initial condition εW0 is bounded by ε
(

log( 1
εδ

)
)α

.

Denote by v the solution of the NLW equation on T with initial condition εW0.

Let W ∈ C(R, Hs
+(T)) be the solution of the following equation on T:{

i∂tW = Π+(|W|2W)−Π+(|W|2 1
DΠ−(|W|2W))− 1

2Π+(W2 1
DΠ−(|W|2W))

W(0) =W0 = εW0.

Consider
vapp(t) = e−i|D|t

(
W(t) + Fosc(W(t), t)

)
.

Then, if 0 ≤ t ≤ 1
ε2

(
log( 1

εδ
)
)1−2α

, we have

‖v(t)− vapp(t)‖Hs ≤ ε5−C0δ.
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The averaging method at order two

Temam and Wirosoetisno (2002)
For the equation{

∂tw = −iε2ei|D|t(|e−i|D|tw|2e−i|D|tw) =: ε2f(w, t)

w(0) = W0.

we consider the averaging ansatz

wapp(t) = W (t) + ε2N1(W, t) + ε4N2(W, t) =: N(W, t, ε),

where W is a solution of the averaged equation:{
∂tW = ε2R1(W ) + ε4R2(W ) =: R(W, ε)

W (0) = W0.
Replacing these expansions in the equation and identifying the powers of ε, we
obtain: 

R1(W ) = fres(W )

N1(W, t) = Fosc(W, t)

R2(W ) = {f ′(W, t) ·N1(W, t)}res

∂N2
∂t

(W, t) = {f ′(W, t) ·N1(W, t)}osc − {N ′1(W, t) ·R1(W )}osc.
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Stability of solitons when adding a small multiplicative
potential/a slowly varying potential

cubic NLS: Bronski, Jerrard 2000, Keraani 2002, 2006

Hartree, NLS with general non-linearity: Fröchlich, Tsai, Yau 2002,
Fröchlich, Gustafson, Jonsson, Sigal 2004, 2006

1D cubic NLS: Holmer, Zworski 2007, 2008

mkdV with double soliton: Holmer, Perelman, Zworski

For the Szegö equation on R, the solitons can be written as:

u(t, x) = eiφ(t)α0µ0η(µ0(x− a(t))) =
eiφ(t)α0

x− a(t) + i
µ0

,

where η(x) := 1
x+i , α0, µ0 ∈ (0,∞), φ0, a0 ∈ R,

φ(t) = −α
2
0µ

2
0

4
t+ φ0, a(t) =

α2
0µ0

2
t+ a0.

39 / 40



The Szegö equation with a small Toeplitz potential

Theorem (P. ’10)

Let b : R→ R, b ∈ L∞(R) et b′ ∈ L1(R) ∩ L2(R). Let 0 < ε� 1 and
3
10 < δ < 1

2 . If u satisfies{
i∂tu = Π(|u|2u) + εTbu

u(0, x) = α0e
iφ0µ0η(µ0(x− a0)),

where a0, φ0 ∈ R and α0, µ0 ∈ (0,∞), then,

‖u(t)− ᾱ(t)eiφ̄(t)µ̄(t)η(µ̄(t)(x− ā(t)))‖
H

1
2
+

≤ Cε
1
2

+ δ
3

for a long time 0 ≤ t ≤ δ
6 ln c0

· 1

ε
1
2
−δ

ln( 1
ε
), where C = C(α0, µ0) and ā, ᾱ, φ̄, µ̄

satisfy the ODEs
˙̄a = ᾱ2µ̄

2 −
2ε
πµ̄

∫
b′(ā+ x

µ̄ ) xµ̄ |η(x)|2dx,
˙̄α = εᾱ

πµ̄

∫
b′(ā+ x

µ̄ )|η(x)|2dx,
˙̄φ = − ᾱ

2µ̄2

4 − ε
π

∫
b(ā+ x

µ̄ )|η(x)|2dx− ε
π

∫
b′(ā+ x

µ̄ ) xµ̄ |η(x)|2dx,
˙̄µ = − 2ε

π

∫
b′(ā+ x

µ̄ )|η(x)|2dx.
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