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Cubic-quintic nonlinear Schrédinger equation on R3 :

0 + Au = |ul*u — |ul?u
. { t jultu —Ju]

u(0) = up € HY(R?)

Model in various physical problems in :
nonlinear optics, plasma physics, Bose-Einstein condensation

Conserved quantities : mass, energy, and momentum :

2 6 4
M(u):/|u|2dx, E(u)z/'v;‘ +%f%dx, P(u):Im/ﬁVudx

Globally well-posed in H'(R?)
Scattering : there exist u; and u_ in H!(R?) such that

. itA _
im flu(t) = P ug]| sy = 0

(CQ) admits solitons e P,,(z) : solutions which do scatter

Goal : Scattering in a large region

N



Nonlinear Schrodinger equations

o Nonlinear Schrédinger equation (NLS) on R? :
(NLS) i0pu + Au = +|ulP~u
o defocusing with the sign “+” and focusing with the sign “-”

e Scaling invariance : u(t,x) — uy(t,x) := /\%u()@t, Az).
o NLS is energy-critical (H'-critical) if
2 494
lux (Ol 1 gy = (Ol 1 gy <= A7~ 772 [[u(0) | 1 ray = [[ul(0)l] g1 g
4
P =1 _
P=itT5
o NLS is energy-subcritical if p < 1+ d;fQ

o NLS is energy-supercritical if p > 1+ ﬁ

e (CQ) on R? : quintic nonlinearity is energy-critical and defocusing
cubic nonlinearity is subcritical and focusing



Energy-critical NLS

Defocusing energy-critical NLS : id,u + Au = |u|ﬁu onR% d>3
e Global well-posedeness (GWP) and scattering
e Bourgain (1999) d = 3,4 radial case
e Grillakis (2000) d = 3, radial case, no scattering
e Colliander-Keel-Staffilani-Takaoka-Tao (2008) d = 3
e Ryckman-Visan, Visan (2007, 2012) d > 4
Focusing energy-critical NLS : i0iu + Au = f|u|d4f2u onRY, d=3,4,5:
o GWP and scattering versus finite time blowup solutions
e Ienig-Merle (2006) radial case
e Threshold for scattering : (kinetic) energy of the stationary solution W
AW + [W['W =0
Specific features of the cubic-quintic NLS on R? :
o GWP for all data in H*(R?)
e Scattering versus soliton behavior (e P, (x))

@ Threshold for scattering : the energies of a branch of (rescaled) solitons
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Cubic-Quintic NLS on R?

e Tao, Visan, Zhang (2007) :
o global well-posedness in H'(R?) :
treat (CQ) as a perturbation of defocusing energy-critical NLS

o scattering for small mass : M (uo) < ¢(||Vuol|z2)
o Crucial space-time norm for scattering : ;% (R x R?)
||u||L%9T(RX]R3) < 0o = solution u scatters
e Virial V(u) := [ |Vul|? — 2|ul* + |u[dx
@ Fpi, defined by

Emin(m) :=inf {E(f) : f € H'(R*), M(f) =m,V(f) =0}

Theorem (R. Killip, T. Oh, O.P., M. Vigan 2012)

If up € HY(R3) is such that 0 < E(ug) < Ewin(M (uo)), then the corresponding
solution scatters both forward and backward in time.




Strategy of proof

e Variational part
o describe the region R given by 0 < E(f) < Emin(M(f))

o find the minimizers of Fmin when they exist : (rescaled) solitons

e Dispersive part
e to specify the region R, introduce

M(f)+ E(f)
dist((M(f), E(f)), epigraph Emin)

D < 1 near the origin and D — oo near the graph of Eyin

D(f) =B

L(D) := sup{HuHL%oz(Rng) : u solution, D(u) < D}

e Scattering in the region R <= L(D) < oo for all 0 < D < o0

By small data theory : D < 1 = L(D) < oo

Argue by contradiction : there exists a critical 0 < /). < oo such that

L(D) < > if D < D,
L(D) = o if D > D,



Variational part : Solitons

e Soliton solutions of the form u(t, z) = e P, (), where P,, satisfies

AP, — |P,|*P, + |P,|*P, —wP, =0

e Berestycki-Lions (1983) : radial, positive solitons P, exist <= w € (0, %)

Serrin-Tang (2000) : uniqueness of non-negative radial solitons P,

Vanishing virial : V(P,) = 0 for all w € (0, 3).

Desyatnikov et al. (Phys. Rev. E, 2000) and Mihalache et al. (Phys. Rev.
Lett., 2002) show the existence of two branches of solitons

We can prove analytically the asymptotic behavior of M (P,) and E(P,)

as w — 0 and as w — %, but NOT their monotonicity



[-Gagliardo-Nirenberg inequality on R?

lullzs < CﬁHUHmIlUIIl” |Vl 27

Proof : [|ul|7 < [Jullz2]|ullfs < IIUIIL2IIuHiZ’3 |9l 127

e The optimal constant is achieved modulo scaling by positive, radial Qg

satisfying . 5
AQg —Qﬁ-i-Qﬁ —w,@QIB =0

o In particular, Qg is equal to the soliton P,, for some wg € (0, 13—6)



[-Gagliardo-Nirenberg inequality on R?

lullzs < CﬁHUHmIl“IIl” |Vl 27

Proof : [|ul|7 < [Jullz2]|ullfs < IIUIIL2IIuHiZ’3 |9l 127

e The optimal constant is achieved modulo scaling by positive, radial Qg

satisfying . 5
AQg —Qﬁ-i-Qﬁ —w,@ng =0

In particular, Qg is equal to the soliton P,, for some wg € (0, 13—6)

@ Uniqueness of ()3 is NOT known

The optimal constant can be expressed as
41+ 5) 1

. e
3B 1Qp L2 IV Qsll 2

For 8 =1 and any @1, we have unique mass M(Q1) = (55~ )2

Cs =

e Fix an optimizer @ and define /7(r) := %(zl(ﬁ \_) x)



Feasible pairs (M (u), E(u)) for u € H(R3)

All the feasible pairs (M (u), E(u)) lie above or on the graph of £

E(m) :=inf {E(f): f € H'(R®),M(f) =m},

with the following properties :

e & is continuous, concave, non-increasing

o We have that
e Em)=0if 0 < m < M(Q1)
o E(m) < 0if m > M(Q1)

e m > M(Q1) : the infimum &(m) is achieved by a soliton P,
Indeed, by the Euler-Lagrange equation :

dE wdM
= _ = Au — u® 3 _ —
" 2 du — Au—u’+u’ —wu=0

e m < M(Qy) : the infimum &£(m) = 0 is not achieved



Positive virial for mass less than M (R)

Virial V(u) := [ [Vu|?> — 2|ul* + |u|Sdx

If M(u) < M(R), then V(u) >0

Proof : Since C; = m, Gagliardo-Nirenberg inequality for § =1 and
L

Young’s inequality yield :
3/ 4 |u||Lz / 1/4 / 5 3/4
- ul de <2 d Vul|“dx
3 [ lul'de <2p0 ([ lultde) ([ 1Vulir)

3%/ llull 2 6 1/4 /4 2 3/4
< — 4 d - Vul“d
<S5 joi (1 werax) " (5 [ 1vuras)

33/ ||ull 2 / 6 2
< — ul” + |[Vul”)dz

2 Qs J (M V)

Thus, if [|u]l 1> < 27]Q1 22 = | Rl|L2, then V(u) > 0

Remark : R has the smallest positive mass with vanishing virial.



The region R : 0 < E(f) < Enn(M(f))

Emin(m) == inf {E(f) : f € H'(R*), M(f) =m,V(f) =0}
@ Enin(m) = o0 if m < M(R)
® Enin(m) =&(m) if m > M(Q1)

e For M(R) <m < M(Q1), Emin(m) is
o finite
e strictly decreasing

e attained by solitons P,, or rescaled solitons a P, (Ax)

o Indeed, the Euler-Lagrange equation yields
e _ ﬂ—l/@@ —Au+u® —u® = —p(—2Au + 6u® — 3u®) — 2vu
du M au du

e u is a soliton if u =0
e u is a rescaled soliton for p € (0, 00] : aP.,(Ax)

1+ 3p _ 14+ 3p _v(1+6p)

16 © T Otz rop o (+sp?
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Positive virial in the region R : 0 < E(f) < Enin(M(f))

We have V (u) > 0 for all (M (u), E(u)) € R.

Proof :
e By the definition of Emin, V(u) # 0 for all u € R.

@ Suppose there is u € R such that V(u) < 0. Then, there is A\g > 1 such that
3
ur (x) := Adu(Mox) satisfies

V) =0, M@)=M(u), 0<Eu)<E)< Enin(M(u)),

— contradiction



Positive virial in the region R : 0 < E(f) < Enin(M(f))

We have V (u) > 0 for all (M (u), E(u)) € R.

Proof :
e By the definition of Emin, V(u) # 0 for all u € R.

@ Suppose there is u € R such that V(u) < 0. Then, there is Ao > 1 such that
3
ur (x) := Adu(Mox) satisfies
V() =0, M) =Mu), 0<Eu)<Eu)< Buna(M@)),

— contradiction

o LEw) = —)\/|Vu| dr — 2N /\u| da:+)\5/|u\ do

@ V(u) <0 and limye V(u?) = 0o = there exists Ao > 1 with V(u*0) =0

e take the first such Ao = V(u*) < 0 for A € [1,\0) = E(u™°) < E(u)



Dispersive part

We use the concentration-compactness and rigidity method developed
by Kenig-Merle.
@ Concentration-compactness :

o Using a profile decomposition theorem for bounded sequences in H 1(]R3),
we prove the existence of a minimal blowup solution u : D(u) = D, < 00
and

HUHL%YOI((foo,O]xD@) = Hu||L}f>z([o,oo)xR3) =0

e u is well-localized in physical space (almost periodic modulo translations) :
for all n > 0 there exists C(n) and |z(t)| = o(¢¥) as t — oo such that

sup / IVl + Jul® + ul* + [uf?)de < 7
teR J|z—z(t)|>C(n)

@ Rigidity :
e such an almost periodic blowup solution cannot occur
o key element : (/) > 0 for all [ in the region R



Dispersive part : Profile decomposition

e Strichartz admissible pair (p,q) : £ + % =2 —(10,%

=3 , 73) is admissible

2

P

e Strichartz + Sobolev inequality :
1€ Fllso, ursy S IVESFI | ag < IVSr2

Liop s

Theorem (Profile decomposition theorem)

Let {fuYnen be bounded in H'(R®). Then, there exist J* € {0,1,2,...} U oo,

¢ e H'(R*)\ {0}, {NMYlnew C (0,1], {th}nen CR, and {al}nen CR?

XM=1 or M, 50asn—o00, and t, =0 or t), — +oo as n — oo.

o 7 if N =1,
Prg’ = ¢ i i y 0<0<1,
PZ(A{L)HQZ) ’ Zf >\n — 07

Moreover, with

we have

J ‘ .
falz) =3 (M)7% (e”%APW) (“’";7]“’”%) +w! in HY(R?),
j=1 n

with

lim limsup [le"“w;) || ;10 3y = 0.
J=T* oo Ly (RXR?)
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Decoupling of mass and energy

J
. 7 iy _ TV —
st}pnlgn;o (M(fn) ;M(gn) M(wn)) 0
. . Jy _ V) =
stjpnh_{r;o (E(fn) ;E(gn) E(wn))
_ N )\] g, — xz:|2 |tzl()\{1)2 - ti;/(Ai:)Q! . S
i L\J' VIS VEV A N - oo forallyZ g

where g/, is defined by

(o) = )7 (e ) (2222)
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Compactness of minimizing sequences

If D(u) = De and Hm_{|lun[L3o (t,,,00)xR3) = B0 [[tn| 130, ((—o0t,)xR3) = 00,

then there exists {xy, tnen C R? such that, on a subsequence,
Un (tn, +2,) — ¢ in HY(R3).

Proof : t, =0, D(un(0)) < De+ 1 < 00 => {u,(0)}nen bounded in H'(R?) :
M(un(0)) = Mo < M(Q1),  E(un(0)) = Eo, [[Vun(0)[[Z2 ~ E(un(0))
Profile decomposition : u,(0) = Z Nes )77 ( A pg (;53) ( %} ) +w;)
Nonlinear profiles for each j :
0 if M, =1,t, =0 = v/(0) = ¢/ and vi(t,x) = v/ (t + tL,x — )
e if M, =1, t}, = +oo = v scatters forward/ backward to etA ¢
0 if M, = 0 = vJ,(0) = ()\])"(”]AP%J)( )

i i1 t L ox—ad
Vit ) ~ (M) Q“’J(WVW’ )

w? is the solution of quintic NLS with w’ (0) = ¢’




By mass and energy decoupling :

hmsupZ( ) + M(w;, ))SMO

n—oo

lim sup Z E(v (w;{* ) < Eq

n—o0

@ Case 1 : limsup,, . sup; M(v}(0)) = Mo and limsup,, ,, sup; E(v},(0)) = Eo
= only one profile ¢* and A} =1, ¢} =0

un(0,2) = ¢' (x — ) + w,, and wy, — 0 in H'(R?)
@ Case 2 : limsup,,_, sup; M(v},(0)) < M or limsup,,_, ., sup; E(v},(0)) < Eo
o D(vl) < D, —¢ for all j J

* Introduce : ul(t) == Zv%(t) + e w; T large, finite



By mass and energy decoupling :

hmsupZ( ) + M(w;, ))SMO

n—oo

lim sup Z E(v (w,{* ) < Ep

n—o0o

@ Case 1 : limsup,, . sup; M(v}(0)) = Mo and limsup,,_, ., sup; E(v},(0)) = Eo
= only one profile ¢! and A\ =1, t} =0

un(0,2) = ¢1(1’ - r,lm) +w! and wl — 0 in HI(RS)

@ Case 2 : limsup,,_, sup; M(v},(0)) < Mo or limsup,,_, ., sup,; E(v},(0)) < Eo

o D(vl) < D.—¢ for all j
e Introduce : ) )
ul(t) == Z vl (t) + e w;! | J large, finite

—0

o wu; approximates well u, (in the L;%-norm)
e By perturbation theory = u,, scatters = contradiction
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Extraction of the minimal blowup solution

o Consider solutions {uy, }nen of (CQ) such that

D(un) — D, and nh_)néo ”un”L}YOZ((foo,O]XRf’) = nlgr;o ||unHLt1?I([0,oo)><R3) =00

o By the compactness property of minimizing sequences :

un (0, + 2,) — ug in H'(R?).
e Consider u the solution of (CQ) with u(0) = ug. Then :
D(un) = D(u) = De and [|ul 130 ((~o0,0xr3) = ]l 220 ([0,00) x®S) = 00
= u is a minimal blowup solution

e u is almost periodic modulo translations : for any {¢,},en, there exists
{x(tn) }nen such that

U(ty, -+ 2(tn)) = Uso in H'(R?)
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Virial bounded away from zero for the minimal blowup solution

e For the minimal blowup solution u : D(u) = D, < 0o

o (M(u),E(u)) € R =V (u(t)) >0forallteR
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Virial bounded away from zero for the minimal blowup solution

For the minimal blowup solution « : D(u) = D, < oo

o (M(u),E(u)) € R =V (u(t)) >0forallteR

Actually, there is § > 0 such that V' (u(t)) > ¢ for all t € R.

e Indeed, assume V(u(t,)) — 0. By compactness of the minimal blowup
solution u, there exists uo, € H' such that

w(ty, 4+ z(tn)) = Uso in H'(R?).

By Sobolev embeddings, it follows that

M(u(tn)) = M(uso), E(u(tn)) = E(tus) = 1. € R

— contradiction
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Rigidity argument

@ Almost periodic minimal blowup solution : for all n > 0 there exists C(n)
and |z(t)| = o(t) as t — oo s.t.

sup [ IVl + [l + Jul® + [uf?)de <
lz—z(t)|>C(n)

teR

Consider ¢(r) =1if r <1 and ¢(r) =0if r > 2 and

—QIm/qS u(t)z - Vu(t)de

|Ur(t)| < C'R and

@UM&:4V@@D+O(/

(IVal” + ul® + [ul* + [uf*)dz)
|z|>R

Taking R = C(n) + sup,¢ (g, 1,1 |2(t)], we get oUR(t) > V(u(t)) > 6

o Integrating from Ty to 17 : 5
(T —To) < Ur(Th) — Ur(To) < 2C'R < C'(n) + 5’/]

Taking T} — co = contradiction



dimality of the connected region R

The region R is a mazimal connected component of the origin with positive

virial.

Proof : For any v minimizer of Ey,i,(m), there exist two branches of continuous
curves emanating from wu, situated above the graph of E.;, such that :

o for u*(z) := Au(Az) with 1 < A <1+, we have V(u*) > 0
= A

o for uy(z) su(Az) with 1 —e < A < 1, we have V(uy) <0



Comparison to other NLS with combined-power nonlinearity

e Miao, Xu, Zhao (2011) :
o focusing quintic, defocusing cubic NLS on R3, radial data
o e:=inf{E(u) : K(u) = 0} is not achieved
o e = E°(W) where E° is a modified energy and W is the stationary solution
for focusing energy-critical NLS
o GWP and scattering if E(uo) < e and K(ug) >0

o Akahori, Ibrahim, Hikuchi, Nawa (2012) :

e both nonlinearities are focusing, one energy critical, the other
energy-subcritical, on R? for d > 5

o s:=inf{S,(u) = E(u) + wM(u) : K(u) = 0}

e s is achieved by solitons

o GWP and scattering if S,,(uo) < s and K(uo) >0

@ In both the above cases :

o there are finite time blowup solutions : the equations have a different
nature than (CQ)

o less precise understanding of the scattering region

N
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Open issues

o Uniqueness of the optimizers Qg of the 3-Gagliardo-Nirenberg inequality
e Any optimizer Qg is a soliton F,. Is any soliton F,, an optimizer Qg ?

e On the curve Fyin, M (rescaled solitons) < M (P,«) < M (solitons)

Scattering above the graph of Enin(m) for M(R) < m < M(P,~)

e Continuity of m — Epin(m) for M(R) <m < M(Q1)

Stability /instability of solitons : related to the monotonicity of
w— M(P,)

e lower branch is conjectured to be stable

e upper branch is conjectured to be unstable

@ Behavior near unstable solitons

e after a transitory period of time, perturbations of unstable solitons are
expected to approach stable solitons
e Buslaev, Grikurov (2001), LeMesurier, Papanicolaou, Sulem, Sulem (1988)
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