

3. Propagating fronts: speeds and linear determinacy

Elaine Crooks Swansea

LMS Research School: PDEs in Mathematical Biology ICMS, 29th April - 3rd May 2019

Background: consider reaction-diffusion equations

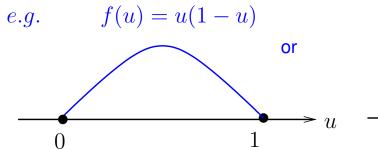
$$u_t = du_{xx} + f(u)$$

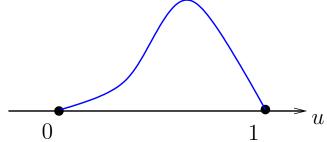
with 'monostable' reaction f satisfying

$$f(0)=f(1)=0$$

$$f'(0)>0, f'(1)<0$$

$$f(u)>0 \quad \text{when} \quad u\in(0,1)$$





Background: consider reaction-diffusion equations

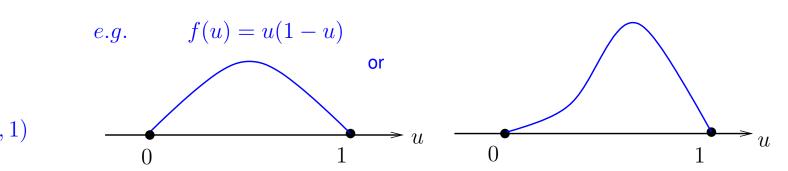
$$u_t = du_{xx} + f(u)$$

with 'monostable' reaction f satisfying

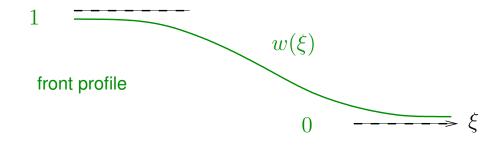
$$f(0)=f(1)=0$$

$$f'(0)>0, f'(1)<0$$

$$f(u)>0 \quad \text{when} \quad u\in(0,1)$$



 \bullet there exist decreasing front solutions u(x,t)=w(x-ct)



for all speeds

$$c \ge c^*$$

for some minimal front speed $c^* > 0$ (Fisher, KPP '37)

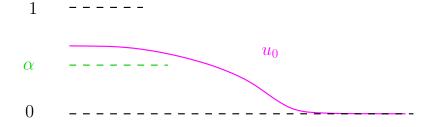
Some key facts about minimal front speed c^*

(i) (Aronson-Weinberger '78) c^{*} can be characterised as a spreading speed

namely, for an initial condition $u(x,0)=u_0(x)\in [0,1]$ with

$$u_0(x) = 0 \text{ for } x >> 0, \quad u_0(x) \in (\alpha, 1) \text{ for } x << 0,$$

for some $\alpha > 0$,



the solution u of $u_t = du_{xx} + f(u)$ satisfies

- if $c>c^*$, then

$$\lim_{t \to \infty} \sup_{x > ct} u(x, t) = 0$$

- if $c < c^*$, then

$$\lim_{t \to \infty} \inf_{x \le ct} u(x, t) = 1$$

(ii) define the linear value \bar{c} to be the minimal c for which the linear equation

$$dw'' + cw' + f'(0)w = 0$$

has a solution $w(\xi) = \exp(-\mu \xi)$ with real $\mu > 0$, and hence

$$d\mu^2 - c\mu + f'(0) = 0$$

so that

$$\bar{c} = 2\sqrt{d\,f'(0)}$$

(ii) define the linear value \bar{c} to be the minimal c for which the linear equation

$$dw'' + cw' + f'(0)w = 0$$

has a solution $w(\xi) = \exp(-\mu \xi)$ with real $\mu > 0$, and hence

$$d\mu^2 - c\mu + f'(0) = 0$$

so that

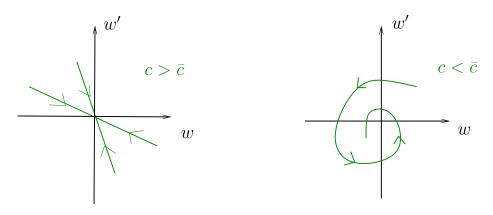
$$\bar{c} = 2\sqrt{d\,f'(0)}$$

- then

$$c^* \geq \bar{c}$$

since the existence of $-\mu < 0$ is *necessary* for front w(x-ct) to exist

Local phase portraits at (w, w') = (0, 0)



$$c^* > \bar{c}$$
 or $c^* = \bar{c}$

- say equation is linearly determinate if

$$c^* = \bar{c}$$

$$c^* > \bar{c}$$
 (pushed) or $c^* = \bar{c}$ (pulled) (Stokes '76)

- say equation is linearly determinate if

$$c^* = \bar{c}$$

$$c^* > \bar{c}$$
 (pushed) or $c^* = \bar{c}$ (pulled) (Stokes '76)

- say equation is linearly determinate if

$$c^* = \bar{c}$$

Important because

- ullet want to know value of minimal speed c_*
 - especially since c_* = spreading speed of solutions of the initial-value problem of $v_t = v_{xx} + f(v)$ with compactly supported data v_0

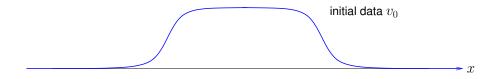
$$c^* > \bar{c}$$
 (pushed) or $c^* = \bar{c}$ (pulled) (Stokes '76)

- say equation is linearly determinate if

$$c^* = \bar{c}$$

Important because

- ullet want to know value of minimal speed c_*
 - especially since c_* = spreading speed of solutions of the initial-value problem of $v_t = v_{xx} + f(v)$ with compactly supported data v_0



- ullet stability of fronts, in terms of the IVP of $v_t = v_{xx} + f(v)$, depends on
 - whether a front has minimal speed: $c=c_*$ or $c>c_*$
 - whether the minimal speed front is linearly determinate: $c_* = \bar{c}$?

$$c^* > \bar{c}$$
 (pushed) or $c^* = \bar{c}$ (pulled) (Stokes '76)

- say equation is linearly determinate if

$$c^* = \bar{c}$$

Important because

- ullet want to know value of minimal speed c_*
 - especially since c_* = spreading speed of solutions of the initial-value problem of $v_t = v_{xx} + f(v)$ with compactly supported data v_0

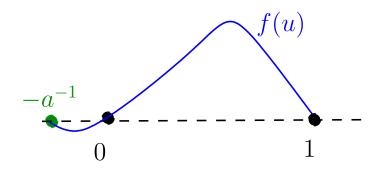
- ullet stability of fronts, in terms of the IVP of $v_t = v_{xx} + f(v)$, depends on
 - whether a front has minimal speed: $c=c_*$ or $c>c_*$
 - whether the minimal speed wave is linearly determinate: $c_* = \bar{c}$?
- i.e. for which initial conditions? in what sense? solution v of IVP converges to front(s) as $t \to \infty$

Example (Hadeler-Rothe '75)

The equation

$$u_t = u_{xx} + u(1 - u)(1 + au)$$

with



has

$$\bar{c}=2$$
 for all $a>0$

and

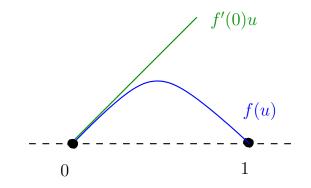
$$c^* = \begin{cases} 2 & \text{if } 0 \le a \le 2, \\ \frac{a+2}{\sqrt{2a}} & \text{if } a \ge 2 \end{cases}$$

 \therefore linearly determinate if and only if $a \in (0, 2]$

A famous sufficient condition for linear determinacy (Stokes, Hadeler-Rothe)

lf

$$f(u) \le f'(0)u$$
 for all $u \in (0,1)$



i.e. no Allee effect

then

$$c^* = \bar{c}$$

Note: this condition is not necessary - in the previous example, this condition only holds when $0 < a \le 1$, whereas $c^* = \bar{c}$ whenever $0 < a \le 2$

Useful change of variables:

- for a strictly monotone scalar front profile w, we can think of

w' as a function of w

... write

$$w' = -\rho(w)$$

so that

$$w'' = \rho'(w)\rho(w)$$

and hence

$$dw''(\xi) + cw'(\xi) + f(w(\xi)) = 0$$

if and only if

$$d\rho'(w)\rho(w) - c\rho(w) + f(w) = 0$$

Proof: use the min-max formula

$$c^* = \inf_{\rho \in \Lambda} \sup_{u \in (0,1)} \left\{ d\rho'(u) + \frac{f(u)}{\rho(u)} \right\},$$

where

$$\Lambda = \{ \rho \in C^1([0,1]) : \rho(u) > 0 \text{ if } u \in (0,1), \ \rho(0) = 0, \ \rho'(0) > 0 \},$$

Proof: use the min-max formula

$$c^* = \inf_{\rho \in \Lambda} \sup_{u \in (0,1)} \left\{ d\rho'(u) + \frac{f(u)}{\rho(u)} \right\},$$

where

$$\Lambda = \{ \rho \in C^1([0,1]) : \rho(u) > 0 \text{ if } u \in (0,1), \ \rho(0) = 0, \ \rho'(0) > 0 \},$$

together with the family of test functions $\rho_{\kappa}(u) = \kappa u$ to get

$$c^* \leq \inf_{\kappa > 0} \sup_{u \in (0,1)} \left\{ d\kappa + \frac{f(u)}{\kappa u} \right\}$$

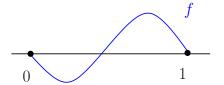
$$\leq \inf_{\kappa > 0} \left\{ d\kappa + \frac{f'(0)}{\kappa} \right\} \quad \text{since } f(u) \leq f'(0)u$$

$$= 2\sqrt{df'(0)} = \bar{c}$$

so that

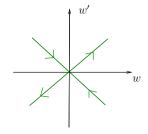
$$\bar{c} \leq c^* \leq \bar{c} \Rightarrow c^* = \bar{c}$$

Aside: if f is bistable, e.g.,



there exists unique $c_0 \in \mathbb{R}$ for which a decreasing travelling front exists

ullet this speed c_0 is *not* controlled by a linearisation: for every $c \in \mathbb{R}$



ullet difficult to determine c_0 : for scalar case, can find sign c via

$$c\int_{\mathbb{R}} (w')^2 \ d\xi = \int_0^1 f(w) \ dw \quad \Rightarrow \quad \mathrm{sign} \ c = \ \mathrm{sign} \ \int_0^1 f(w) \ dw$$

but for systems, need other ideas,

e.g. strong competition limit (Girardin-Nadin 2015)

Some references on travelling fronts, spreading speeds, and linear determinacy for monostable equations/systems....

- classical: Fisher, Kolmorogorov-Petrovskii-Piskounov, Aronson-Weinberger,
 Hadeler-Rothe....
- linear determinacy in the scalar case: Weinberger, Berestycki-Nirenberg, Lucia-Muratov-Novaga, Malaguti-Marcelli, Gilding-Kersner, Benguria-Depassier-Mendez....
- linear determinacy for co-operative or competition systems: Lui, Hosono,
 Weinberger-Lewis-Li, Liang-Zhao, Holzer-Scheel, Huang-Han,
 Roques-Hosono-Bonnefon-Boivin....
 -and for non-co-operative systems Weinberger-Kawasaki-Shigesada, Haiyan Wang, Wang-Castillo-Chavez, Dunbar, Griette-Raoul, Girardin....
- + many other papers e.g. on equations with delay, spatial heterogeneity, nonlocal terms, etc

Example 1: Scalar equation with (nonlinear) convection

$$u_t + h'(u)u_x = du_{xx} + f(u)$$

(with A. Al Kiffai, Kufa University, Iraq)

Motivating example: a one-dimensional model of motion of chemotactic cells (Benguria-Depassier-Mendez, based on Keller-Segel model)

suppose

 $\rho(x,t)=$ density of bacteria chemotactic to a chemical of concentration s(x,t),

$$\rho_t = [d\rho_x - \rho \chi s_x]_x + f(\rho),$$

• if rate of chemical consumption is mainly due to ability of bacteria to consume chemical, then

$$s_t = -k\rho$$

and for travelling fronts s(x-ct), $\rho(x-ct)$, we have

$$s_x = -\frac{1}{c}s_t = \frac{k\rho}{c},$$

so that

$$\rho_t + \frac{\chi k}{c} \rho \rho_x = d\rho_{xx} + f(\rho)$$

By similar arguments to above....

ullet there exist decreasing fronts for all speeds $c \geq c^*$, where

$$c^* = \inf_{\rho \in \Lambda} \sup_{u \in (0,1)} \left\{ d\rho'(u) + \frac{h'(u)}{\rho(u)} + \frac{f(u)}{\rho(u)} \right\},$$

where

$$\Lambda = \{ \rho \in C^1([0,1]) : \rho(u) > 0 \text{ if } u \in (0,1), \ \rho(0) = 0, \ \rho'(0) > 0 \},$$

sufficient condition for 'right' linear determinacy: if

$$\frac{h'(u) + \sqrt{d} \frac{f(u)}{\sqrt{f'(0)} \, u} \, \leq \, \frac{h'(0) + \sqrt{d} \sqrt{f'(0)} \quad \text{for all} \ \, u \in (0,1),$$

then

$$c^* = \bar{c} = h'(0) + 2\sqrt{df'(0)}$$

Lack of symmetry in the presence of convection

• if $h'(u) \not\equiv 0$, the function $\hat{u}(x,t) = u(-x,t)$ instead solves

$$\hat{u}_t - h'(\hat{u})\hat{u}_x = d\hat{u}_{xx} + f(\hat{u}) \quad (*)$$

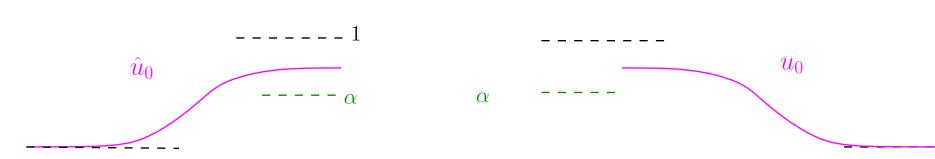
.: no symmetry between increasing/decreasing fronts

ullet there exist increasing fronts $\hat{w}(x-ct)$ for all

$$c \leq c_l^* \leq \bar{c}_l = h'(0) - 2\sqrt{df'(0)},$$

and there exist decreasing fronts w(x-ct) for all

$$c \geq c_r^* \geq \bar{c}_r = h'(0) + 2\sqrt{df'(0)}$$



spreading speed for initial condition \hat{u}_0

0

spreading speed for initial condition u_0 $= c_r^*$

An example that is right, but not left, linearly determinate

• given a > 2, consider

$$u_t + (1-a)uu_x = u_{xx} + u(1-u)(1+au)$$
 (†)

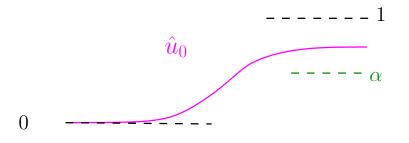
so that

$$h'(u) = (1 - a)u, \quad f(u) = u(1 - u)(1 + au)$$

- (i) $c_r^* = \bar{c}_r$
 - check sufficient condition: $h'(u) + \frac{f(u)}{\sqrt{f'(0)}u} \leq h'(0) + \sqrt{f'(0)}$
- (ii) $c_l^* < \bar{c}_l$
 - the solution u of the convectionless equation

$$u_t = u_{xx} + f(u)$$

with non-decreasing initial condition



is a subsolution for (\dagger)

Linear determinacy and the diffusion constant d

ullet if no convection, *i.e.* $h'(u) \equiv 0$, then

either (right or left) linearly determinate for all d > 0, or for no d > 0

.... because wave speeds and linear values are proportional to \sqrt{d}

- *i.e.*,

 $w(\xi)$ is a wave profile, speed c, for d=1

$$\Leftrightarrow \ v(\xi) = w\left(\frac{\xi}{\sqrt{d}}\right) \text{ is a wave profile, speed } \sqrt{d}\,c, \text{ for general } d$$

and linear values satisfy

$$\bar{c}_d = \sqrt{d}\,\bar{c}$$

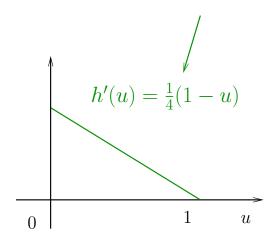
• but if $h'(u) \not\equiv 0$, linear determinacy may depend on diffusion d

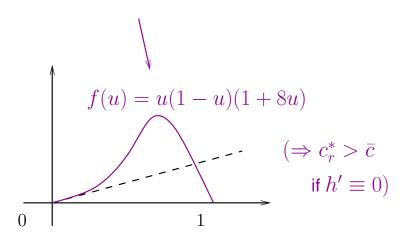
An example where (right) linear determinacy depends on diffusion d

• consider

$$u_t + \frac{1}{4}(1-u)u_x = \frac{d}{d}u_{xx} + u(1-u)(1+8u)$$
 (†)

so that





- (i) $c_r^* = \bar{c}_r$ if $\sqrt{d} \leq \frac{1}{28}$, by sufficient condition (ii) $c_r^* > \bar{c}_r$ if $\sqrt{d} > \frac{1}{2}$, by using suitable subsolution

Example 2: Travelling fronts in anisotropic smectic C* liquid crystals

$$v_t = \sqrt{1 + \xi \cos(2\pi v)} (\sqrt{1 + \xi \cos(2\pi v)} v_x)_x + f(v)$$

(with M. Grinfeld and G. McKay, Strathclyde)

Problem

consider the quasilinear equation

$$v_t = \sqrt{1 + \xi \cos(2\pi v)} (\sqrt{1 + \xi \cos(2\pi v)} v_x)_x + f(v), \quad x \in \mathbb{R}, t > 0$$

where

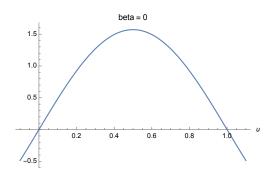
$$f(v) := \frac{\sin(\pi v)}{2\pi} \left[1 - \beta \cos(\pi v) \right],$$

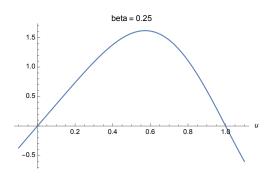
and $\xi \in (-1,1)$ and $\beta \in [0,1)$ are constants.

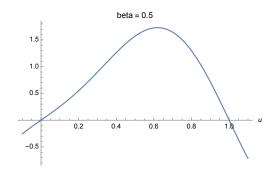
Here

- ξ is a measure of anisotropy
- \bullet β controls the shape of the nonlinearity f

- form of nonlinearity $f(v) = \frac{\sin(\pi v)}{2\pi} [1 \beta \cos(\pi v)]$
 - equilibria at all $k \in \mathbb{Z}$, in particular, v = 0, v = 1
 - if $\beta \in [0, 1)$, f'(0) > 0, $f'(1) < 0 \implies$ "monostable"

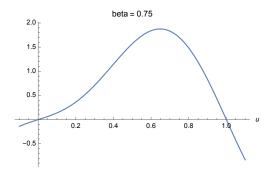




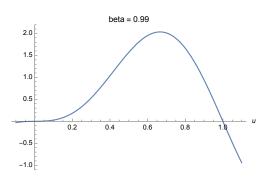


(c) $\beta = 0.5$

(a)
$$\beta=0$$



(b)
$$\beta=0.25$$



(d)
$$\beta = 0.75$$

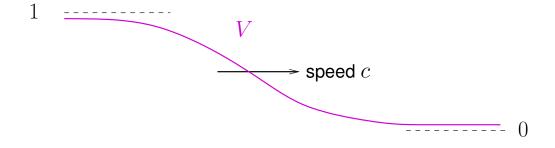
(e)
$$\beta = 0.99$$

• interested in decreasing travelling front solutions

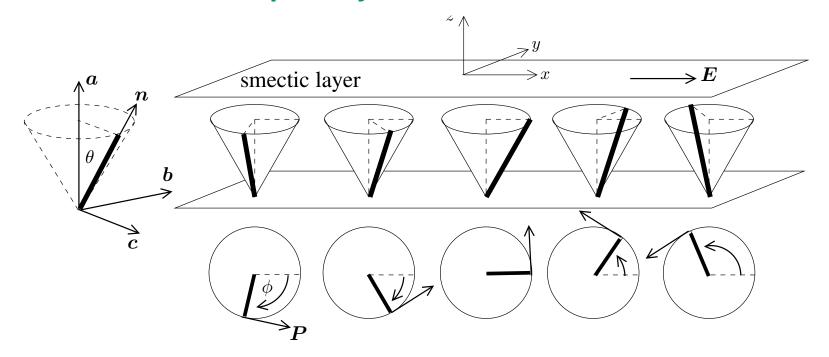
$$v(x,t) = V(x - ct),$$

with

$$\lim_{z \to -\infty} V(z) = 1, \quad \lim_{z \to \infty} V(z) = 0$$



Motivation: smectic C* liquid crystals



- n = director (unit vector giving molecular alignment) = $a \cos \theta + c \sin \theta$
- ullet a= normal to smectic layers
- \bullet θ = (constant) tilt angle, ϕ = twist angle (assume depends only on x, t)
- $\mathbf{c} = (\cos \phi, \sin \phi, 0), \quad \mathbf{b} = (-\sin \phi, \cos \phi, 0)$
- \bullet constant electric field $\boldsymbol{E} = E(1,0,0)$

Continuum theory [Leslie, Stewart, Nakagawa, 1991]

free energy density

$$w(\phi) = w_{\text{elastic}}(\phi) + w_{\text{polarisation}}(\phi) + w_{\text{dielectric}}(\phi)$$

anisotropic elastic energy density

$$w_{\text{elastic}}(\phi) = \frac{1}{2}B_1(\nabla \cdot \boldsymbol{b})^2 + \frac{1}{2}B_2(\nabla \cdot \boldsymbol{c})^2 = \frac{1}{2}B(1 - \boldsymbol{\xi}\cos 2\phi)\phi_x^2,$$

when

$$B_1 = B(1 - \xi), \quad B_2 = B(1 + \xi), \quad \xi \in (-1, 1)$$

energy density from spontaneous polarisation

$$w_{\text{polarisation}}(\phi) = -P_0 \boldsymbol{b} \cdot \boldsymbol{E} = P_0 E \sin \phi$$

dielectric energy density

$$w_{\text{dielectric}}(\phi) = -\frac{1}{2}\epsilon_0\epsilon_a(\boldsymbol{n}\cdot\boldsymbol{E})^2 = -\frac{1}{2}\epsilon_0\epsilon_a(E\cos\phi\sin\theta)^2$$

ullet so defining $eta:=-rac{\epsilon_0\epsilon_a E}{P_0}\sin^2 heta$, we have

$$w(\phi) = \frac{1}{2}B(1 - \xi \cos 2\phi)\phi_x^2 + 2P_0E\left(\frac{1}{2}\sin\phi + \frac{1}{4}\beta\cos^2\phi\right)$$

Dynamics of ϕ and travelling fronts

 \bullet L^2 -gradient flow

$$\eta \phi_t = -\nabla_{L^2} \left(\int w(\phi) \, dx \right),$$

where η is a rotational viscosity

ullet setting $v=rac{1}{2}-rac{\phi}{\pi},$ and non-dimensionalising x and t gives

$$v_t = \sqrt{1 + \xi \cos(2\pi v)} (\sqrt{1 + \xi \cos(2\pi v)} v_x)_x + \frac{\sin(\pi v)}{2\pi} [1 - \beta \cos(\pi v)]$$

Dynamics of ϕ and travelling fronts

 \bullet L^2 -gradient flow

$$\eta \phi_t = -\nabla_{L^2} \left(\int w(\phi) \, dx \right),$$

where η is a rotational viscosity

ullet setting $v=rac{1}{2}-rac{\phi}{\pi},$ and non-dimensionalising x and t gives

$$v_t = \sqrt{1 + \xi \cos(2\pi v)} (\sqrt{1 + \xi \cos(2\pi v)} v_x)_x + \frac{\sin(\pi v)}{2\pi} [1 - \beta \cos(\pi v)]$$

ullet travelling front solutions v(x,t)=V(x-ct) with

$$\lim_{z \to -\infty} V(z) = v_1, \quad \lim_{z \to +\infty} V(z) = v_0$$

model switching between two constant states v_1, v_0 of the liquid crystal, and have potential applications to fast electro-optical switches

Isotropic case : $\xi = 0$

(see also Gilding and Kersner, 2004, and van Saarloos et al, 1995)

ullet with $F(V)=-rac{dV}{dz}$, phase-plane equation is

$$F\frac{dF}{dV} - cF + f(V) = 0$$

• linear speed becomes

$$c_l(\beta, 0) = \sqrt{2(1-\beta)}$$

Isotropic case : $\xi = 0$

(see also Gilding and Kersner, 2004, and van Saarloos et al, 1995)

ullet with $F(V)=-rac{dV}{dz}$, phase-plane equation is

$$F\frac{dF}{dV} - cF + f(V) = 0$$

• linear speed becomes

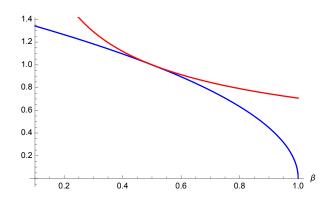
$$c_l(\beta, 0) = \sqrt{2(1-\beta)}$$

• family of explicit solutions [Clarkson and Mansfield, '94, Stewart and Momoniat, '04]

$$F^{\beta}(V) = \frac{1}{\pi} \sqrt{\frac{\beta}{2}} \sin(\pi V), \quad \text{with speed} \quad c_{nl}(\beta, 0) := \frac{1}{\sqrt{2\beta}}$$

easy to see that

$$c_{nl}(\beta,0) \ge c_l(\beta,0)$$
 for all $\beta \in [0,1)$ and $c_{nl}(\frac{1}{2},0) = c_l(\frac{1}{2},0)$



Theorem ($\xi = 0$) [CGM, van Saarloos et al, Gilding and Kersner]

If $\beta \in [0, 1/2]$,

$$c_*(\beta, 0) = c_l(\beta, 0) = \sqrt{2(1-\beta)}$$

whereas if $\beta \in (1/2, 1)$,

$$c_*(\beta, 0) = c_{nl}(\beta, 0) = \sqrt{\frac{1}{2\beta}} > c_l(\beta, 0)$$

Theorem ($\xi = 0$) [CGM, van Saarloos et al, Gilding and Kersner]

If $\beta \in [0, 1/2]$,

$$c_*(\beta, 0) = c_l(\beta, 0) = \sqrt{2(1-\beta)}$$

whereas if $\beta \in (1/2, 1)$,

$$c_*(\beta, 0) = c_{nl}(\beta, 0) = \sqrt{\frac{1}{2\beta}} > c_l(\beta, 0)$$

Ideas in proof

• (i) $\beta \in [0, \frac{1}{2}]$: use variational formula for $c_*(\beta, 0)$

$$c_*(\beta, 0) = \inf_{F \in \Lambda} \sup_{V \in (0,1)} \left\{ F'(V) + \frac{f(V)}{F(V)} \right\}$$

with test functions

$$F_{\nu}(V) = \nu \sin(\pi V), \quad \nu > 0,$$

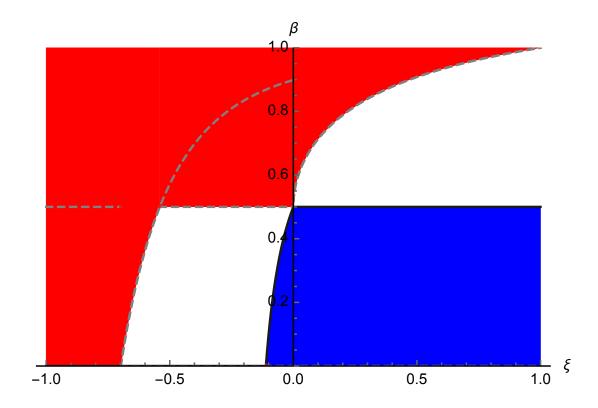
• (ii) $\beta \in (\frac{1}{2}, 1)$: [Lucia, Muratov + Novaga, '04] showed that a front V has minimal speed $c = c_*(\beta, 0)$ if

$$\int_0^\infty e^{cz} \left(V^2(z) + (V')^2(z) \right) dz < \infty$$

(cf [Rothe, '81]: front has faster of 2 possible rates of decay ⇔ pushed, minimal speed)

Anisotropic case : $\xi \neq 0$

- no explicit travelling wave solutions
- ullet asymmetry between $\xi < 0$ and $\xi > 0$
- ullet summary of results in (ξ,β) plane



blue = linear selection, red = nonlinear selection, white = ???

+ \exists increasing function $\beta(\xi)$, with $\beta(0)=\frac{1}{2}$, separating regions of linear/nonlinear selection

Separating curve between linear/nonlinear selection regions

Proposition If
$$c_*(\beta^*, \xi^*) = c_l(\beta^*, \xi^*)$$
, then
$$c_*(\beta^*, \xi) = c_l(\beta^*, \xi) \quad \text{if} \quad \xi > \xi^* \quad \text{and} \quad c_*(\beta^*, \xi^*) = c_l(\beta, \xi^*) \quad \text{if} \quad \beta < \beta^*$$

idea of proof....

- ullet define $h_{\xi}:=\sqrt{1+\xi\cos(2\pi V)}$
- ullet since there exists a decreasing front of speed $c=c_*(eta^*,\xi^*)$, there exists $\hat F\in\Lambda$ such that

$$c_*(\beta^*,\xi^*) = h_{\xi^*}(V) \, \left\{ \hat{F}'(V) + \frac{f(V)}{\hat{F}(V)} \right\} \quad \text{for all } V \in (0,1).$$

then

$$c_{*}(\beta^{*},\xi) = \inf_{F \in \Lambda} \sup_{V \in (0,1)} h_{\xi}(V) \left\{ F'(V) + \frac{f(V)}{F(V)} \right\}$$

$$\leq \sup_{V \in (0,1)} \frac{h_{\xi}(V)}{h_{\xi^{*}}(V)} h_{\xi^{*}}(V) \left\{ \hat{F}'(V) + \frac{f(V)}{\hat{F}(V)} \right\}$$

$$= c_{*}(\beta^{*},\xi^{*}) \sup_{V \in (0,1)} \frac{h_{\xi}(V)}{h_{\xi^{*}}(V)}$$

$$= \sqrt{2(1-\beta)(1+\xi^{*})} \sup_{V \in (0,1)} \frac{h_{\xi}(V)}{h_{\xi^{*}}(V)}.$$

idea of proof....ctd

now

$$\frac{h_{\xi}(V)}{h_{\xi^*}(V)} = \sqrt{\frac{1 + \xi \cos(2\pi V)}{1 + \xi^* \cos(2\pi V)}} \leq \sqrt{\frac{1 + \xi}{1 + \xi^*}} \qquad \text{for all } V \in (0, 1) \text{ if } \quad \xi^* < \xi$$

since

$$\frac{1+\xi\cos(2\pi V)}{1+\xi^*\cos(2\pi V)} - \frac{1+\xi}{1+\xi^*} = \frac{(\xi^* - \xi)(1-\cos(2\pi V))}{(1+\xi^*)(1+\xi^*\cos(2\pi V))} < 0$$

because $\xi^* < \xi$

SO

$$c_*(\beta^*, \xi) \le \sqrt{2(1-\beta)(1+\xi^*)} \sqrt{\frac{1+\xi}{1+\xi^*}} = \sqrt{2(1-\beta)(1+\xi)} = c_l(\beta^*, \xi),$$

$$\Rightarrow c_*(\beta^*, \xi) = c_l(\beta^*, \xi)$$

Fully-funded PhD Project:

Shape optimization problems and reaction-diffusion equations

- joint Université Grenoble-Alpes/Swansea University PhD
- supervised by
 - Emmanuel Russ (Grenoble)
 - Elaine Crooks (Swansea)
 - Norman Dancer (Swansea)
- 18 months in Grenoble, then 18 months in Swansea
- research topic principal eigenvalues of elliptic operators with drift, applications to spreading speeds
- start date of study: 1st October 2019
- closing date: 13th May 2019

https://www.swansea.ac.uk/postgraduate/scholarships/research/mathematicsjoint-phd-shape-optimization-2019.php Thank you for you attention.....