# Scattering for cubic-quintic nonlinear Schrödinger equation on $\mathbb{R}^{3}$ 

Oana Pocovnicu<br>Princeton University

March 9th 2013

Joint work with R. Killip (UCLA), T. Oh (Princeton), M. Vişan (UCLA)

> SCAPDE
> UCLA

- Cubic-quintic nonlinear Schrödinger equation on $\mathbb{R}^{3}$ :

$$
\left\{\begin{array}{l}
i \partial_{t} u+\Delta u=|u|^{4} u-|u|^{2} u  \tag{CQ}\\
u(0)=u_{0} \in H^{1}\left(\mathbb{R}^{3}\right)
\end{array}\right.
$$

- Model in various physical problems in : nonlinear optics, plasma physics, Bose-Einstein condensation
- Conserved quantities : mass, energy, and momentum :

$$
M(u)=\int|u|^{2} d x, \quad E(u)=\int \frac{|\nabla u|^{2}}{2}+\frac{|u|^{6}}{6}-\frac{|u|^{4}}{4} d x, \quad P(u)=\operatorname{Im} \int \bar{u} \nabla u d x
$$

- Globally well-posed in $H^{1}\left(\mathbb{R}^{3}\right)$
- Scattering : there exist $u_{+}$and $u_{-}$in $H^{1}\left(\mathbb{R}^{3}\right)$ such that

$$
\lim _{t \rightarrow \pm \infty}\left\|u(t)-e^{i t \Delta} u_{ \pm}\right\|_{H^{1}\left(\mathbb{R}^{3}\right)}=0
$$

- (CQ) admits solitons $e^{i t \omega} P_{\omega}(x)$ : solutions which do not scatter
- Goal : Scattering in a large region


## Nonlinear Schrödinger equations

- Nonlinear Schrödinger equation (NLS) on $\mathbb{R}^{d}$ :
(NLS)

$$
i \partial_{t} u+\Delta u= \pm|u|^{p-1} u
$$

- defocusing with the sign "+" and focusing with the sign "-"
- Scaling invariance : $u(t, x) \mapsto u_{\lambda}(t, x):=\lambda^{\frac{2}{p-1}} u\left(\lambda^{2} t, \lambda x\right)$.
- NLS is energy-critical ( $\dot{H}^{1}$-critical) if

$$
\begin{aligned}
\left\|u_{\lambda}(0)\right\|_{\dot{H}^{1}\left(\mathbb{R}^{d}\right)}=\|u(0)\|_{\dot{H}^{1}\left(\mathbb{R}^{d}\right)} & \Longleftrightarrow \lambda^{\frac{2}{p-1}+1-\frac{d}{2}}\|u(0)\|_{\dot{H}^{1}\left(\mathbb{R}^{d}\right)}=\|u(0)\|_{\dot{H}^{1}\left(\mathbb{R}^{d}\right)} \\
& \Longleftrightarrow p=1+\frac{4}{d-2}
\end{aligned}
$$

- NLS is energy-subcritical if $p<1+\frac{4}{d-2}$
- NLS is energy-supercritical if $p>1+\frac{4}{d-2}$
- (CQ) on $\mathbb{R}^{3}$ : quintic nonlinearity is energy-critical and defocusing cubic nonlinearity is subcritical and focusing


## Energy-critical NLS

Defocusing energy-critical NLS : $i \partial_{t} u+\Delta u=|u|^{\frac{4}{d-2}} u$ on $\mathbb{R}^{d}, d \geq 3$

- Global well-posedeness (GWP) and scattering
- Bourgain (1999) $d=3,4$ radial case
- Grillakis (2000) $d=3$, radial case, no scattering
- Colliander-Keel-Staffilani-Takaoka-Tao (2008) $d=3$
- Ryckman-Vişan, Vişan $(2007,2012) d \geq 4$

Focusing energy-critical NLS : $i \partial_{t} u+\Delta u=-|u|^{\frac{4}{d-2}} u$ on $\mathbb{R}^{d}, d=3,4,5$ :

- GWP and scattering versus finite time blowup solutions
- Kenig-Merle (2006) radial case
- Threshold for scattering : (kinetic) energy of the stationary solution $W$

$$
\Delta W+|W|^{4} W=0
$$

Specific features of the cubic-quintic NLS on $\mathbb{R}^{3}$ :

- GWP for all data in $H^{1}\left(\mathbb{R}^{3}\right)$
- Scattering versus soliton behavior $\left(e^{i t \omega} P_{\omega}(x)\right)$
- Threshold for scattering : the energies of a branch of (rescaled) solitons


## Cubic-Quintic NLS on $\mathbb{R}^{3}$

- Tao, Vişan, Zhang (2007) :
- global well-posedness in $H^{1}\left(\mathbb{R}^{3}\right)$ :
treat (CQ) as a perturbation of defocusing energy-critical NLS
- scattering for small mass : $M\left(u_{0}\right) \leq c\left(\left\|\nabla u_{0}\right\|_{L^{2}}\right)$
- Crucial space-time norm for scattering : $L_{t, x}^{10}\left(\mathbb{R} \times \mathbb{R}^{3}\right)$

$$
\|u\|_{L_{t, x}^{10}\left(\mathbb{R} \times \mathbb{R}^{3}\right)}<\infty \Longrightarrow \text { solution } u \text { scatters }
$$

- Virial $V(u):=\int|\nabla u|^{2}-\frac{3}{4}|u|^{4}+|u|^{6} d x$
- $E_{\text {min }}$ defined by

$$
E_{\min }(m):=\inf \left\{E(f): f \in H^{1}\left(\mathbb{R}^{3}\right), M(f)=m, V(f)=0\right\}
$$

## Theorem (R. Killip, T. Oh, O.P., M. Vişan 2012)

If $u_{0} \in H^{1}\left(\mathbb{R}^{3}\right)$ is such that $0<E\left(u_{0}\right)<E_{\min }\left(M\left(u_{0}\right)\right)$, then the corresponding solution scatters both forward and backward in time.

## Strategy of proof

- Variational part
- describe the region $\mathcal{R}$ given by $0 \leq E(f)<E_{\min }(M(f))$
- find the minimizers of $E_{\text {min }}$ when they exist : (rescaled) solitons
- Dispersive part
- to specify the region $\mathcal{R}$, introduce

$$
D(f):=E(f)+\frac{M(f)+E(f)}{\operatorname{dist}\left((M(f), E(f)), \overline{\text { epigraph } E_{\min }}\right)}
$$

$D \ll 1$ near the origin and $D \rightarrow \infty$ near the graph of $E_{\text {min }}$

- $L(D):=\sup \left\{\|u\|_{L_{t, x}^{10}\left(\mathbb{R} \times \mathbb{R}^{3}\right)}: u\right.$ solution, $\left.D(u) \leq D\right\}$
- Scattering in the region $\mathcal{R} \Longleftrightarrow L(D)<\infty$ for all $0<D<\infty$
- By small data theory : $D \ll 1 \Longrightarrow L(D)<\infty$
- Argue by contradiction : there exists a critical $0<D_{c}<\infty$ such that

$$
\begin{aligned}
& L(D)<\infty \text { if } D<D_{c} \\
& L(D)=\infty \text { if } D>D_{c}
\end{aligned}
$$

## Variational part : Solitons

- Soliton solutions of the form $u(t, x)=e^{i \omega t} P_{\omega}(x)$, where $P_{\omega}$ satisfies

$$
\Delta P_{\omega}-\left|P_{\omega}\right|^{4} P_{\omega}+\left|P_{\omega}\right|^{2} P_{\omega}-\omega P_{\omega}=0
$$

- Berestycki-Lions (1983) : radial, positive solitons $P_{\omega}$ exist $\Longleftrightarrow \omega \in\left(0, \frac{3}{16}\right)$
- Serrin-Tang (2000) : uniqueness of non-negative radial solitons $P_{\omega}$
- Vanishing virial : $V\left(P_{\omega}\right)=0$ for all $\omega \in\left(0, \frac{3}{16}\right)$.
- Desyatnikov et al. (Phys. Rev. E, 2000) and Mihalache et al. (Phys. Rev. Lett., 2002) show the existence of two branches of solitons
- We can prove analytically the asymptotic behavior of $M\left(P_{\omega}\right)$ and $E\left(P_{\omega}\right)$ as $\omega \rightarrow 0$ and as $\omega \rightarrow \frac{3}{16}$, but NOT their monotonicity


## $\beta$-Gagliardo-Nirenberg inequality on $\mathbb{R}^{3}$

$$
\|u\|_{L^{4}}^{4} \leq C_{\beta}\|u\|_{L^{2}}\|u\|_{L^{6}}^{\frac{3 \beta}{1+\beta}}\|\nabla u\|_{L^{2}}^{\frac{3}{1+\beta}}
$$

$\underline{\text { Proof }}:\|u\|_{L^{4}}^{4} \leq\|u\|_{L^{2}}\|u\|_{L^{6}}^{3} \leq\|u\|_{L^{2}}\|u\|_{L^{6}}^{\frac{3 \beta}{1+\beta}}\|\nabla u\|_{L^{2}}^{\frac{3}{1+\beta}}$

- The optimal constant is achieved modulo scaling by positive, radial $Q_{\beta}$ satisfying

$$
\Delta Q_{\beta}-Q_{\beta}^{5}+Q_{\beta}^{3}-\omega_{\beta} Q_{\beta}=0
$$

- In particular, $Q_{\beta}$ is equal to the soliton $P_{\omega_{\beta}}$ for some $\omega_{\beta} \in\left(0, \frac{3}{16}\right)$


## $\beta$-Gagliardo-Nirenberg inequality on $\mathbb{R}^{3}$

$$
\|u\|_{L^{4}}^{4} \leq C_{\beta}\|u\|_{L^{2}}\|u\|_{L^{6}}^{\frac{3 \beta}{1+\beta}}\|\nabla u\|_{L^{2}}^{\frac{3}{1+\beta}}
$$

Proof $:\|u\|_{L^{4}}^{4} \leq\|u\|_{L^{2}}\|u\|_{L^{6}}^{3} \leq\|u\|_{L^{2}}\|u\|_{L^{6}}^{\frac{3 \beta}{1+\beta}}\|\nabla u\|_{L^{2}}^{\frac{3}{1+\beta}}$

- The optimal constant is achieved modulo scaling by positive, radial $Q_{\beta}$ satisfying

$$
\Delta Q_{\beta}-Q_{\beta}^{5}+Q_{\beta}^{3}-\omega_{\beta} Q_{\beta}=0
$$

- In particular, $Q_{\beta}$ is equal to the soliton $P_{\omega_{\beta}}$ for some $\omega_{\beta} \in\left(0, \frac{3}{16}\right)$
- Uniqueness of $Q_{\beta}$ is NOT known
- The optimal constant can be expressed as

$$
C_{\beta}=\frac{4(1+\beta)}{3 \beta^{\frac{\beta}{2(1+\beta)}}} \cdot \frac{1}{\left\|Q_{\beta}\right\|_{L^{2}}\left\|\nabla Q_{\beta}\right\|_{L^{2}}^{\frac{1-\beta}{1+\beta}}}
$$

- For $\beta=1$ and any $Q_{1}$, we have unique mass $M\left(Q_{1}\right)=\left(\frac{8}{3 C_{1}}\right)^{2}$
- Fix an optimizer $Q_{1}$ and define $R(x):=\frac{1}{\sqrt{2}} Q_{1}\left(\frac{\sqrt{3}}{2} x\right)$


## Feasible pairs $(M(u), E(u))$ for $u \in H^{1}\left(\mathbb{R}^{3}\right)$

All the feasible pairs $(M(u), E(u))$ lie above or on the graph of $\mathcal{E}$

$$
\mathcal{E}(m):=\inf \left\{E(f): f \in H^{1}\left(\mathbb{R}^{3}\right), M(f)=m\right\},
$$

with the following properties :

- $\mathcal{E}$ is continuous, concave, non-increasing
- We have that
- $\mathcal{E}(m)=0$ if $0 \leq m \leq M\left(Q_{1}\right)$
- $\mathcal{E}(m)<0$ if $m>M\left(Q_{1}\right)$
- $m \geq M\left(Q_{1}\right)$ : the infimum $\mathcal{E}(m)$ is achieved by a soliton $P_{\omega}$ Indeed, by the Euler-Lagrange equation :

$$
\frac{d E}{d u}=-\frac{\omega}{2} \frac{d M}{d u} \Longleftrightarrow \Delta u-u^{5}+u^{3}-\omega u=0
$$

- $m<M\left(Q_{1}\right)$ : the infimum $\mathcal{E}(m)=0$ is not achieved


## Positive virial for mass less than $M(R)$

Virial $V(u):=\int|\nabla u|^{2}-\frac{3}{4}|u|^{4}+|u|^{6} d x$

## Lemma

If $M(u)<M(R)$, then $V(u)>0$.

Proof : Since $C_{1}=\frac{8}{3\left\|Q_{1}\right\|_{L^{2}}}$, Gagliardo-Nirenberg inequality for $\beta=1$ and Young's inequality yield :

$$
\begin{aligned}
\frac{3}{4} \int|u|^{4} d x & \leq 2 \frac{\|u\|_{L^{2}}}{\left\|Q_{1}\right\|_{L^{2}}}\left(\int|u|^{6} d x\right)^{1 / 4}\left(\int|\nabla u|^{2} d x\right)^{3 / 4} \\
& \leq \frac{3^{3 / 4}}{2} \frac{\|u\|_{L^{2}}}{\left\|Q_{1}\right\|_{L^{2}}}\left(4 \int|u|^{6} d x\right)^{1 / 4}\left(\frac{4}{3} \int|\nabla u|^{2} d x\right)^{3 / 4} \\
& \leq \frac{3^{3 / 4}}{2} \frac{\|u\|_{L^{2}}}{\left\|Q_{1}\right\|_{L^{2}}} \int\left(|u|^{6}+|\nabla u|^{2}\right) d x
\end{aligned}
$$

Thus, if $\|u\|_{L^{2}}<\frac{2}{3^{3 / 4}}\left\|Q_{1}\right\|_{L^{2}}=\|R\|_{L^{2}}$, then $V(u)>0$.
Remark : $R$ has the smallest positive mass with vanishing virial.

## The region $\mathcal{R}: 0 \leq E(f)<E_{\min }(M(f))$

$$
E_{\min }(m):=\inf \left\{E(f): f \in H^{1}\left(\mathbb{R}^{3}\right), M(f)=m, V(f)=0\right\}
$$

- $E_{\min }(m)=\infty$ if $m<M(R)$
- $E_{\min }(m)=\mathcal{E}(m)$ if $m \geq M\left(Q_{1}\right)$
- For $M(R) \leq m<M\left(Q_{1}\right), E_{\min }(m)$ is
- finite
- strictly decreasing
- attained by solitons $P_{\omega}$ or rescaled solitons $a P_{\omega}(\lambda x)$
- Indeed, the Euler-Lagrange equation yields

$$
\frac{d E}{d u}=-\mu \frac{d V}{d u}-\nu \frac{d M}{d u} \Longleftrightarrow-\Delta u+u^{5}-u^{3}=-\mu\left(-2 \Delta u+6 u^{5}-3 u^{3}\right)-2 \nu u
$$

- $u$ is a soliton if $\mu=0$
- $u$ is a rescaled soliton for $\mu \in(0, \infty]: a P_{\omega}(\lambda x)$

$$
a=\sqrt{\frac{1+3 \mu}{1+6 \mu}}, \quad \lambda=\frac{1+3 \mu}{\sqrt{(1+2 \mu)(1+6 \mu)}}, \quad \omega=\frac{\nu(1+6 \mu)}{(1+3 \mu)^{2}}
$$

## Positive virial in the region $\mathcal{R}: 0 \leq E(f)<E_{\min }(M(f))$

## Lemma

We have $V(u)>0$ for all $(M(u), E(u)) \in \mathcal{R}$.

## Proof :

- By the definition of $E_{\min }, V(u) \neq 0$ for all $u \in \mathcal{R}$.
- Suppose there is $u \in \mathcal{R}$ such that $V(u)<0$. Then, there is $\lambda_{0}>1$ such that $u^{\lambda_{0}}(x):=\lambda_{0}^{\frac{3}{2}} u\left(\lambda_{0} x\right)$ satisfies

$$
V\left(u^{\lambda_{0}}\right)=0, \quad M\left(u^{\lambda_{0}}\right)=M(u), \quad 0<E\left(u^{\lambda_{0}}\right)<E(u)<E_{\min }(M(u)),
$$

$\Longrightarrow$ contradiction

## Positive virial in the region $\mathcal{R}: 0 \leq E(f)<E_{\min }(M(f))$

## Lemma

We have $V(u)>0$ for all $(M(u), E(u)) \in \mathcal{R}$.

## Proof :

- By the definition of $E_{\min }, V(u) \neq 0$ for all $u \in \mathcal{R}$.
- Suppose there is $u \in \mathcal{R}$ such that $V(u)<0$. Then, there is $\lambda_{0}>1$ such that $u^{\lambda_{0}}(x):=\lambda_{0}^{\frac{3}{2}} u\left(\lambda_{0} x\right)$ satisfies

$$
V\left(u^{\lambda_{0}}\right)=0, \quad M\left(u^{\lambda_{0}}\right)=M(u), \quad 0<E\left(u^{\lambda_{0}}\right)<E(u)<E_{\min }(M(u)),
$$

$\Longrightarrow$ contradiction

- $\frac{d}{d \lambda} E\left(u^{\lambda}\right)=\frac{V\left(u^{\lambda}\right)}{\lambda}=\lambda \int|\nabla u|^{2} d x-\frac{3}{4} \lambda^{2} \int|u|^{4} d x+\lambda^{5} \int|u|^{6} d x$
- $V(u)<0$ and $\lim _{\lambda \rightarrow \infty} V\left(u^{\lambda}\right)=\infty \Longrightarrow$ there exists $\lambda_{0}>1$ with $V\left(u^{\lambda_{0}}\right)=0$
- take the first such $\lambda_{0} \Longrightarrow V\left(u^{\lambda}\right)<0$ for $\lambda \in\left[1, \lambda_{0}\right) \Longrightarrow E\left(u^{\lambda_{0}}\right)<E(u)$


## Dispersive part

We use the concentration-compactness and rigidity method developed by Kenig-Merle.
(1) Concentration-compactness :

- Using a profile decomposition theorem for bounded sequences in $H^{1}\left(\mathbb{R}^{3}\right)$, we prove the existence of a minimal blowup solution $u: D(u)=D_{c}<\infty$ and

$$
\|u\|_{L_{t, x}^{10}\left((-\infty, 0] \times \mathbb{R}^{3}\right)}=\|u\|_{L_{t, x}^{10}\left([0, \infty) \times \mathbb{R}^{3}\right)}=\infty
$$

- $u$ is well-localized in physical space (almost periodic modulo translations) : for all $\eta>0$ there exists $C(\eta)$ and $|x(t)|=o(t)$ as $t \rightarrow \infty$ such that

$$
\sup _{t \in \mathbb{R}} \int_{|x-x(t)| \geq C(\eta)}\left(|\nabla u|^{2}+|u|^{6}+|u|^{4}+|u|^{2}\right) d x \leq \eta
$$

(2) Rigidity:

- such an almost periodic blowup solution cannot occur
- key element : $V(f)>0$ for all $f$ in the region $\mathcal{R}$


## Dispersive part : Profile decomposition

- Strichartz admissible pair $(p, q): \frac{2}{p}+\frac{3}{q}=\frac{3}{2} \Longrightarrow\left(10, \frac{30}{13}\right)$ is admissible
- Strichartz + Sobolev inequality :

$$
\left\|e^{i t \Delta} f\right\|_{L_{t, x}^{10}\left(\mathbb{R} \times \mathbb{R}^{3}\right)} \leq\left\|\nabla e^{i t \Delta} f\right\|_{L_{t}^{10} L_{x}^{\frac{30}{13}}} \leq\|\nabla f\|_{L^{2}}
$$

## Theorem (Profile decomposition theorem)

Let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be bounded in $H^{1}\left(\mathbb{R}^{3}\right)$. Then, there exist $J^{*} \in\{0,1,2, \ldots\} \cup \infty$, $\phi^{j} \in \dot{H}^{1}\left(\mathbb{R}^{3}\right) \backslash\{0\}, \quad\left\{\lambda_{n}^{j}\right\}_{n \in \mathbb{N}} \subset(0,1], \quad\left\{t_{n}^{j}\right\}_{n \in \mathbb{N}} \subset \mathbb{R}, \quad$ and $\quad\left\{x_{n}^{j}\right\}_{n \in \mathbb{N}} \subset \mathbb{R}^{3}$

$$
\lambda_{n}^{j} \equiv 1 \quad \text { or } \quad \lambda_{n}^{j} \rightarrow 0 \text { as } n \rightarrow \infty, \quad \text { and } \quad t_{n}^{j} \equiv 0 \quad \text { or } t_{n}^{j} \rightarrow \pm \infty \text { as } n \rightarrow \infty
$$

Moreover, with
we have

$$
P_{n}^{j} \phi^{j}:=\left\{\begin{array}{ll}
\phi^{j}, & \text { if } \lambda_{n}^{j} \equiv 1, \\
P_{\geq\left(\lambda_{n}^{j}\right)^{\theta}} \phi^{j}, & \text { if } \lambda_{n}^{j} \rightarrow 0,
\end{array} \quad 0<\theta<1,\right.
$$

$$
f_{n}(x)=\sum_{j=1}^{J}\left(\lambda_{n}^{j}\right)^{-\frac{1}{2}}\left(e^{i t_{n}^{j} \Delta} P_{n}^{j} \phi^{j}\right)\left(\frac{x-x_{n}^{j}}{\lambda_{n}^{j}}\right)+w_{n}^{J} \quad \text { in } H^{1}\left(\mathbb{R}^{3}\right)
$$

with

$$
\lim _{J \rightarrow J^{*}} \limsup _{n \rightarrow \infty}\left\|e^{i t \Delta} w_{n}^{J}\right\|_{L_{t, x}^{10}\left(\mathbb{R} \times \mathbb{R}^{3}\right)}=0
$$

## Decoupling of mass and energy

$$
\begin{aligned}
& e^{-i t_{n}^{j} \Delta}\left(\lambda_{n}^{j}\right)^{\frac{1}{2}} w_{n}^{J}\left(\lambda_{n}^{j} \cdot+x_{n}^{j}\right)-0 \quad \text { in } \dot{H}^{1}\left(\mathbb{R}^{3}\right), \text { for all } 1 \leq j \leq J \\
& \sup _{J} \lim _{n \rightarrow \infty}\left(M\left(f_{n}\right)-\sum_{j=1}^{J} M\left(g_{n}^{j}\right)-M\left(w_{n}^{J}\right)\right)=0 \\
& \sup _{J} \lim _{n \rightarrow \infty}\left(E\left(f_{n}\right)-\sum_{j=1}^{J} E\left(g_{n}^{j}\right)-E\left(w_{n}^{J}\right)\right)=0 \\
& \lim _{n \rightarrow \infty}\left[\frac{\lambda_{n}^{j}}{\lambda_{n}^{j^{\prime}}}+\frac{\lambda_{n}^{j^{\prime}}}{\lambda_{n}^{j}}+\frac{\left|x_{n}^{j}-x_{n}^{j^{\prime}}\right|^{2}}{\lambda_{n}^{j} \lambda_{n}^{j^{\prime}}}+\frac{\left|t_{n}^{j}\left(\lambda_{n}^{j}\right)^{2}-t_{n}^{j^{\prime}}\left(\lambda_{n}^{j^{\prime}}\right)^{2}\right|}{\lambda_{n}^{j} \lambda_{n}^{j^{\prime}}}\right]=\infty, \quad \text { for all } j \neq j^{\prime}
\end{aligned}
$$

where $g_{n}^{j}$ is defined by

$$
g_{n}^{j}(x):=\left(\lambda_{n}^{j}\right)^{-\frac{1}{2}}\left(e^{i t_{n}^{j} \Delta} P_{n}^{j} \phi^{j}\right)\left(\frac{x-x_{n}^{j}}{\lambda_{n}^{j}}\right)
$$

## Compactness of minimizing sequences

## Theorem

If $D\left(u_{n}\right) \rightarrow D_{c}$ and $\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L_{t, x}^{10}\left(\left[t_{n}, \infty\right) \times \mathbb{R}^{3}\right)}=\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L_{t, x}^{10}\left(\left(-\infty, t_{n}\right] \times \mathbb{R}^{3}\right)}=\infty$, then there exists $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset \mathbb{R}^{3}$ such that, on a subsequence,

$$
u_{n}\left(t_{n}, \cdot+x_{n}\right) \rightarrow \phi \text { in } H^{1}\left(\mathbb{R}^{3}\right)
$$

Proof $: t_{n} \equiv 0, D\left(u_{n}(0)\right) \leq D_{c}+1<\infty \Longrightarrow\left\{u_{n}(0)\right\}_{n \in \mathbb{N}}$ bounded in $H^{1}\left(\mathbb{R}^{3}\right)$ :

$$
M\left(u_{n}(0)\right) \rightarrow M_{0}<M\left(Q_{1}\right), \quad E\left(u_{n}(0)\right) \rightarrow E_{0}, \quad\left\|\nabla u_{n}(0)\right\|_{L^{2}}^{2} \sim E\left(u_{n}(0)\right)
$$

Profile decomposition : $u_{n}(0)=\sum_{j=1}^{J}\left(\lambda_{n}^{j}\right)^{-\frac{1}{2}}\left(e^{i t_{n}^{j} \Delta} P_{n}^{j} \phi^{j}\right)\left(\frac{x-x_{n}^{j}}{\lambda_{n}^{j}}\right)+w_{n}^{J}$ Nonlinear profiles for each $j$ :

- if $\lambda_{n}^{j} \equiv 1, t_{n}^{j} \equiv 0 \Longrightarrow v^{j}(0)=\phi^{j}$ and $v_{n}^{j}(t, x)=v^{j}\left(t+t_{n}^{j}, x-x_{n}^{j}\right)$
- if $\lambda_{n}^{j} \equiv 1, t_{n}^{j} \rightarrow \pm \infty \Longrightarrow v^{j}$ scatters forward/backward to $e^{i t \Delta} \phi^{j}$
- if $\lambda_{n}^{j} \rightarrow 0 \Longrightarrow v_{n}^{j}(0)=\left(\lambda_{n}^{j}\right)^{-\frac{1}{2}}\left(e^{i t_{n}^{j} \Delta} P_{n}^{j} \phi^{j}\right)\left(\frac{x-x_{n}^{j}}{\lambda_{n}^{j}}\right)$ :

$$
v_{n}^{j}(t, x) \sim\left(\lambda_{n}^{j}\right)^{-\frac{1}{2}} w^{j}\left(\frac{t}{\left(\lambda_{n}^{j}\right)^{2}}+t_{n}^{j}, \frac{x-x_{n}^{j}}{\lambda_{n}^{j}}\right)
$$

$w^{j}$ is the solution of quintic NLS with $w^{j}(0)=\phi^{j}$

By mass and energy decoupling :

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \sum_{j=1}^{J^{*}}\left(M\left(v_{n}^{j}(0)\right)+M\left(w_{n}^{J^{*}}\right)\right) \leq M_{0} \\
& \limsup _{n \rightarrow \infty} \sum_{j=1}^{J^{*}} E\left(v_{n}^{j}(0)\right)+E\left(w_{n}^{J^{*}}\right) \leq E_{0}
\end{aligned}
$$

(1) Case 1 : $\lim \sup _{n \rightarrow \infty} \sup _{j} M\left(v_{n}^{j}(0)\right)=M_{0}$ and $\limsup _{n \rightarrow \infty} \sup _{j} E\left(v_{n}^{j}(0)\right)=E_{0}$ $\Longrightarrow$ only one profile $\phi^{1}$ and $\lambda_{n}^{1} \equiv 1, t_{n}^{1} \equiv 0$ :

$$
u_{n}(0, x)=\phi^{1}\left(x-x_{n}^{1}\right)+w_{n}^{1} \text { and } w_{n}^{1} \rightarrow 0 \text { in } H^{1}\left(\mathbb{R}^{3}\right)
$$

(2) Case 2 : $\lim \sup _{n \rightarrow \infty} \sup _{j} M\left(v_{n}^{j}(0)\right)<M_{0}$ or $\lim _{\sup }^{n \rightarrow \infty} \sup _{j} E\left(v_{n}^{j}(0)\right)<E_{0}$

- $D\left(v_{n}^{j}\right) \leq D_{c}-\varepsilon$ for all $j$
- Introduce :

$$
u_{n}^{J}(t):=\sum_{j=1}^{J} v_{n}^{j}(t)+e^{i t \Delta} w_{n}^{J}, \quad J \text { large, finite }
$$

By mass and energy decoupling :

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \sum_{j=1}^{J^{*}}\left(M\left(v_{n}^{j}(0)\right)+M\left(w_{n}^{J^{*}}\right)\right) \leq M_{0} \\
& \limsup _{n \rightarrow \infty} \sum_{j=1}^{J^{*}} E\left(v_{n}^{j}(0)\right)+E\left(w_{n}^{J^{*}}\right) \leq E_{0}
\end{aligned}
$$

(1) Case 1 : $\lim \sup _{n \rightarrow \infty} \sup _{j} M\left(v_{n}^{j}(0)\right)=M_{0}$ and $\limsup _{n \rightarrow \infty} \sup _{j} E\left(v_{n}^{j}(0)\right)=E_{0}$ $\Longrightarrow$ only one profile $\phi^{1}$ and $\lambda_{n}^{1} \equiv 1, t_{n}^{1} \equiv 0$ :

$$
u_{n}(0, x)=\phi^{1}\left(x-x_{n}^{1}\right)+w_{n}^{1} \text { and } w_{n}^{1} \rightarrow 0 \text { in } H^{1}\left(\mathbb{R}^{3}\right)
$$

(2) Case 2 : $\lim \sup _{n \rightarrow \infty} \sup _{j} M\left(v_{n}^{j}(0)\right)<M_{0}$ or $\limsup _{n \rightarrow \infty} \sup _{j} E\left(v_{n}^{j}(0)\right)<E_{0}$

- $D\left(v_{n}^{j}\right) \leq D_{c}-\varepsilon$ for all $j$
- Introduce :

$$
u_{n}^{J}(t):=\sum_{j=1}^{J} \underbrace{v_{n}^{j}(t)}_{\text {scatter }}+\underbrace{e^{i t \Delta} w_{n}^{J}}_{\rightarrow 0}, \quad J \text { large, finite }
$$

- $u_{n}^{J}$ approximates well $u_{n}$ (in the $L_{t, x}^{10}$-norm)
- By perturbation theory $\Longrightarrow u_{n}$ scatters $\Longrightarrow$ contradiction

By mass and energy decoupling :

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \sum_{j=1}^{J^{*}}\left(M\left(v_{n}^{j}(0)\right)+M\left(w_{n}^{J^{*}}\right)\right) \leq M_{0} \\
& \limsup _{n \rightarrow \infty} \sum_{j=1}^{J^{*}} E\left(v_{n}^{j}(0)\right)+E\left(w_{n}^{J^{*}}\right) \leq E_{0}
\end{aligned}
$$

(1) Case 1 : $\lim \sup _{n \rightarrow \infty} \sup _{j} M\left(v_{n}^{j}(0)\right)=M_{0}$ and $\limsup _{n \rightarrow \infty} \sup _{j} E\left(v_{n}^{j}(0)\right)=E_{0}$ $\Longrightarrow$ only one profile $\phi^{1}$ and $\lambda_{n}^{1} \equiv 1, t_{n}^{1} \equiv 0$ :

$$
u_{n}(0, x)=\phi^{1}\left(x-x_{n}^{1}\right)+w_{n}^{1} \text { and } w_{n}^{1} \rightarrow 0 \text { in } H^{1}\left(\mathbb{R}^{3}\right)
$$

(2) Case 2 : $\lim \sup _{n \rightarrow \infty} \sup _{j} M\left(v_{n}^{j}(0)\right)<M_{0}$ or $\limsup _{n \rightarrow \infty} \sup _{j} E\left(v_{n}^{j}(0)\right)<E_{0}$

- $D\left(v_{n}^{j}\right) \leq D_{c}-\varepsilon$ for all $j$
- Introduce :

$$
\underbrace{u_{n}^{J}(t)}_{\text {scatters }}:=\sum_{j=1}^{J} \underbrace{v_{n}^{j}(t)}_{\text {scatter }}+\underbrace{e^{i t \Delta} w_{n}^{J}}_{\rightarrow 0}, \quad J \text { large, finite }
$$

- $u_{n}^{J}$ approximates well $u_{n}$ (in the $L_{t, x}^{10}$-norm)
- By perturbation theory $\Longrightarrow u_{n}$ scatters $\Longrightarrow$ contradiction


## Extraction of the minimal blowup solution

- Consider solutions $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ of (CQ) such that

$$
D\left(u_{n}\right) \rightarrow D_{c} \text { and } \lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L_{t, x}^{10}\left((-\infty, 0] \times \mathbb{R}^{3}\right)}=\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L_{t, x}^{10}\left([0, \infty) \times \mathbb{R}^{3}\right)}=\infty
$$

- By the compactness property of minimizing sequences :

$$
u_{n}\left(0, \cdot+x_{n}\right) \rightarrow u_{0} \text { in } H^{1}\left(\mathbb{R}^{3}\right)
$$

- Consider $u$ the solution of (CQ) with $u(0)=u_{0}$. Then :

$$
D\left(u_{n}\right) \rightarrow D(u)=D_{c} \text { and }\|u\|_{L_{t, x}^{10}\left((-\infty, 0] \times \mathbb{R}^{3}\right)}=\|u\|_{L_{t, x}^{10}\left([0, \infty) \times \mathbb{R}^{3}\right)}=\infty
$$

$\Longrightarrow u$ is a minimal blowup solution

- $u$ is almost periodic modulo translations : for any $\left\{t_{n}\right\}_{n \in \mathbb{N}}$, there exists $\left\{x\left(t_{n}\right)\right\}_{n \in \mathbb{N}}$ such that

$$
u\left(t_{n}, \cdot+x\left(t_{n}\right)\right) \rightarrow u_{\infty} \text { in } H^{1}\left(\mathbb{R}^{3}\right)
$$

## Virial bounded away from zero for the minimal blowup solution

- For the minimal blowup solution $u: D(u)=D_{c}<\infty$
- $(M(u), E(u)) \in \mathcal{R} \Longrightarrow V(u(t))>0$ for all $t \in \mathbb{R}$


## Virial bounded away from zero for the minimal blowup solution

- For the minimal blowup solution $u: D(u)=D_{c}<\infty$
- $(M(u), E(u)) \in \mathcal{R} \Longrightarrow V(u(t))>0$ for all $t \in \mathbb{R}$
- Actually, there is $\delta>0$ such that $V(u(t))>\delta$ for all $t \in \mathbb{R}$.
- Indeed, assume $V\left(u\left(t_{n}\right)\right) \rightarrow 0$. By compactness of the minimal blowup solution $u$, there exists $u_{\infty} \in H^{1}$ such that

$$
u\left(t_{n}, \cdot+x\left(t_{n}\right)\right) \rightarrow u_{\infty} \text { in } H^{1}\left(\mathbb{R}^{3}\right)
$$

- By Sobolev embeddings, it follows that

$$
\begin{aligned}
& M\left(u\left(t_{n}\right)\right)=M\left(u_{\infty}\right), \quad E\left(u\left(t_{n}\right)\right)=E\left(u_{\infty}\right) \Longrightarrow u_{\infty} \in \mathcal{R} \\
& V\left(u\left(t_{n}\right)\right) \rightarrow V\left(u_{\infty}\right)=0,
\end{aligned}
$$

$\Longrightarrow$ contradiction

## Rigidity argument

- Almost periodic minimal blowup solution : for all $\eta>0$ there exists $C(\eta)$ and $|x(t)|=o(t)$ as $t \rightarrow \infty$ s.t.

$$
\sup _{t \in \mathbb{R}} \int_{|x-x(t)| \geq C(\eta)}\left(|\nabla u|^{2}+|u|^{6}+|u|^{4}+|u|^{2}\right) d x \leq \eta
$$

- Consider $\phi(r)=1$ if $r \leq 1$ and $\phi(r)=0$ if $r \geq 2$ and

$$
U_{R}(t):=2 \operatorname{Im} \int \phi\left(\frac{x}{R}\right) \overline{u(t)} x \cdot \nabla u(t) d x
$$

- $\left|U_{R}(t)\right| \leq C^{\prime} R$ and

$$
\partial_{t} U_{R}(t)=4 V(u(t))+O\left(\int_{|x| \geq R}\left(|\nabla u|^{2}+|u|^{6}+|u|^{4}+|u|^{2}\right) d x\right)
$$

- Taking $R=C(\eta)+\sup _{t \in\left[T_{0}, T_{1}\right]}|x(t)|$, we get $\partial_{t} U_{R}(t)>V(u(t))>\delta$
- Integrating from $T_{0}$ to $T_{1}$ :

$$
\delta\left(T_{1}-T_{0}\right)<U_{R}\left(T_{1}\right)-U_{R}\left(T_{0}\right) \leq 2 C^{\prime} R \leq C^{\prime}(\eta)+\frac{\delta}{2} T_{1}
$$

- Taking $T_{1} \rightarrow \infty \Longrightarrow$ contradiction


## Maximality of the connected region $\mathcal{R}$

## Lemma

The region $\mathcal{R}$ is a maximal connected component of the origin with positive virial.

Proof : For any $u$ minimizer of $E_{\min }(m)$, there exist two branches of continuous curves emanating from $u$, situated above the graph of $E_{\text {min }}$ such that:

- for $u^{\lambda}(x):=\lambda^{\frac{3}{2}} u(\lambda x)$ with $1<\lambda \leq 1+\varepsilon$, we have $V\left(u^{\lambda}\right)>0$
- for $u_{\lambda}(x):=\lambda^{\frac{1}{2}} u(\lambda x)$ with $1-\varepsilon \leq \lambda<1$, we have $V\left(u_{\lambda}\right)<0$


## Comparison to other NLS with combined-power nonlinearity

- Miao, Xu, Zhao (2011) :
- focusing quintic, defocusing cubic NLS on $\mathbb{R}^{3}$, radial data
- $e:=\inf \{E(u): \mathcal{K}(u)=0\}$ is not achieved
- $e=E^{c}(W)$ where $E^{c}$ is a modified energy and $W$ is the stationary solution for focusing energy-critical NLS
- GWP and scattering if $E\left(u_{0}\right)<e$ and $\mathcal{K}\left(u_{0}\right) \geq 0$
- Akahori, Ibrahim, Hikuchi, Nawa (2012) :
- both nonlinearities are focusing, one energy critical, the other energy-subcritical, on $\mathbb{R}^{d}$ for $d \geq 5$
- $s:=\inf \left\{S_{\omega}(u)=E(u)+\omega M(u): \mathcal{K}(u)=0\right\}$
- $s$ is achieved by solitons
- GWP and scattering if $S_{\omega}\left(u_{0}\right)<s$ and $\mathcal{K}\left(u_{0}\right)>0$
- In both the above cases :
- there are finite time blowup solutions : the equations have a different nature than (CQ)
- less precise understanding of the scattering region


## Open issues

- Uniqueness of the optimizers $Q_{\beta}$ of the $\beta$-Gagliardo-Nirenberg inequality
- Any optimizer $Q_{\beta}$ is a soliton $P_{\omega}$. Is any soliton $P_{\omega}$ an optimizer $Q_{\beta(\omega)}$ ?
- On the curve $E_{\min }, M$ (rescaled solitons) $<M\left(P_{\omega^{*}}\right) \leq M$ (solitons)
- Scattering above the graph of $E_{\min }(m)$ for $M(R) \leq m<M\left(P_{\omega^{*}}\right)$
- Continuity of $m \mapsto E_{\min }(m)$ for $M(R) \leq m<M\left(Q_{1}\right)$
- Stability/instability of solitons : related to the monotonicity of $\omega \mapsto M\left(P_{\omega}\right)$
- lower branch is conjectured to be stable
- upper branch is conjectured to be unstable
- Behavior near unstable solitons
- after a transitory period of time, perturbations of unstable solitons are expected to approach stable solitons
- Buslaev, Grikurov (2001), LeMesurier, Papanicolaou, Sulem, Sulem (1988)

