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Background: consider reaction-diffusion equations

ut = duxx + f (u)

with ‘monostable’ reaction f satisfying

10 1
u

f(0) = f(1) = 0 e.g.

f ′(0) > 0, f ′(1) < 0

f(u) > 0 when u ∈ (0, 1)

f(u) = u(1− u)

or

u
0
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• there exist decreasing front solutions u(x, t) = w(x− ct)

front profile

ξ

1
w(ξ)

0

for all speeds

c ≥ c∗

for some minimal front speed c∗ > 0 (Fisher, KPP ’37)



Some key facts about minimal front speed c∗

(i) (Aronson-Weinberger ’78) c∗ can be characterised as a

spreading speed

namely, for an initial condition u(x, 0) = u0(x) ∈ [0, 1] with

u0(x) = 0 for x >> 0, u0(x) ∈ (α, 1) for x << 0,

for some α > 0,

α
u0

0

1

the solution u of ut = duxx + f (u) satisfies

- if c > c∗, then

lim
t→∞

sup
x≥ct

u(x, t) = 0

- if c < c∗, then

lim
t→∞

inf
x≤ct

u(x, t) = 1



(ii) define the linear value c̄ to be the minimal c for which the linear equation

dw′′ + cw′ + f ′(0)w = 0

has a solution w(ξ) = exp(−µξ) with real µ > 0, and hence

dµ2 − cµ + f ′(0) = 0

so that

c̄ = 2
√
d f ′(0)
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has a solution w(ξ) = exp(−µξ) with real µ > 0, and hence

dµ2 − cµ + f ′(0) = 0

so that

c̄ = 2
√
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- then

c∗ ≥ c̄

since the existence of −µ < 0 is necessary for front w(x− ct) to exist

Local phase portraits at (w,w′) = (0, 0)

w′w′

w

c > c̄ c < c̄

w
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- in general, may have

c∗ > c̄ (pushed) or c∗ = c̄ (pulled) (Stokes ’76)

- say equation is linearly determinate if

c∗ = c̄
Important because

• want to know value of minimal speed c∗
- especially since c∗ = spreading speed of solutions of the initial-value

problem of vt = vxx + f (v) with compactly supported data v0

x

initial data v0

• stability of fronts, in terms of the IVP of vt = vxx + f (v), depends on

- whether a front has minimal speed: c = c∗ or c > c∗

- whether the minimal speed wave is linearly determinate: c∗ = c̄ ?

i.e. for which initial conditions? in what sense? solution v of IVP converges to

front(s) as t→∞



Example (Hadeler-Rothe ’75)

The equation

ut = uxx + u(1− u)(1 + au)

with
f(u)

0 1

−a−1

has

c̄ = 2 for all a > 0

and

c∗ =

{
2 if 0 ≤ a ≤ 2,
a+2√

2a
if a ≥ 2

∴ linearly determinate if and only if a ∈ (0, 2]



A famous sufficient condition for linear determinacy (Stokes, Hadeler-Rothe)

If

f (u) ≤ f ′(0)u for all u ∈ (0, 1)

i.e. no Allee effect

f ′(0)u

f(u)

0 1

then

c∗ = c̄

Note: this condition is not necessary - in the previous example, this condition

only holds when 0 < a ≤ 1, whereas c∗ = c̄ whenever 0 < a ≤ 2



Useful change of variables:

- for a strictly monotone scalar front profile w, we can think of

w′ as a function of w

∴ write

w′ = −ρ(w)

so that

w′′ = ρ′(w)ρ(w)

and hence

dw′′(ξ) + cw′(ξ) + f (w(ξ)) = 0

if and only if

dρ′(w)ρ(w)− cρ(w) + f (w) = 0



Proof : use the min-max formula

c∗ = inf
ρ∈Λ

sup
u∈(0,1)

{
dρ′(u) +

f (u)

ρ(u)

}
,

where

Λ = {ρ ∈ C1([0, 1]) : ρ(u) > 0 if u ∈ (0, 1), ρ(0) = 0, ρ′(0) > 0},



Proof : use the min-max formula

c∗ = inf
ρ∈Λ

sup
u∈(0,1)

{
dρ′(u) +

f (u)

ρ(u)

}
,

where

Λ = {ρ ∈ C1([0, 1]) : ρ(u) > 0 if u ∈ (0, 1), ρ(0) = 0, ρ′(0) > 0},

together with the family of test functions ρκ(u) = κu to get

c∗ ≤ inf
κ>0

sup
u∈(0,1)

{
dκ +

f (u)

κu

}
≤ inf

κ>0

{
dκ +

f ′(0)

κ

}
since f (u) ≤ f ′(0)u

= 2
√
df ′(0) = c̄

so that
c̄ ≤ c∗ ≤ c̄ ⇒ c∗ = c̄

2



Aside: if f is bistable, e.g.,

0 1

f

there exists unique c0 ∈ R for which a decreasing travelling front exists

• this speed c0 is not controlled by a linearisation: for every c ∈ R
w′

w

• difficult to determine c0: for scalar case, can find sign c via

c

∫
R

(w′)2 dξ =

∫ 1

0

f (w) dw ⇒ sign c = sign

∫ 1

0

f (w) dw

• but for systems, need other ideas,

e.g. strong competition limit (Girardin-Nadin 2015)



Some references on travelling fronts, spreading speeds, and linear

determinacy for monostable equations/systems....

• classical: Fisher, Kolmorogorov-Petrovskii-Piskounov, Aronson-Weinberger,

Hadeler-Rothe....

• linear determinacy in the scalar case: Weinberger, Berestycki-Nirenberg,

Lucia-Muratov-Novaga, Malaguti-Marcelli, Gilding-Kersner,

Benguria-Depassier-Mendez....

• linear determinacy for co-operative or competition systems: Lui, Hosono,

Weinberger-Lewis-Li, Liang-Zhao, Holzer-Scheel, Huang-Han,

Roques-Hosono-Bonnefon-Boivin....

.....and for non-co-operative systems Weinberger-Kawasaki-Shigesada,

Haiyan Wang, Wang-Castillo-Chavez, Dunbar, Griette-Raoul, Girardin....

+ many other papers e.g. on equations with delay, spatial heterogeneity,

nonlocal terms, etc



Example 1: Scalar equation with (nonlinear) convection

ut + h′(u)ux = duxx + f (u)

(with A. Al Kiffai, Kufa University, Iraq)



Motivating example: a one-dimensional model of motion of chemotactic cells

(Benguria-Depassier-Mendez, based on Keller-Segel model)

• suppose

ρ(x, t) = density of bacteria chemotactic to a chemical of concentration s(x, t),

ρt = [dρx − ρχsx]x + f (ρ),

• if rate of chemical consumption is mainly due to ability of bacteria to

consume chemical, then

st = −kρ
and for travelling fronts s(x− ct), ρ(x− ct), we have

sx = −1

c
st =

kρ

c
,

so that

ρt +
χk

c
ρρx = dρxx + f (ρ)



By similar arguments to above....

• there exist decreasing fronts for all speeds c ≥ c∗, where

c∗ = inf
ρ∈Λ

sup
u∈(0,1)

{
dρ′(u) + h′(u) +

f (u)

ρ(u)

}
,

where

Λ = {ρ ∈ C1([0, 1]) : ρ(u) > 0 if u ∈ (0, 1), ρ(0) = 0, ρ′(0) > 0},

• sufficient condition for ‘right’ linear determinacy: if

h′(u) +
√
d

f (u)√
f ′(0)u

≤ h′(0) +
√
d
√
f ′(0) for all u ∈ (0, 1),

then

c∗ = c̄ = h′(0) + 2
√
df ′(0)



Lack of symmetry in the presence of convection

• if h′(u) 6≡ 0, the function û(x, t) = u(−x, t) instead solves

ût −h′(û)ûx = dûxx + f (û) (∗)

∴ no symmetry between increasing/decreasing fronts

• there exist increasing fronts ŵ(x− ct) for all

c ≤ c∗l ≤ c̄l = h′(0)− 2
√
df ′(0),

and there exist decreasing fronts w(x− ct) for all

c ≥ c∗r ≥ c̄r = h′(0) + 2
√
df ′(0)

û0

α

0

1

= c∗l

α

spreading speed for initial condition u0

u0

spreading speed for initial condition û0

= c∗r



An example that is right, but not left, linearly determinate

• given a > 2, consider

ut + (1− a)uux = uxx + u(1− u)(1 + au) (†)
so that

h′(u) = (1− a)u, f (u) = u(1− u)(1 + au)

(i) c∗r = c̄r

- check sufficient condition: h′(u) + f(u)√
f ′(0)u

≤ h′(0) +
√
f ′(0)

(ii) c∗l < c̄l

- the solution u of the convectionless equation

ut = uxx + f (u)

with non-decreasing initial condition

(†)
α

0

1

û0 is a subsolution for

is a subsolution for



Linear determinacy and the diffusion constant d

• if no convection, i.e. h′(u) ≡ 0, then

either (right or left) linearly determinate for all d > 0, or for no d > 0

.... because wave speeds and linear values are proportional to
√
d

- i.e.,

w(ξ) is a wave profile, speed c, for d = 1

⇔ v(ξ) = w

(
ξ√
d

)
is a wave profile, speed

√
d c, for general d

and linear values satisfy

c̄d =
√
d c̄

• but if h′(u) 6≡ 0, linear determinacy may depend on diffusion d



An example where (right) linear determinacy depends on diffusion d

• consider

ut + 1
4(1− u)ux = d uxx + u(1− u)(1 + 8u) (†)

so that

if h′ ≡ 0)

u0 1 0 1

h′(u) = 1
4(1− u) f (u) = u(1− u)(1 + 8u)

(⇒ c∗r > c̄

(i) c∗r = c̄r if
√
d ≤ 1

28, by sufficient condition

(ii) c∗r > c̄r if
√
d > 1

2, by using suitable subsolution



Example 2: Travelling fronts in anisotropic smectic C∗ liquid crystals

vt =
√

1 + ξ cos(2πv)(
√

1 + ξ cos(2πv)vx)x + f (v)

(with M. Grinfeld and G. McKay, Strathclyde)



Problem

• consider the quasilinear equation

vt =
√

1 + ξ cos(2πv)(
√

1 + ξ cos(2πv)vx)x + f (v), x ∈ R, t > 0

where

f (v) :=
sin(πv)

2π
[1− β cos(πv)] ,

and ξ ∈ (−1, 1) and β ∈ [0, 1) are constants.

Here

• ξ is a measure of anisotropy

• β controls the shape of the nonlinearity f



• form of nonlinearity f (v) = sin(πv)
2π [1− β cos(πv)]

- equilibria at all k ∈ Z, in particular, v = 0, v = 1

- if β ∈ [0, 1), f ′(0) > 0, f ′(1) < 0 ⇒ “monostable”
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• interested in decreasing travelling front solutions

v(x, t) = V (x− ct),
with

lim
z→−∞

V (z) = 1, lim
z→∞

V (z) = 0

speed c

1

0

V



Motivation: smectic C∗ liquid crystals

x

y

z

a

b

c

n
E

P

φ

θ

smectic layer

•n = director (unit vector giving molecular alignment) = a cos θ + c sin θ

• a = normal to smectic layers

• θ = (constant) tilt angle, φ = twist angle (assume depends only on x, t)

• c = (cosφ, sinφ, 0), b = (− sinφ, cosφ, 0)

• constant electric field E = E(1, 0, 0)



Continuum theory [Leslie, Stewart, Nakagawa, 1991]

• free energy density

w(φ) = welastic(φ) + wpolarisation(φ) + wdielectric(φ)

• anisotropic elastic energy density

welastic(φ) =
1

2
B1(∇ · b)2 +

1

2
B2(∇ · c)2 =

1

2
B(1− ξ cos 2φ)φ2

x,

when

B1 = B(1− ξ), B2 = B(1 + ξ), ξ ∈ (−1, 1)

• energy density from spontaneous polarisation

wpolarisation(φ) = −P0b ·E = P0E sinφ

• dielectric energy density

wdielectric(φ) = −1

2
ε0εa(n ·E)2 = −1

2
ε0εa(E cosφ sin θ)2

• so defining β := −ε0εaE
P0

sin2 θ, we have

w(φ) =
1

2
B(1− ξ cos 2φ)φ2

x + 2P0E

(
1

2
sinφ +

1

4
β cos2 φ

)



Dynamics of φ and travelling fronts

•L2-gradient flow

ηφt = −∇L2

(∫
w(φ) dx

)
,

where η is a rotational viscosity

• setting v = 1
2 −

φ
π , and non-dimensionalising x and t gives

vt =
√

1 + ξ cos(2πv)(
√

1 + ξ cos(2πv)vx)x +
sin(πv)

2π
[1− β cos(πv)]



Dynamics of φ and travelling fronts

•L2-gradient flow

ηφt = −∇L2

(∫
w(φ) dx

)
,

where η is a rotational viscosity

• setting v = 1
2 −

φ
π , and non-dimensionalising x and t gives

vt =
√

1 + ξ cos(2πv)(
√

1 + ξ cos(2πv)vx)x +
sin(πv)

2π
[1− β cos(πv)]

• travelling front solutions v(x, t) = V (x− ct) with

lim
z→−∞

V (z) = v1, lim
z→+∞

V (z) = v0

model switching between two constant states v1, v0 of the liquid crystal,

and have potential applications to fast electro-optical switches



Isotropic case : ξ = 0
(see also Gilding and Kersner, 2004, and van Saarloos et al, 1995)

• with F (V ) = −dV
dz , phase-plane equation is

F
dF

dV
− cF + f (V ) = 0

• linear speed becomes

cl(β, 0) =
√

2(1− β)



Isotropic case : ξ = 0
(see also Gilding and Kersner, 2004, and van Saarloos et al, 1995)

• with F (V ) = −dV
dz , phase-plane equation is

F
dF

dV
− cF + f (V ) = 0

• linear speed becomes

cl(β, 0) =
√

2(1− β)

• family of explicit solutions [Clarkson and Mansfield, ‘94, Stewart and Momoniat, ’04]

F β(V ) =
1

π

√
β

2
sin(πV ), with speed cnl(β, 0) :=

1√
2β

• easy to see that

cnl(β, 0) ≥ cl(β, 0) for all β ∈ [0, 1) and cnl(
1
2, 0) = cl(

1
2, 0)
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Theorem (ξ = 0) [CGM, van Saarloos et al, Gilding and Kersner]

If β ∈ [0, 1/2],

c∗(β, 0) = cl(β, 0) =
√

2(1− β)

whereas if β ∈ (1/2, 1),

c∗(β, 0) = cnl(β, 0) =

√
1

2β
> cl(β, 0)



Theorem (ξ = 0) [CGM, van Saarloos et al, Gilding and Kersner]

If β ∈ [0, 1/2],

c∗(β, 0) = cl(β, 0) =
√

2(1− β)

whereas if β ∈ (1/2, 1),

c∗(β, 0) = cnl(β, 0) =

√
1

2β
> cl(β, 0)

Ideas in proof

• (i) β ∈ [0, 1
2]: use variational formula for c∗(β, 0)

c∗(β, 0) = inf
F∈Λ

sup
V ∈(0,1)

{
F ′(V ) +

f (V )

F (V )

}
with test functions

Fν(V ) = ν sin(πV ), ν > 0,

• (ii) β ∈ (1
2, 1): [Lucia, Muratov + Novaga, ‘04] showed that a front V has minimal speed

c = c∗(β, 0) if ∫ ∞
0

ecz
(
V 2(z) + (V ′)2(z)

)
dz < ∞

(cf [Rothe, ‘81]: front has faster of 2 possible rates of decay⇔ pushed, minimal speed )



Anisotropic case : ξ 6= 0

• no explicit travelling wave solutions

• asymmetry between ξ < 0 and ξ > 0

• summary of results in (ξ, β) plane

-1.0 -0.5 0.0 0.5 1.0
ξ

0.2

0.4

0.6

0.8

1.0
β

blue = linear selection, red = nonlinear selection, white = ???

+ ∃ increasing function β(ξ), with β(0) = 1
2, separating regions of linear/nonlinear selection



Separating curve between linear/nonlinear selection regions

Proposition If c∗(β∗, ξ∗) = cl(β
∗, ξ∗), then

c∗(β
∗, ξ) = cl(β

∗, ξ) if ξ > ξ∗ and c∗(β
∗, ξ∗) = cl(β, ξ

∗) if β < β∗

idea of proof....

• define hξ :=
√

1 + ξ cos(2πV )

• since there exists a decreasing front of speed c = c∗(β
∗, ξ∗), there exists F̂ ∈ Λ such that

c∗(β
∗, ξ∗) = hξ∗(V )

{
F̂ ′(V ) +

f (V )

F̂ (V )

}
for all V ∈ (0, 1).

• then

c∗(β
∗, ξ) = inf

F∈Λ
sup

V ∈(0,1)

hξ(V )

{
F ′(V ) +

f (V )

F (V )

}
≤ sup

V ∈(0,1)

hξ(V )

hξ∗(V )
hξ∗(V )

{
F̂ ′(V ) +

f (V )

F̂ (V )

}
= c∗(β

∗, ξ∗) sup
V ∈(0,1)

hξ(V )

hξ∗(V )

=
√

2(1− β)(1 + ξ∗) sup
V ∈(0,1)

hξ(V )

hξ∗(V )
.



idea of proof....ctd

• now

hξ(V )

hξ∗(V )
=

√
1 + ξ cos(2πV )

1 + ξ∗ cos(2πV )
≤
√

1 + ξ

1 + ξ∗
for all V ∈ (0, 1) if ξ∗ < ξ

since

1 + ξ cos(2πV )

1 + ξ∗ cos(2πV )
− 1 + ξ

1 + ξ∗
=

(ξ∗ − ξ)(1− cos(2πV ))

(1 + ξ∗)(1 + ξ∗ cos(2πV ))
< 0

because ξ∗ < ξ

• so

c∗(β
∗, ξ) ≤

√
2(1− β)(1 + ξ∗)

√
1 + ξ

1 + ξ∗
=
√

2(1− β)(1 + ξ) = cl(β
∗, ξ),

⇒ c∗(β
∗, ξ) = cl(β

∗, ξ)
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Thank you for you attention.....


