Scattering for cubic-quintic nonlinear Schrödinger equation on \mathbb{R}^3

Oana Pocovnicu

Princeton University

March 9th 2013

Joint work with R. Killip (UCLA), T. Oh (Princeton), M. Vişan (UCLA)

SCAPDE UCLA

• Cubic-quintic nonlinear Schrödinger equation on \mathbb{R}^3 :

(CQ)
$$\begin{cases} i\partial_t u + \Delta u = |u|^4 u - |u|^2 u \\ u(0) = u_0 \in H^1(\mathbb{R}^3) \end{cases}$$

- Model in various physical problems in : nonlinear optics, plasma physics, Bose-Einstein condensation
- Conserved quantities : mass, energy, and momentum :

$$M(u) = \int |u|^2 dx, \quad E(u) = \int \frac{|\nabla u|^2}{2} + \frac{|u|^6}{6} - \frac{|u|^4}{4} dx, \quad P(u) = \operatorname{Im} \int \overline{u} \nabla u dx$$

- Globally well-posed in $H^1(\mathbb{R}^3)$
- Scattering : there exist u_+ and u_- in $H^1(\mathbb{R}^3)$ such that

$$\lim_{t \to \pm \infty} \| u(t) - e^{it\Delta} u_{\pm} \|_{H^1(\mathbb{R}^3)} = 0$$

2/23

- (CQ) admits solitons $e^{it\omega}P_{\omega}(x)$: solutions which do not scatter
- Goal : Scattering in a large region

Nonlinear Schrödinger equations

• Nonlinear Schrödinger equation (NLS) on \mathbb{R}^d :

(NLS)
$$i\partial_t u + \Delta u = \pm |u|^{p-1} u$$

- defocusing with the sign "+" and focusing with the sign "-"
- Scaling invariance : $u(t,x) \mapsto u_{\lambda}(t,x) := \lambda^{\frac{2}{p-1}} u(\lambda^2 t, \lambda x).$
 - NLS is energy-critical $(\dot{H}^1$ -critical) if $\|u_{\lambda}(0)\|_{\dot{H}^1(\mathbb{R}^d)} = \|u(0)\|_{\dot{H}^1(\mathbb{R}^d)} \iff \lambda^{\frac{2}{p-1}+1-\frac{d}{2}}\|u(0)\|_{\dot{H}^1(\mathbb{R}^d)} = \|u(0)\|_{\dot{H}^1(\mathbb{R}^d)}$ $\iff p = 1 + \frac{4}{d-2}$
 - NLS is energy-subcritical if $p < 1 + \frac{4}{d-2}$
 - NLS is energy-supercritical if $p > 1 + \frac{4}{d-2}$
- (CQ) on \mathbb{R}^3 : quintic nonlinearity is energy-critical and defocusing cubic nonlinearity is subcritical and focusing

Energy-critical NLS

Defocusing energy-critical NLS : $i\partial_t u + \Delta u = |u|^{\frac{4}{d-2}} u$ on \mathbb{R}^d , $d \ge 3$

- Global well-posedeness (GWP) and scattering
- Bourgain (1999) d = 3, 4 radial case
- Grillakis (2000) d = 3, radial case, no scattering
- Colliander-Keel-Staffilani-Takaoka-Tao (2008)d=3
- Ryckman-Vişan, Vişan (2007, 2012) $d\geq 4$

Focusing energy-critical NLS : $i\partial_t u + \Delta u = -|u|^{\frac{4}{d-2}}u$ on \mathbb{R}^d , d = 3, 4, 5 :

- GWP and scattering versus finite time blowup solutions
- Kenig-Merle (2006) radial case
- Threshold for scattering : (kinetic) energy of the stationary solution W

$$\Delta W + |W|^4 W = 0$$

Specific features of the cubic-quintic NLS on \mathbb{R}^3 :

- GWP for all data in $H^1(\mathbb{R}^3)$
- Scattering versus soliton behavior $(e^{it\omega}P_{\omega}(x))$
- Threshold for scattering : the energies of a branch of (rescaled) solitons

Cubic-Quintic NLS on \mathbb{R}^3

• Tao, Vişan, Zhang (2007) :

 global well-posedness in H¹(ℝ³): treat (CQ) as a perturbation of defocusing energy-critical NLS

- scattering for small mass : $M(u_0) \le c(\|\nabla u_0\|_{L^2})$
- Crucial space-time norm for scattering : $L^{10}_{t,x}(\mathbb{R} \times \mathbb{R}^3)$

 $\|u\|_{L^{10}_{t,x}(\mathbb{R}\times\mathbb{R}^3)} < \infty \implies$ solution u scatters

- Virial $V(u):=\int |\nabla u|^2-\frac{3}{4}|u|^4+|u|^6dx$
- E_{\min} defined by

 $E_{\min}(m) := \inf \left\{ E(f) : f \in H^1(\mathbb{R}^3), M(f) = m, V(f) = 0 \right\}$

Theorem (R. Killip, T. Oh, O.P., M. Vişan 2012)

If $u_0 \in H^1(\mathbb{R}^3)$ is such that $0 < E(u_0) < E_{\min}(M(u_0))$, then the corresponding solution scatters both forward and backward in time.

Strategy of proof

- Variational part
 - describe the region \mathcal{R} given by $0 \le E(f) < E_{\min}(M(f))$
 - find the minimizers of E_{\min} when they exist : (rescaled) solitons
- Dispersive part
 - to specify the region \mathcal{R} , introduce

$$D(f) := E(f) + \frac{M(f) + E(f)}{\operatorname{dist}((M(f), E(f)), \operatorname{epigraph} E_{\min})}$$

 $D\ll 1$ near the origin and $D\rightarrow\infty$ near the graph of $E_{\rm min}$

- $\bullet \ L(D):= \sup \left\{ \|u\|_{L^{10}_{t,x}(\mathbb{R}\times\mathbb{R}^3)}: u \text{ solution}, \ D(u) \leq D \right\}$
- Scattering in the region $\mathcal{R} \iff L(D) < \infty$ for all $0 < D < \infty$
- By small data theory : $D \ll 1 \Longrightarrow L(D) < \infty$
- Argue by contradiction : there exists a critical $0 < D_c < \infty$ such that

$$\begin{split} L(D) &< \infty \text{ if } D < D_c \\ L(D) &= \infty \text{ if } D > D_c \\ & (D) &< (D) < (D)$$

Variational part : Solitons

• Soliton solutions of the form $u(t, x) = e^{i\omega t} P_{\omega}(x)$, where P_{ω} satisfies

$$\Delta P_{\omega} - |P_{\omega}|^4 P_{\omega} + |P_{\omega}|^2 P_{\omega} - \omega P_{\omega} = 0$$

- Berestycki-Lions (1983) : radial, positive solitons P_{ω} exist $\iff \omega \in (0, \frac{3}{16})$
- Serrin-Tang (2000) : uniqueness of non-negative radial solitons P_{ω}
- Vanishing virial : $V(P_{\omega}) = 0$ for all $\omega \in (0, \frac{3}{16})$.
- Desyatnikov et al. (Phys. Rev. E, 2000) and Mihalache et al. (Phys. Rev. Lett., 2002) show the existence of two branches of solitons
- We can prove analytically the asymptotic behavior of $M(P_{\omega})$ and $E(P_{\omega})$ as $\omega \to 0$ and as $\omega \to \frac{3}{16}$, but NOT their monotonicity

β -Gagliardo-Nirenberg inequality on \mathbb{R}^3

$$\begin{aligned} \|u\|_{L^4}^4 &\leq C_{\beta} \|u\|_{L^2} \|u\|_{L^6}^{\frac{3\beta}{1+\beta}} \|\nabla u\|_{L^2}^{\frac{3}{1+\beta}} \\ \underline{\operatorname{Proof}} &: \|u\|_{L^4}^4 \leq \|u\|_{L^2} \|u\|_{L^6}^3 \leq \|u\|_{L^2} \|u\|_{L^6}^{\frac{3\beta}{1+\beta}} \|\nabla u\|_{L^2}^{\frac{3}{1+\beta}} \end{aligned}$$

• The optimal constant is achieved modulo scaling by positive, radial Q_{β} satisfying

$$\Delta Q_{\beta} - Q_{\beta}^5 + Q_{\beta}^3 - \omega_{\beta} Q_{\beta} = 0$$

8/23

• In particular, Q_{β} is equal to the soliton $P_{\omega_{\beta}}$ for some $\omega_{\beta} \in (0, \frac{3}{16})$

β -Gagliardo-Nirenberg inequality on \mathbb{R}^3

$$\|u\|_{L^4}^4 \le C_\beta \|u\|_{L^2} \|u\|_{L^6}^{\frac{3\beta}{1+\beta}} \|\nabla u\|_{L^2}^{\frac{3}{1+\beta}}$$

 $\underline{\text{Proof}}: \|u\|_{L^4}^4 \le \|u\|_{L^2} \|u\|_{L^6}^3 \le \|u\|_{L^2} \|u\|_{L^6}^{\frac{1}{1+\beta}} \|\nabla u\|_{L^2}^{\frac{3}{1+\beta}}$

• The optimal constant is achieved modulo scaling by positive, radial Q_{β} satisfying

$$\Delta Q_{\beta} - Q_{\beta}^5 + Q_{\beta}^3 - \omega_{\beta} Q_{\beta} = 0$$

- In particular, Q_{β} is equal to the soliton $P_{\omega_{\beta}}$ for some $\omega_{\beta} \in (0, \frac{3}{16})$
- Uniqueness of Q_{β} is NOT known
- The optimal constant can be expressed as

$$C_{\beta} = \frac{4(1+\beta)}{3\beta^{\frac{\beta}{2(1+\beta)}}} \cdot \frac{1}{\|Q_{\beta}\|_{L^{2}} \|\nabla Q_{\beta}\|_{L^{2}}^{\frac{1-\beta}{1+\beta}}}$$

• For $\beta = 1$ and any Q_1 , we have unique mass $M(Q_1) = \left(\frac{8}{3C_1}\right)^2$

• Fix an optimizer Q_1 and define $R(x) := \frac{1}{\sqrt{2}}Q_1(\frac{\sqrt{3}}{2}x)$

Feasible pairs (M(u), E(u)) for $u \in H^1(\mathbb{R}^3)$

All the feasible pairs (M(u), E(u)) lie above or on the graph of \mathcal{E}

$$\mathcal{E}(m) := \inf \left\{ E(f) : f \in H^1(\mathbb{R}^3), M(f) = m \right\},\$$

with the following properties :

- $\bullet \ \mathcal{E}$ is continuous, concave, non-increasing
- We have that
 - $\mathcal{E}(m) = 0$ if $0 \le m \le M(Q_1)$
 - $\mathcal{E}(m) < 0$ if $m > M(Q_1)$
- $m \ge M(Q_1)$: the infimum $\mathcal{E}(m)$ is achieved by a soliton P_{ω} Indeed, by the Euler-Lagrange equation :

$$\frac{dE}{du} = -\frac{\omega}{2}\frac{dM}{du} \Longleftrightarrow \Delta u - u^5 + u^3 - \omega u = 0$$

• $m < M(Q_1)$: the infimum $\mathcal{E}(m) = 0$ is not achieved

Positive virial for mass less than M(R)

Virial $V(u) := \int |\nabla u|^2 - \frac{3}{4}|u|^4 + |u|^6 dx$

Lemma

If M(u) < M(R), then V(u) > 0.

<u>Proof</u> : Since $C_1 = \frac{8}{3\|Q_1\|_{L^2}}$, Gagliardo-Nirenberg inequality for $\beta = 1$ and Young's inequality yield :

$$\begin{split} \frac{3}{4} \int |u|^4 dx &\leq 2 \frac{\|u\|_{L^2}}{\|Q_1\|_{L^2}} \Big(\int |u|^6 dx \Big)^{1/4} \Big(\int |\nabla u|^2 dx \Big)^{3/4} \\ &\leq \frac{3^{3/4}}{2} \frac{\|u\|_{L^2}}{\|Q_1\|_{L^2}} \Big(4 \int |u|^6 dx \Big)^{1/4} \Big(\frac{4}{3} \int |\nabla u|^2 dx \Big)^{3/4} \\ &\leq \frac{3^{3/4}}{2} \frac{\|u\|_{L^2}}{\|Q_1\|_{L^2}} \int \big(|u|^6 + |\nabla u|^2 \big) dx. \end{split}$$

Thus, if $||u||_{L^2} < \frac{2}{3^{3/4}} ||Q_1||_{L^2} = ||R||_{L^2}$, then V(u) > 0.

<u>Remark</u> : R has the smallest positive mass with vanishing virial.

10/23

The region $\mathcal{R} : 0 \le E(f) < E_{\min}(M(f))$

$$E_{\min}(m) := \inf \left\{ E(f) : f \in H^1(\mathbb{R}^3), M(f) = m, V(f) = 0 \right\}$$

- $E_{\min}(m) = \infty$ if $m < M(\mathbf{R})$
- $E_{\min}(m) = \mathcal{E}(m)$ if $m \ge M(Q_1)$
- For $M(R) \leq m < M(Q_1), E_{\min}(m)$ is
 - finite
 - strictly decreasing
 - attained by solitons P_{ω} or rescaled solitons $aP_{\omega}(\lambda x)$
- Indeed, the Euler-Lagrange equation yields

$$\frac{dE}{du} = -\mu \frac{dV}{du} - \nu \frac{dM}{du} \iff -\Delta u + u^5 - u^3 = -\mu(-2\Delta u + 6u^5 - 3u^3) - 2\nu u$$

- u is a soliton if $\mu = 0$
- u is a rescaled soliton for $\mu \in (0, \infty]$: $aP_{\omega}(\lambda x)$

$$a = \sqrt{\frac{1+3\mu}{1+6\mu}}, \quad \lambda = \frac{1+3\mu}{\sqrt{(1+2\mu)(1+6\mu)}}, \quad \omega = \frac{\nu(1+6\mu)}{(1+3\mu)^2}$$

Lemma

We have V(u) > 0 for all $(M(u), E(u)) \in \mathcal{R}$.

 $\underline{\text{Proof}}$:

- By the definition of E_{\min} , $V(u) \neq 0$ for all $u \in \mathcal{R}$.
- Suppose there is $u \in \mathcal{R}$ such that V(u) < 0. Then, there is $\lambda_0 > 1$ such that $u^{\lambda_0}(x) := \lambda_0^{\frac{3}{2}} u(\lambda_0 x)$ satisfies $V(u^{\lambda_0}) = 0, \quad M(u^{\lambda_0}) = M(u), \quad 0 < E(u^{\lambda_0}) < E(u) < E_{\min}(M(u)),$

(ロ) (部) (目) (日) (日) (の)

12/23

 \implies contradiction

Lemma

We have V(u) > 0 for all $(M(u), E(u)) \in \mathcal{R}$.

 $\underline{\text{Proof}}$:

- By the definition of E_{\min} , $V(u) \neq 0$ for all $u \in \mathcal{R}$.
- Suppose there is $u \in \mathcal{R}$ such that V(u) < 0. Then, there is $\lambda_0 > 1$ such that $u^{\lambda_0}(x) := \lambda_0^{\frac{3}{2}} u(\lambda_0 x)$ satisfies $V(u^{\lambda_0}) = 0, \quad M(u^{\lambda_0}) = M(u), \quad 0 < E(u^{\lambda_0}) < E(u) < E_{\min}(M(u)),$

 \implies contradiction

•
$$\frac{d}{d\lambda}E(u^{\lambda}) = \frac{V(u^{\lambda})}{\lambda} = \lambda \int |\nabla u|^2 dx - \frac{3}{4}\lambda^2 \int |u|^4 dx + \lambda^5 \int |u|^6 dx$$

• V(u) < 0 and $\lim_{\lambda \to \infty} V(u^{\lambda}) = \infty \implies$ there exists $\lambda_0 > 1$ with $V(u^{\lambda_0}) = 0$

• take the first such $\lambda_0 \Longrightarrow V(u^{\lambda}) < 0$ for $\lambda \in [1, \lambda_0) \Longrightarrow E(u^{\lambda_0}) < E(u)$

12/23

We use the **concentration-compactness and rigidity method** developed by Kenig-Merle.

- Concentration-compactness :
 - Using a profile decomposition theorem for bounded sequences in $H^1(\mathbb{R}^3)$, we prove the existence of a minimal blowup solution $u: D(u) = D_c < \infty$ and

$$\|u\|_{L^{10}_{t,x}((-\infty,0]\times\mathbb{R}^3)} = \|u\|_{L^{10}_{t,x}([0,\infty)\times\mathbb{R}^3)} = \infty$$

• u is well-localized in physical space (almost periodic modulo translations) : for all $\eta > 0$ there exists $C(\eta)$ and |x(t)| = o(t) as $t \to \infty$ such that

$$\sup_{t \in \mathbb{R}} \int_{|x-x(t)| \ge C(\eta)} \left(|\nabla u|^2 + |u|^6 + |u|^4 + |u|^2 \right) dx \le \eta$$

2 Rigidity :

- such an almost periodic blowup solution cannot occur
- key element : V(f) > 0 for all f in the region \mathcal{R}

Dispersive part : Profile decomposition

- Strichartz admissible pair $(p,q): \frac{2}{p} + \frac{3}{q} = \frac{3}{2} \implies (10,\frac{30}{13})$ is admissible
- \bullet Strichartz + Sobolev inequality :

$$\|e^{it\Delta}f\|_{L^{10}_{t,x}(\mathbb{R}\times\mathbb{R}^3)} \le \|\nabla e^{it\Delta}f\|_{L^{10}_{t}L^{\frac{30}{13}}_{x}} \le \|\nabla f\|_{L^2}$$

Theorem (Profile decomposition theorem)

Let $\{f_n\}_{n\in\mathbb{N}}$ be bounded in $H^1(\mathbb{R}^3)$. Then, there exist $J^* \in \{0, 1, 2, \ldots\} \cup \infty$, $\phi^j \in \dot{H}^1(\mathbb{R}^3) \setminus \{0\}, \quad \{\lambda_n^j\}_{n\in\mathbb{N}} \subset (0, 1], \quad \{t_n^j\}_{n\in\mathbb{N}} \subset \mathbb{R}, \quad and \quad \{x_n^j\}_{n\in\mathbb{N}} \subset \mathbb{R}^3$

 $\lambda_n^j \equiv 1 \quad or \quad \lambda_n^j \to 0 \ as \ n \to \infty, \quad and \quad t_n^j \equiv 0 \quad or \quad t_n^j \to \pm \infty \ as \ n \to \infty.$ Moreover, with

$$P_n^j \phi^j := \begin{cases} \phi^j, & \text{if } \lambda_n^j \equiv 1, \\ P_{\geq (\lambda_n^j)^\theta} \phi^j, & \text{if } \lambda_n^j \to 0, \end{cases} \quad 0 < \theta < 1,$$

we have

$$f_n(x) = \sum_{j=1}^J (\lambda_n^j)^{-\frac{1}{2}} \left(e^{it_n^j \Delta} \boldsymbol{P}_n^j \boldsymbol{\phi}^j \right) \left(\frac{x - x_n^j}{\lambda_n^j} \right) + w_n^J \quad in \ H^1(\mathbb{R}^3),$$

with

$$\lim_{J \to J^*} \limsup_{n \to \infty} \|e^{it\Delta} w_n^J\|_{L^{10}_{t,x}(\mathbb{R} \times \mathbb{R}^3)} = 0.$$

Decoupling of mass and energy

$$\begin{split} e^{-it_n^j \Delta} & (\lambda_n^j)^{\frac{1}{2}} w_n^J (\lambda_n^j \cdot + x_n^j) \rightharpoonup 0 \quad \text{in } \dot{H}^1(\mathbb{R}^3), \text{ for all } 1 \leq j \leq J \\ \sup_J \lim_{n \to \infty} \left(M(f_n) - \sum_{j=1}^J M(g_n^j) - M(w_n^J) \right) &= 0 \\ \sup_J \lim_{n \to \infty} \left(E(f_n) - \sum_{j=1}^J E(g_n^j) - E(w_n^J) \right) &= 0 \\ \lim_{n \to \infty} \left[\frac{\lambda_n^j}{\lambda_n^{j'}} + \frac{\lambda_n^{j'}}{\lambda_n^j} + \frac{|x_n^j - x_n^{j'}|^2}{\lambda_n^j \lambda_n^{j'}} + \frac{|t_n^j (\lambda_n^j)^2 - t_n^{j'} (\lambda_n^{j'})^2|}{\lambda_n^j \lambda_n^{j'}} \right] &= \infty, \quad \text{for all } j \neq j', \end{split}$$

where g_n^j is defined by

$$g_n^j(x) := (\lambda_n^j)^{-\frac{1}{2}} \left(e^{it_n^j \Delta} \underline{P}_n^j \phi^j \right) \left(\frac{x - x_n^j}{\lambda_n^j} \right)$$

・ロ ・ ・ 一 ・ ・ 主 ・ ・ 主 ・ う へ ペ 15 / 23

Compactness of minimizing sequences

Theorem

$$\begin{split} \text{If } D(u_n) &\to D_c \ \text{and} \ \lim_{n \to \infty} \|u_n\|_{L^{10}_{t,x}([t_n,\infty) \times \mathbb{R}^3)} = \lim_{n \to \infty} \|u_n\|_{L^{10}_{t,x}((-\infty,t_n] \times \mathbb{R}^3)} = \infty, \\ \text{then there exists } \{x_n\}_{n \in \mathbb{N}} \subset \mathbb{R}^3 \ \text{such that, on a subsequence,} \\ u_n(t_n,\cdot+x_n) \to \phi \ \text{in} \ H^1(\mathbb{R}^3). \end{split}$$

 $\underline{\operatorname{Proof}}: t_n \equiv 0, \ D(u_n(0)) \le D_c + 1 < \infty \Longrightarrow \{u_n(0)\}_{n \in \mathbb{N}} \text{ bounded in } H^1(\mathbb{R}^3):$ $M(u_n(0)) \to M_0 < M(Q_1), \quad E(u_n(0)) \to E_0, \quad \|\nabla u_n(0)\|_{L^2}^2 \sim E(u_n(0))$

Profile decomposition : $u_n(0) = \sum_{j=1}^J (\lambda_n^j)^{-\frac{1}{2}} \left(e^{it_n^j \Delta} P_n^j \phi^j \right) \left(\frac{x - x_n^j}{\lambda_n^j} \right) + w_n^J$

Nonlinear profiles for each j:

• if
$$\lambda_n^j \equiv 1$$
, $t_n^j \equiv 0 \Longrightarrow v^j(0) = \phi^j$ and $v_n^j(t, x) = v^j(t + t_n^j, x - x_n^j)$
• if $\lambda_n^j \equiv 1$, $t_n^j \to \pm \infty \Longrightarrow v^j$ scatters forward/backward to $e^{it\Delta}\phi^j$
• if $\lambda_n^j \to 0 \Longrightarrow v_n^j(0) = (\lambda_n^j)^{-\frac{1}{2}} \left(e^{it_n^j\Delta}P_n^j\phi^j\right) \left(\frac{x - x_n^j}{\lambda_n^j}\right)$:
 $v_n^j(t, x) \sim (\lambda_n^j)^{-\frac{1}{2}} w^j \left(\frac{t}{(\lambda_n^j)^2} + t_n^j, \frac{x - x_n^j}{\lambda_n^j}\right)$,

 w^j is the solution of quintic NLS with $w^j(0) = \phi^j$

By mass and energy decoupling :

$$\limsup_{n \to \infty} \sum_{j=1}^{J^*} \left(M(v_n^j(0)) + M(w_n^{J^*}) \right) \le M_0$$
$$\limsup_{n \to \infty} \sum_{j=1}^{J^*} E(v_n^j(0)) + E(w_n^{J^*}) \le E_0$$

 $\begin{array}{l} \bullet \quad \underline{\text{Case 1}} : \ \limsup_{n \to \infty} \sup_{j} M(v_n^j(0)) = M_0 \ \text{and} \ \limsup_{n \to \infty} \sup_{j} E(v_n^j(0)) = E_0 \\ \implies \text{only one profile } \phi^1 \ \text{and} \ \lambda_n^1 \equiv 1, \ t_n^1 \equiv 0 : \end{array}$

$$u_n(0,x) = \phi^1(x - x_n^1) + w_n^1 \text{ and } w_n^1 \to 0 \text{ in } H^1(\mathbb{R}^3)$$

17/23

 $\textcircled{0} \ \underline{\text{Case 2}}: \ \limsup_{n \to \infty} \sup_j M(v_n^j(0)) < M_0 \ \text{or} \ \limsup_{n \to \infty} \sup_j E(v_n^j(0)) < E_0$

•
$$D(v_n^j) \le D_c - \varepsilon$$
 for all j
• Introduce : $u_n^J(t) := \sum_{j=1}^J v_n^j(t) + e^{it\Delta} w_n^J$, J large, finite

By mass and energy decoupling :

$$\limsup_{n \to \infty} \sum_{j=1}^{J^*} \left(M(v_n^j(0)) + M(w_n^{J^*}) \right) \le M_0$$
$$\limsup_{n \to \infty} \sum_{j=1}^{J^*} E(v_n^j(0)) + E(w_n^{J^*}) \le E_0$$

• Case 1 : $\limsup_{n \to \infty} \sup_j M(v_n^j(0)) = M_0$ and $\limsup_{n \to \infty} \sup_j E(v_n^j(0)) = E_0$ \implies only one profile ϕ^1 and $\lambda_n^1 \equiv 1$, $t_n^1 \equiv 0$:

$$u_n(0,x) = \phi^1(x - x_n^1) + w_n^1 \text{ and } w_n^1 \to 0 \text{ in } H^1(\mathbb{R}^3)$$

 $\underline{O} \ \underline{Case \ 2}: \ \limsup_{n \to \infty} \sup_j M(v_n^j(0)) < M_0 \ \text{or} \ \limsup_{n \to \infty} \sup_j E(v_n^j(0)) < E_0$

- $D(v_n^j) \leq D_c \varepsilon$ for all j• Introduce : $u_n^J(t) := \sum_{j=1}^J \underbrace{v_n^j(t)}_{\text{scatter}} + \underbrace{e^{it\Delta}w_n^J}_{\to 0}, \quad J \text{ large, finite}$
- u_n^J approximates well u_n (in the $L_{t,x}^{10}$ -norm)
- By perturbation theory $\implies u_n$ scatters \implies contradiction

By mass and energy decoupling :

$$\limsup_{n \to \infty} \sum_{j=1}^{J^*} \left(M(v_n^j(0)) + M(w_n^{J^*}) \right) \le M_0$$
$$\limsup_{n \to \infty} \sum_{j=1}^{J^*} E(v_n^j(0)) + E(w_n^{J^*}) \le E_0$$

• Case 1 : $\limsup_{n \to \infty} \sup_j M(v_n^j(0)) = M_0$ and $\limsup_{n \to \infty} \sup_j E(v_n^j(0)) = E_0$ \implies only one profile ϕ^1 and $\lambda_n^1 \equiv 1$, $t_n^1 \equiv 0$:

$$u_n(0,x) = \phi^1(x - x_n^1) + w_n^1 \text{ and } w_n^1 \to 0 \text{ in } H^1(\mathbb{R}^3)$$

 $\textcircled{0} \ \underline{\text{Case 2}}: \ \limsup_{n \to \infty} \sup_j M(v_n^j(0)) < M_0 \ \text{or} \ \limsup_{n \to \infty} \sup_j E(v_n^j(0)) < E_0$

•
$$D(v_n^j) \le D_c - \varepsilon$$
 for all j
• Introduce :
 $u_n^J(t) := \sum_{j=1}^J \underbrace{v_n^j(t)}_{\text{scatter}} + \underbrace{e^{it\Delta}w_n^J}_{\to 0}, \quad J \text{ large, finite}$

- u_n^J approximates well u_n (in the $L_{t,x}^{10}$ -norm)
- By perturbation theory $\implies u_n$ scatters \implies contradiction

Extraction of the minimal blowup solution

• Consider solutions $\{u_n\}_{n\in\mathbb{N}}$ of (CQ) such that

 $D(u_n) \to D_c \text{ and } \lim_{n \to \infty} \|u_n\|_{L^{10}_{t,x}((-\infty,0] \times \mathbb{R}^3)} = \lim_{n \to \infty} \|u_n\|_{L^{10}_{t,x}([0,\infty) \times \mathbb{R}^3)} = \infty$

• By the compactness property of minimizing sequences :

 $u_n(0, \cdot + x_n) \to u_0$ in $H^1(\mathbb{R}^3)$.

• Consider u the solution of (CQ) with $u(0) = u_0$. Then :

 $D(u_n) \to D(u) = D_c \text{ and } \|u\|_{L^{10}_{t,x}((-\infty,0] \times \mathbb{R}^3)} = \|u\|_{L^{10}_{t,x}([0,\infty) \times \mathbb{R}^3)} = \infty$

 $\implies u$ is a minimal blowup solution

• u is almost periodic modulo translations : for any $\{t_n\}_{n\in\mathbb{N}}$, there exists $\{x(t_n)\}_{n\in\mathbb{N}}$ such that

$$u(t_n, \cdot + x(t_n)) \to u_\infty \text{ in } H^1(\mathbb{R}^3)$$

18/23

Virial bounded away from zero for the minimal blowup solution

- For the minimal blowup solution $u: D(u) = D_c < \infty$
- $(M(u), E(u)) \in \mathcal{R} \Longrightarrow V(u(t)) > 0$ for all $t \in \mathbb{R}$

Virial bounded away from zero for the minimal blowup solution

- For the minimal blowup solution $u: D(u) = D_c < \infty$
- $(M(u), E(u)) \in \mathcal{R} \Longrightarrow V(u(t)) > 0$ for all $t \in \mathbb{R}$
- Actually, there is $\delta > 0$ such that $V(u(t)) > \delta$ for all $t \in \mathbb{R}$.
- Indeed, assume $V(u(t_n)) \to 0$. By compactness of the minimal blowup solution u, there exists $u_{\infty} \in H^1$ such that

$$u(t_n, \cdot + x(t_n)) \to u_\infty$$
 in $H^1(\mathbb{R}^3)$.

• By Sobolev embeddings, it follows that

$$M(u(t_n)) = M(u_{\infty}), \quad E(u(t_n)) = E(u_{\infty}) \Longrightarrow u_{\infty} \in \mathcal{R}$$
$$V(u(t_n)) \to V(u_{\infty}) = 0,$$

 \implies contradiction

Rigidity argument

• Almost periodic minimal blowup solution : for all $\eta > 0$ there exists $C(\eta)$ and |x(t)| = o(t) as $t \to \infty$ s.t.

$$\sup_{t \in \mathbb{R}} \int_{|x-x(t)| \ge C(\eta)} \left(|\nabla u|^2 + |u|^6 + |u|^4 + |u|^2 \right) dx \le \eta$$

• Consider $\phi(r) = 1$ if $r \le 1$ and $\phi(r) = 0$ if $r \ge 2$ and

$$U_R(t) := 2 \operatorname{Im} \int \phi(\frac{x}{R}) \overline{u(t)} x \cdot \nabla u(t) dx$$

• $|U_R(t)| \leq C'R$ and

$$\partial_t U_R(t) = 4V(u(t)) + O\left(\int_{|x| \ge R} (|\nabla u|^2 + |u|^6 + |u|^4 + |u|^2) dx\right)$$

• Taking $R = C(\eta) + \sup_{t \in [T_0, T_1]} |x(t)|$, we get $\partial_t U_R(t) > V(u(t)) > \delta$

• Integrating from
$$T_0$$
 to T_1 :
 $\delta(T_1 - T_0) < U_R(T_1) - U_R(T_0) \le 2C'R \le C'(\eta) + \frac{\delta}{2}T_1$

• Taking $T_1 \to \infty \Longrightarrow$ contradiction

Lemma

The region \mathcal{R} is a maximal connected component of the origin with positive virial.

<u>Proof</u>: For any u minimizer of $E_{\min}(m)$, there exist two branches of continuous curves emanating from u, situated above the graph of E_{\min} such that :

イロト イロト イヨト イヨト 三日

- for $u^{\lambda}(x) := \lambda^{\frac{3}{2}} u(\lambda x)$ with $1 < \lambda \leq 1 + \varepsilon$, we have $V(u^{\lambda}) > 0$
- for $u_{\lambda}(x) := \lambda^{\frac{1}{2}} u(\lambda x)$ with $1 \varepsilon \le \lambda < 1$, we have $V(u_{\lambda}) < 0$

Comparison to other NLS with combined-power nonlinearity

- Miao, Xu, Zhao (2011) :
 - focusing quintic, defocusing cubic NLS on \mathbb{R}^3 , radial data
 - $e := \inf \{ E(u) : \mathcal{K}(u) = 0 \}$ is not achieved
 - $e = E^c(W)$ where E^c is a modified energy and W is the stationary solution for focusing energy-critical NLS
 - GWP and scattering if $E(u_0) < e$ and $\mathcal{K}(u_0) \ge 0$
- Akahori, Ibrahim, Hikuchi, Nawa (2012) :
 - both nonlinearities are focusing, one energy critical, the other energy-subcritical, on \mathbb{R}^d for $d \geq 5$
 - $s := \inf \{ S_{\omega}(u) = E(u) + \omega M(u) : \mathcal{K}(u) = 0 \}$
 - s is achieved by solitons
 - GWP and scattering if $S_{\omega}(u_0) < s$ and $\mathcal{K}(u_0) > 0$
- In both the above cases :
 - there are finite time blowup solutions : the equations have a different nature than (CQ)

Open issues

- Uniqueness of the optimizers Q_{β} of the β -Gagliardo-Nirenberg inequality
- Any optimizer Q_{β} is a soliton P_{ω} . Is any soliton P_{ω} an optimizer $Q_{\beta(\omega)}$?
- On the curve E_{\min} , M(rescaled solitons) $< M(P_{\omega^*}) \le M$ (solitons)
- Scattering above the graph of $E_{\min}(m)$ for $M(R) \le m < M(P_{\omega^*})$
- Continuity of $m \mapsto E_{\min}(m)$ for $M(R) \le m < M(Q_1)$
- Stability/instability of solitons : related to the monotonicity of $\omega \mapsto M(P_{\omega})$
 - lower branch is conjectured to be stable
 - upper branch is conjectured to be unstable
- Behavior near unstable solitons
 - after a transitory period of time, perturbations of unstable solitons are expected to approach stable solitons
 - Buslaev, Grikurov (2001), LeMesurier, Papanicolaou, Sulem, Sulem (1988)