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Background: consider reaction-diffusion equations
U = dug, + f(u)
with ‘monostable’ reaction f satisfying

F0) = f(1)=0 e.g. fu) =u(l —u)

f/<0) >0, f/<1) <0 /\ or
f(u) >0 when u € (0,1) ”
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front profile

for all speeds

for some minimal front speed ¢* > 0  (Fisher, KPP ’37)



Some key facts about minimal front speed ¢*

(i) (Aronson-Weinberger '78) c* can be characterised as a
spreading speed

namely, for an initial condition u(z,0) = ug(x) € [0, 1] with
up(x) =0for x >> 0, wup(z) € (a, 1) for x << 0,

for some o > 0,

the solution u of u; = du,, + f(u) satisfies

-if ¢ > ¥, then
lim sup u(x,t) =0

t—00 r>ct

-if ¢ < ¥, then

lim inf u(z,t) =1
t—oo x<ct



(ii) define the linear value ¢ to be the minimal ¢ for which the linear equation
dw" + cw' + f'(0)w =0
has a solution w(§) = exp(—pu&) with real 1 > 0, and hence
dp — e+ £/(0) =0

¢ =2+4/d f'(0)

so that



(ii) define the linear value ¢ to be the minimal ¢ for which the linear equation
dw" + cw' + f/(0)w =0
has a solution w(&) = exp(—pu&) with real ¢ > 0, and hence
dp* — cp+ f(0) = 0

¢ =2+/d f'(0)

c>c

so that

- then

since the existence of —u < 0 is necessary for front w(x — ct) to exist

Local phase portraits at (w, w') = (0, 0)
w’ w'

c>cC c<¢c¢

~ s




- In general, may have
¢ >c¢ or
- say equation is linearly determinate if

¢ =

C
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e want to know value of minimal speed c,

- especially since c, = spreading speed of solutions of the initial-value
problem of v; = v,, + f(v) with compactly supported data v

initial data v




- In general, may have
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Important because

e want to know value of minimal speed c,
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e stability of fronts, in terms of the IVP of v; = v,, + f(v), depends on

- whether a front has minimal speed: ¢ = ¢, or ¢ > ¢,

- whether the minimal speed front is linearly determinate: ¢, = ¢ 7



- In general, may have
¢ > ¢ (pushed) or ¢ =c¢ (pulled) (Stokes'76)

- say equation is linearly determinate if

*

cC =2¢C
Important because

e want to know value of minimal speed c,

- especially since ¢, = spreading speed of solutions of the initial-value
problem of v; = v,, + f(v) with compactly supported data v

initial data v

e stability of fronts, in terms of the IVP of v; = v, + f(v), depends on

X

- whether a front has minimal speed: ¢ = ¢, or ¢ > ¢,
- whether the minimal speed wave is linearly determinate: ¢, = ¢ 7

i.e. for which initial conditions? in what sense? solution v of IVP converges to
front(s) as ¢ — o0



Example (Hadeler-Rothe '75)

The equation
U = Upy +u(l —u)(1 + au)

with
has
c=2 foralla >0
and
) 2 if0<a<?2,
¢ :< a-+2 -
\\/%lfaEQ

linearly determinate if and only if a € (0, 2|



A famous sufficient condition for linear determinacy (Stokes, Hadeler-Rothe)

If
fu) < f'(0)u forall ue (0,1)

i.e. no Allee effect

then

Note: this condition is not necessary - in the previous example, this condition
only holds when 0 < a < 1, whereas ¢* = ¢ whenever 0 < a < 2



Useful change of variables:

- for a strictly monotone scalar front profile w, we can think of

w' as a function of w

. write
w' = —p(w)
so that
w” = p'(w)p(w)
and hence
dw”(§) + cw'(§) + f(w(€)) =0
if and only if



Proof : use the min-max formula

c* = inf sup {dp'(u) +- f_u)} ,

PEN 4e(0,1) p(u)

where

A={peCY]0,1]): plu) > 0ifu e (0,1), p(0) =0, p'(0) > 0},



Proof : use the min-max formula

"= inf su "(u f_u)
C ﬂEi ue(ol,on {dp( )+ p(u) } |
where
A={peCY[0,1]): plu) > 0ifu e (0,1), p(0) =0, p'(0) > 0},

together with the family of test functions p,(u) = xu to get

¢ < inf sup {dli—l—M}
)

k>0 ue (0,1 KU

< ir>1{6 {d/i + f//io)} since f(u) < f'(0)u
= 2+/df'(0) = ¢

so that

E *

c < c¢c < ¢ = ¢ =c



Aside: if f is bistable, e.g.,
AN
O\/ 1

there exists unique ¢y € R for which a decreasing travelling front exists

e this speed ¢ is not controlled by a linearisation: for every ¢ € IR

e difficult to determine ¢: for scalar case, can find sign c¢ via

1 1
c/(w’)2 dé :/ fw)dw = signc= sign / f(w) dw
R 0 0

e but for systems, need other ideas,
e.g. strong competition limit (Girardin-Nadin 2015)




Some references on travelling fronts, spreading speeds, and linear
determinacy for monostable equations/systems....

e classical: Fisher, Kolmorogorov-Petrovskii-Piskounov, Aronson-Weinberger,
Hadeler-Rothe....

e [inear determinacy in the scalar case: Weinberger, Berestycki-Nirenberg,
Lucia-Muratov-Novaga, Malaguti-Marcelli, Gilding-Kersner,
Benguria-Depassier-Mendez....

e linear determinacy for co-operative or competition systems: Lui, Hosono,
Weinberger-Lewis-Li, Liang-Zhao, Holzer-Scheel, Huang-Han,
Roques-Hosono-Bonnefon-Boivin....

..... and for non-co-operative systems Weinberger-Kawasaki-Shigesada,
Haiyan Wang, Wang-Castillo-Chavez, Dunbar, Griette-Raoul, Girardin....

+ many other papers e.g. on equations with delay, spatial heterogeneity,
nonlocal terms, etc



Example 1: Scalar equation with (nonlinear) convection

up + B (w)uy = dug, + f(u)

(with A. Al Kiffai, Kufa University, lraq)



Motivating example: a one-dimensional model of motion of chemotactic cells

(Benguria-Depassier-Mendez, based on Keller-Segel model)

® suppose

p(x,t) = density of bacteria chemotactic to a chemical of concentration s(x, t),

pr = dpe — pxsale + f(p),

e if rate of chemical consumption is mainly due to ability of bacteria to
consume chemical, then

so that



By similar arguments to above....

e there exist decreasing fronts for all speeds ¢ > c¢*, where

. 0
c —p€£ uil(loli) {dp (u) + h'(u) + p(u)}’

where

A={pecC'([0,1]) : p(u) > 0if u € (0,1), p(0) =0, p'(0) > 0},

e sufficient condition for ‘right’ linear determinacy: if

h(u) +Vd \/]%u < K(0) 4+ Vdr\/f(0) forall ue (0,1),

= 2= h(0)+20/df(0)

then



Lack of symmetry in the presence of convection
o if h'(u) # 0, the function u(x,t) = u(—=x,t) instead solves
—H(@)i, = dig, + (@) (%)
*. no symmetry between increasing/decreasing fronts

e there exist increasing fronts w(x — ct) for all

W'(0) = 2+/df"(0),
and there exist decreasing fronts w(x — ct) for all
¢ > c = o= H(0)+2/dF0)

c < ¢ < g

Ug U
e N
0 ————=°"__ -
spreading speed for initial condition spreading speed for initial condition v

— ok X
= ¢ = c,



An example that is right, but not left, linearly determinate
e given a > 2, consider

ue+ (1= a)utty = e+ u(l —w)(1+au) ()

so that
h(u)=(1—-au, [flu)=u(l-u)(l+au)
(i =c,
- check sufficient condition: h'(u) + % < A'(0)+ +/ f'(0)
(i) ¢ < &

- the solution u of the convectionless equation

Up = Ugr + f(w)

with non-decreasing initial condition

i is a subsolution for (7)



Linear determinacy and the diffusion constant d

e if no convection, i.e. h'(u) = 0, then

either (right or left) linearly determinate for all d > 0, or forno d > 0

.... because wave speeds and linear values are proportional to Vd

- I.e.,
w(€) is a wave profile, speed ¢, for d = 1

& v =w (i) is a wave profile, speed \/d ¢, for general d

Vd

and linear values satisfy

Ed:\/ZiE

e but if A'(u) Z 0, linear determinacy may depend on diffusion d



An example where (right) linear determinacy depends on diffusion d

e consider
ur+ 1 —w)uy = dug, +u(l —u)(1+8u) (1)
so that
W(u)=1(1—u) fu) =u(l —u)(1l+ 8u)
\.--~ [(=g>c
LT it h' =0)
0 1 U 0 1

r

(i) c; = ¢, ifv/d <, by sufficient condition

(i) c* > ¢, if+/d> 2 by using suitable subsolution



Example 2: Travelling fronts in anisotropic smectic C* liquid crystals

v = /1 + € cos(2mv)(y/1 + & cos(2mv)v,), + f(v)

(with M. Grinfeld and G. McKay, Strathclyde)



Problem

e consider the quasilinear equation

v = /1 + Ecos(2mv)(y/1 + € cos(2mv)v, ), + f(v), = €R,t>0

where
~ sin(mv)

F(v) = 22 1 = Beos(mo)].

and ¢ € (—1,1)and S € |0, 1) are constants.

Here
e £ is a measure of anisotropy

e 3 controls the shape of the nonlinearity f



e form of nonlinearity f(v) = SmQ(;w) 1 — B cos(mov)]

- equilibria at all k € Z, in particular, v =0, v = 1
-if g€ 10,1), f(0) >0, f(1) <0 = “monostable”

@ B =0 b) 8 =0.25 ) B=0.5

beta =0.99

20+
1.5
1.0
0.5+
u . . . . u
1) 0.2 0.4 0.6 0.8 1)

-0.5-

-1.0+

d B=0.75 (e) B=0.99




e interested in decreasing travelling front solutions

v(x,t) =V(x —ct),
with
lim V(z)=1, lim V(z)=0

Z—>—00 Z—00

speed ¢




Motivation: smectic C* liquid crystals

&

ﬂy

smectic layer

v/
QQ@@@

e 1 = director (unit vector giving molecular alignment) = a cosf 4+ ¢sin 6

e a — normal to smectic layers
e = (constant) tilt angle, ¢ = twist angle (assume depends only on z, )
ec=(cosg,sing,0), b= (—sing,cosq,0)

e constant electric field £ = F(1,0,0)



Continuum theory [Leslie, Stewart, Nakagawa, 1991]

e free energy density

w(gb) = welastic<¢> + wpolarisation<¢> + w(iielectric(¢)

e anisotropic elastic energy density

Welastic(P) = %Bl(v - b)? + %BQ(V .c)? = %B(l — £ cos 20) 2,

when
Bi=B(1-¢), By=B(1+4¢), &(e(—1,1)

e energy density from spontaneous polarisation

wpolarisation<¢) — _POb - B = P()E sin Qb

e dielectric energy density

1 1 |
wdielectric<¢> — _§€O€a<n ) E>2 — —§€0€a<E COS QbSIIl 9)2
e so defining 0 := —% sin’ 0, we have

w(p) = %B(l — £ cos 2gb)q§i + 2P F (% sin ¢ + iﬁ cos’ qb)



Dynamics of ¢ and travelling fronts

Vo=~V ( [ dx> |

where 7) is a rotational viscosity

— %, and non-dimensionalising &« and ¢ gives

e [>-gradient flow

e setting v = 3

v = /1 + Ecos(2mv)(\/1 + € cos(2mv)v,), + sin(7v)

1 — B cos(mv)]

2T



Dynamics of ¢ and travelling fronts

Vo=~V ( [ dx> |

where 7) is a rotational viscosity

e [>-gradient flow

e setting v = % — %, and non-dimensionalising x and ¢ gives
v = /1 + Ecos(2mv)(\/1 + € cos(2mv)v,), + sz(mj) 1 — B cos(mv)]
T

e travelling front solutions v(x,t) = V(z — ct) with

lim V(z)=wv1, lim V(z) =g

Z——00 Z—+00

model switching between two constant states v;, vy of the liquid crystal,
and have potential applications to fast electro-optical switches



Isotropic case : £ = (
(see also Gilding and Kersner, 2004, and van Saarloos et al, 1995)

e with F(V') = —29, phase-plane equation is
dF
Fo —cF+ f(V)=0
o~ cF V)

e linear speed becomes

ci(8,0) = /2(1 = B)



Isotropic case : £ = (
(see also Gilding and Kersner, 2004, and van Saarloos et al, 1995)

e with F/(V') = —2%, phase-plane equation is
dF
F— —cF V)=0
o V)

e linear speed becomes

a(8,0) = 1/2(1 = B)

e family of explicit solutions [Clarkson and Mansfield, ‘94, Stewart and Momoniat, '04]

FO(V) = %\/gsin(ﬂ/), with speed ¢,;;(3,0) = \/%

e casy to see that

Cnl(ﬁao) > Cl(670) for all 6 < [07 1) and Cnl(%70> — Cl(%vo)




Theorem (¢ = 0) [CGM, van Saarloos et al, Gilding and Kersner]

if g €(0,1/2],

C*(670> — Cl(ﬁa()) — \/2<1 o 6)
whereas if 8 € (1/2,1),

c(8,0) = cy(5,0) = \/% > ¢(f,0)




Theorem (¢ = 0) [CGM, van Saarloos et al, Gilding and Kersner]

if g €1[0,1/2],

¢ (B,0) = ¢(B,0) = /2(1 —

c(6,0) = cy(5,0) = \/% > ¢(f,0)

whereas if 5 € (1/2,1),

ldeas in proof

o ()3 €0, %} use variational formula for ¢,(5, 0)

c.(6,0) = inf  sup {F’(V)er}

FeA ye,1)
with test functions

F,(V)=vsin(nV), v >0,

o (i) § € (%, 1): [Lucia, Muratov + Novaga, ‘04] showed that a front I has minimal speed

c = c,(3,0) if N
/o e (V3(2) + (V')*(2)) dz < o0

(cf [Rothe, ‘81]: front has faster of 2 possible rates of decay < pushed, minimal speed )



Anisotropic case : £ # (

e no explicit travelling wave solutions
e asymmetry between & < 0and & > 0

e summary of results in (&, 3) plane

blue = linear selection, red = nonlinear selection, white = ???

+ Fincreasing function (&), with 3(0) = 1, separating regions of linear/nonlinear selection



Separating curve between linear/nonlinear selection regions

Proposition  If (8%, &*) = ¢(8%, &), then
(058 =alp",§) it £>¢& and () =alB,{) it f<05°

idea of proof....

e define h¢ = \/1 + & cos(27V)

e since there exists a decreasing front of speed ¢ = c¢,(5*, £*), there exists F' € A such that

c(8°,&) = he«(V) {F’(V) + ]‘g(“;))} forall V € (0,1).
e then
C*<6*7€) — ]}}5\ Vsel(lg)l) hg(V) {F/<V> 1 %}
hg(V) nl f(V)
B Vsé‘l(lg)l) he(V) he: (V) {F (V) + F(V>}
= S0 2 R
| he(V)

= 2l = 0)(1 +&*) su :
V2AL=AIHE) s g



idea of proof....ctd

® NOW

— "> forall V€ (0,1)if &<
T econ2ny) = \1re CralveOnit & <e

he(V) \/1+§cos(27ﬂ/) _ [1+E

since

L+&cos2nV) 14§ (§" =&)L —cos(2mV))

1+ & cos(2nV)  1+& (1+&9)(1+ & cos(2nV)) <0

because £* < &

® SO

c.(8%,€) < V/2(1 = B)(1+ &)

14+& .
1+ & — \/2(1 = B)1+¢&) =alB",§),

= C*(ﬁ*ag) :Cl(5*7£>
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Thank you for you attention.....



