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• Parabolic systems of form

ut = d1 ∆u + f (u)− kuv, x ∈ Ω, t ≥ 0,

vt = d2 ∆v + g(v)− αkuv, x ∈ Ω t ≥ 0

model populations of densities u, v that compete in domain Ω ∈ RN

+ boundary conditions

Ω ∈ RN
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inside

M0

form of self-interaction functions f, g

e.g. f(u) = u(1− u)

M = 1
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- called competition-diffusion systems or Gause-Lotka-Volterra systems

- arise in, e.g., ecology, population genetics, chemical morphogenesis
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• Elliptic systems of form

0 = d1∆u + f (u)− kuv, x ∈ Ω,

0 = d2∆v + g(v)− αkuv, x ∈ Ω

model equilibria (steady states) of populations u, v that compete in Ω ∈ RN

+ boundary conditions

Ω ∈ RN

u, v compete

inside

M0

form of self-interaction functions f, g

e.g. f(u) = u(1− u)

M = 1

• densities non-negative⇒ u, v ≥ 0 • competition parameters k, α > 0



• Boundary conditions and their ecological interpretation

- zero-flux boundary conditions

∂u

∂ν
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• Boundary conditions and their ecological interpretation

- zero-flux boundary conditions

∂u

∂ν
(x, t) =

∂u

∂ν
(x, t) = 0, x ∈ ∂Ω,

where ν is the outward unit normal vector to ∂Ω

- homogeneous Dirchet boundary conditions (also called ‘absorbing’)

u(x, t) = v(x, t) = 0, x ∈ ∂Ω

- inhomogeneous Dirchet boundary conditions

u(x, t) = m1(x, t), v(x, t) = m2(x, t), x ∈ ∂Ω,

for some given functions m1,m2 ≥ 0 (determined by u, v outside Ω)



A few famous results for the system

ut = d1 ∆u + u(r − au)− kuv,
vt = d2 ∆v + v(s− bv)− αkuv,

with zero-flux boundary conditions

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω



1. Equilibria play a major rôle in characterising longtime behaviour

For ‘almost all’ initial conditions u(x, 0), v(x, 0), the solution (u, v) to the

initial value problem converges as t→∞ to the set of all equilibria

- i.e. the ω-limit set consists entirely of equilibria

(Hirsch, 1982; Matano and Mimura, 1983)



1. Equilibria play a major rôle in characterising longtime behaviour

For ‘almost all’ initial conditions u(x, 0), v(x, 0), the solution (u, v) to the

initial value problem converges as t→∞ to the set of all equilibria

- i.e. the ω-limit set consists entirely of equilibria

(Hirsch, 1982; Matano and Mimura, 1983)

- in fact, under various additional conditions, can show convergence of all

non-negative solutions as t→∞ to a single equilibrium

e.g. Dancer and Zhang, 2002, assumptions include

k large + non-degeneracy conditions on equilibria of a limit problem



Key ingredient

Under the change of variables w = 1− v, system becomes

ut = d1 ∆u + f (u)− ku(1− w)

wt = d2 ∆w − g(1− w) + αku(1− w)

which is co-operative when 0 ≤ u, v ≤ 1, since
∂

∂w
(f (u)− ku(1− w)) ≥ 0,

∂

∂u
(−g(1− w) + αku(1− w)) ≥ 0



Key ingredient

Under the change of variables w = 1− v, system becomes

ut = d1 ∆u + f (u)− ku(1− w)

wt = d2 ∆w − g(1− w) + αku(1− w)

which is co-operative when 0 ≤ u, v ≤ 1, since
∂

∂w
(f (u)− ku(1− w)) ≥ 0,

∂

∂u
(−g(1− w) + αku(1− w)) ≥ 0

and hence is order-preserving

if u, û : Ω→ R2 are bounded and such that

u(x, 0) ≤ û(x, 0) for all x ∈ Ω, u(x, t) ≤ û(x, t) if x ∈ ∂Ω,

and

ut ≤ Auxx+f (u), ût ≥ Aûxx+f (û) for all (x, t) ∈ Ω×(0,∞),

then

u(x, t) ≤ û(x, t) for all (x, t) ∈ Ω× [0,∞)



e.g. if û is a known/constructed function that satisfies ût ≥ Aûxx + f (û)

(called a supersolution) and u is a solution of ut = Auxx + f (u) such that

u(x, 0) ≤ û(x, 0), x ∈ Ω, and u(x, t) ≤ û(x, t), x ∈ ∂Ω,

then

u(x, t) ≤ û(x, t)

∴ known function û dominates/controls u at later times t > 0

(sub)solution

x x

t = 0 t > 0

supersolution

û(x, 0)

u(x, 0)

(sub)solution

supersolution

û(x, t)

u(x, t)



2. Any spatially non-constant equilibrium is unstable if Ω is convex

(Kishimoto and Weinberger, 1985)

Ω convex

- builds on earlier results for one equation of Chafee, 1975 (N = 1) and

Carsten and Holland, 1978, Matano, 1979 (N > 1)



2. Any spatially non-constant equilibrium is unstable if Ω is convex

(Kishimoto and Weinberger, 1985)

Ω convex

- builds on earlier results for one equation of Chafee, 1975 (N = 1) and

Carsten and Holland, 1978, Matano, 1979 (N > 1)

∴ do not expect to see non-constant steady states in convex habitats



Special case: when k is large, there are two stable spatially constant
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Special case: when k is large, there are two stable spatially constant

equilibria, i.e.,

(u, v) =
(r
a
, 0
)
, (u, v) =

(
0,
s

b

)

v(s− bv)− αkuv = 0

u

v
nullclines

unstable

stable

stable

unstable

u(r − au)− kuv = 0

- if Ω is convex, these are the only stable equilibria

∴ u and v cannot co-exist in a convex habitat if they are strongly competing



3. Stable non-constant equilibria may exist if Ω is not convex

If Ω has a suitable ‘dumb-bell’ shape and k is large,

Ω

there exist stable non-constant equilibria where the components concentrate

in separate parts of the domain

(Matano and Mimura, 1983)



3. Stable non-constant equilibria may exist if Ω is not convex

If Ω has a suitable ‘dumb-bell’ shape and k is large,

Ω

there exist stable non-constant equilibria where the components concentrate

in separate parts of the domain

(Matano and Mimura, 1983)

∴ two strongly competing species may co-exist if the habitat is non-convex



• But the picture can change with different boundary conditions.....

e.g., with in-homogeneous Dirchlet conditions

u(x, t) = m1, v(x, t) = m2, x ∈ ∂Ω

where m1(x),m2(x) ≥ 0 and m1m2 = 0, and

Ω = (0, 1)× (0, 1) (convex)

numerical simulation gives

k = 102 k = 103



• But the picture can change with different boundary conditions.....

e.g., with in-homogeneous Dirchlet conditions

u(x, t) = m1, v(x, t) = m2, x ∈ ∂Ω

where m1(x),m2(x) ≥ 0 and m1m2 = 0, and

Ω = (0, 1)× (0, 1) (convex)

numerical simulation gives

k = 102 k = 103

∴ shows co-existence of strongly competing species in a convex habitat,

in contrast to the zero-flux boundary condition case

(C., Dancer, Hilhorst, Mimura, Ninomiya, 2004; C., Dancer, Hilhorst 2007)
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• Focus on elliptic systems

0 = d1∆u + f (u)− kuv, x ∈ Ω,

0 = d2∆v + g(v)− αkuv, x ∈ Ω

with homogeneous Dirichlet boundary conditions

u(x) = v(x) = 0, x ∈ ∂Ω



• a simplifying rescaling : we have

0 = ∆u + d−1
1 f (u)− kd−1

1 uv, x ∈ Ω,

0 = ∆v + d−1
2 g(v)− αkαd−1

2 uv, x ∈ Ω

u(x) = v(x) = 0, x ∈ ∂Ω

so defining

û := αd−1
2 u, v̂ := d−1

1 v,

and

f̂ (û) := αd−1
1 d−1

2 f (α−1d2û), ĝ := d−1
1 d−1

2 g(d1v̂),

gives

0 = ∆û + f̂ (û)− kûv̂, x ∈ Ω,

0 = ∆v̂ + ĝ(v̂)− kûv̂, x ∈ Ω

û(x) = v̂(x) = 0, x ∈ ∂Ω



• a simplifying rescaling: we have
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1 f (u)− kd−1

1 uv, x ∈ Ω,

0 = ∆v + d−1
2 g(v)− αkαd−1

2 uv, x ∈ Ω

u(x) = v(x) = 0, x ∈ ∂Ω

so defining

û := αd−1
2 u, v̂ := d−1

1 v,

and

f̂ (û) := αd−1
1 d−1

2 f (α−1d2û), ĝ := d−1
1 d−1

2 g(d1v̂),

gives

0 = ∆û + f̂ (û)− kûv̂, x ∈ Ω,

(P k
e ) 0 = ∆v̂ + ĝ(v̂)− kûv̂, x ∈ Ω,

û(x) = v̂(x) = 0, x ∈ ∂Ω

• note: this uses that (i) system is elliptic (ii) only two components



• Interest in the large-competition (k →∞) limit comes from

(i) the k-dependent system is difficult to analyse; for example, it is not in

general the Euler-Lagrange equations of an energy functional, whereas the

limit problem is a scalar equation

(ii) the k →∞ limit is linked to spatial segregation in population dynamics, or

to chemical separation in fast chemical reactions



• Interest in the large-competition (k →∞) limit comes from

(i) the k-dependent system is difficult to analyse; for example, it is not in

general the Euler-Lagrange equations of an energy functional, whereas the

limit problem is a scalar equation

(ii) the k →∞ limit is linked to spatial segregation in population dynamics, or

to chemical separation in fast chemical reactions

• Related problem

∆u + f (u)− kuv2 = 0, x ∈ Ω,

∆v + g(v)− ku2v = 0, x ∈ Ω

- limit k →∞ linked to phase separation in Bose-Einstein condensates

- is variational, being the Euler-Lagrange equations of a functional of form

J(u, v) =

∫
Ω

1

2
(|∇u|2 + |∇v|2)− F (u)−G(v) +

1

2
ku2v2 dx

(references: Conti, Terracini, Verzini; Squassina; Dancer, Wang and Zhang...)



Large-competition limit k →∞ of solutions (uk, vk)
Seminal ref: Dancer and Du, Journal Diff. Eqs. 114 (1994) 434-475

• (uk, vk) converge to the positive and negative parts resp. of a limit function

w satisfying the scalar equation

∆w + f (w+)− g(−w−) = 0, x ∈ Ω,

w(x) = 0, x ∈ ∂Ω
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Large-competition limit k →∞ of solutions (uk, vk)
Seminal ref: Dancer and Du, Journal Diff. Eqs. 114 (1994) 434-475

• (uk, vk) converge to the positive and negative parts resp. of a limit function

w satisfying the scalar equation

∆w + f (w+)− g(−w−) = 0, x ∈ Ω,

w(x) = 0, x ∈ ∂Ω

• Key ingredients:

(i) the linear combination wk := uk − vk satisfies

∆wk + f (uk)− g(vk) = 0, x ∈ Ω

which does not depend explicitly on k ⇒ good bounds for wk independent of k

(ii) uk, vk converge (in some sense) to limits u, v as k →∞, by compactness

(iii) uk and vk segregate , since k ukvk bounded⇒ ukvk → 0 as k →∞

and

uv = 0 a.e.

u, v ≥ 0

w = u− v

 ⇒
u = w+ a.e.

v = −w−



• Note: there are two aspects to large-interaction limit problem

(i) to show that (uk, vk) converges as k →∞ to a solution of the limit problem

∆w + f (w+)− g(−w−) = 0, x ∈ Ω,

w(x) = 0, x ∈ ∂Ω

(ii) conversely, to show that given a solution w of the limit problem, there exists

a sequence of solutions of the k-dependent system (uk, vk) that converge

to w as k →∞
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methods: e.g. degree



• Note: there are two aspects to large-interaction limit problem

(i) to show that (uk, vk) converges as k →∞ to a solution of the limit problem

∆w + f (w+)− g(−w−) = 0, x ∈ Ω,

w(x) = 0, x ∈ ∂Ω

(ii) conversely, to show that given a solution w of the limit problem, there exists

a sequence of solutions of the k-dependent system (uk, vk) that converge

to w as k →∞

theory in cones

g(−w−)

f(w+)

w

limit nonlinearity

not continuously differentiable

methods: e.g. degree

Mainly focus on (i) here



Theorem Given a sequence of non-negative solutions (uk, vk) of

k-dependent elliptic system (P k
e ), there exist subsequences {ukn}, {vkn}

and non-negative functions u, v ∈ L∞(Ω) ∩W 1,2
0 (Ω) such that

• ukn → u, vkn → v in W 1,2
0 (Ω) as kn →∞;

• uv = 0 a.e. in Ω,

and the function w := u− v is such that w+ = u, w− = −v, w is a weak

solution of the equation

∆w + f (w+)− g(−w−) = 0 in Ω,

w = 0 on ∂Ω

in the sense that for all φ ∈ W 1,2
0 (Ω),

−
∫

Ω

∇w · ∇φ dx +

∫
Ω

[f (w+)− g(−w−)]φ dx = 0,

and satisfies

w ∈ W 2,p(Ω) ∩ C1,η(Ω)

for all p ∈ [1,∞) and η ∈ (0, 1)



Basic estimates on solutions (uk, vk) of (P k
e )

(i) L∞-bound:

0 ≤ uk, vk ≤M for all x ∈ Ω, k > 0

by maximum principle, since f (u), g(v) < 0 when u, v > M and so if, say,

uk attains a maximum value uk(x0) > M , then

−∆uk(x0) ≤ f (uk(x0)) < 0,

which is impossible
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ukf (uk) dx ≥ 0



Basic estimates on solutions (uk, vk) of (P k
e )

(i) L∞-bound:

0 ≤ uk, vk ≤M for all x ∈ Ω, k > 0

by maximum principle, since f (u), g(v) < 0 when u, v > M and so if, say,

uk attains a maximum value uk(x0) > M , then

−∆uk(x0) ≤ f (uk(x0)) < 0,

which is impossible

(ii) L2-gradient bound: there exists K1 > 0 such that∫
Ω

|∇uk(x)|2 dx,
∫

Ω

|∇vk(x)|2 dx ≤ K1 for all k > 0

since, e.g., multiplication of uk equation by uk and integration over Ω gives

−
∫

Ω

|∇uk|2 dx +

∫
Ω

ukf (uk) dx ≥ 0

(i) + (ii)⇒ uk, vk bounded in W 1,2
0 (Ω)⇒ ukn ⇀ u in W 1,2

0 (Ω), etc



(iii) L1-“segregation” bound: there exists K2 > 0 such that∫
Ω

kukvk dx ≤ K2

because

0 ≤
∫

Ω

kukvk dx =

∫
Ω

∆uk + f (uk) dx

=

∫
∂Ω

∂uk

∂ν
dx +

∫
Ω

f (uk) dx

≤ C

since
∂uk

∂ν
≤ 0 and 0 ≤ uk ≤M



Identification of the k →∞ limit of (P k
e )

• if wkn := ukn − vkn, then

∆wkn + f (ukn)− g(vkn) = 0,

so for each φ ∈ W 1,2
0 (Ω),

(∗)
∫

Ω

∇wkn · ∇φ dx =

∫
Ω

[f (ukn)− g(vkn)]φ dx,

• let kn →∞ in (∗) using

ukn ⇀ u, vkn ⇀ v in W 1,2
0 (Ω),

ukn → u, vkn → v a.e. in Ω



Better convergence properties for solutions (uk, vk) of (P k
e )

(i) Convergence of wkn := ukn − vkn in C1,λ(Ω) for each λ ∈ (0, 1)

• since 0 ≤ uk, vk ≤M and

∆wkn + f (ukn)− g(vkn) = 0,

we have

∆wk is bounded in L∞(Ω), and wk = 0 on ∂Ω

•⇒ wk is bounded independently of k in

W 2,p(Ω) for each p ∈ [1,∞),

and hence in

C1,λ(Ω) for each λ ∈ (0, 1)

• so

wkn → w = u− v in C1,λ(Ω) for each λ ∈ (0, 1)



Better convergence properties for solutions (uk, vk) of (P k
e )

(ii) Improved segregation by blow-up argument Given ε > 0, there exists

k0 ∈ N such that if k ≥ k0 and (uk, vk) is a solution of (P k
e ), then for each

x ∈ Ω,

0 ≤ uk(x) ≤ ε0 or 0 ≤ vk(x) ≤ ε0

Idea of proof :

• If not, there exist ε0 > 0 and sequences kj →∞ and xj ∈ Ω such that

ukj(xj) ≥ ε0 and vkj(xj) ≥ ε0.

• rescaled variables centered on xj

(Ukj, V kj)(
√
kj(x− xj)) = (ukj, vkj)(x), x ∈ Ω

• compactness arguments give bounded solution of limit system

∆U = UV

∆V = UV on RN

with U(0), V (0) ≥ ε0 > 0 ............which is impossible



(iii) consequence of (i)+(ii) for uniform convergence of ukn, vkn

pointwise spatial segregation⇒

(wkn)+ − ukn → 0

(wkn)− + vkn → 0
uniformly in Ω

where wkn = ukn − vkn, so since

wkn → w uniformly in Ω,

it follows that
ukn → w+

vkn → −w−
uniformly in Ω



Related problem (C.-Dancer): what happens as k →∞ if u and v may

compete to some extent on the whole of Ω but compete strongly only on a

subdomain A?

0 = ∆u + f (u)− ruv − kχAuv, x ∈ Ω,

0 = ∆v + g(v)− suv − αkχAuv, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

to some extent

A

u, v compete strongly

Ω ⊂ RN u, v may compete



Related problem (C.-Dancer): what happens as k →∞ if u and v may

compete to some extent on the whole of Ω but compete strongly only on a

subdomain A?

0 = ∆u + f (u)− ruv − kχAuv, x ∈ Ω,

0 = ∆v + g(v)− suv − αkχAuv, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

to some extent

A

u, v compete strongly

Ω ⊂ RN u, v may compete

• Related earlier work ....

- problems with refuge/protection zone : López-Gómez, Cano-Casanova, Du, Liang, .....

- localised strong interaction with non-competitive coupling: Igbida, Karami, .....



Sketch of key arguments......

• convergence in Ω : given solns (uk, vk), there exists (ukn, vkn) such that

ukn → u, vkn → v in W 1,2
0 (Ω) as kn →∞, and

w := αu− v ∈ C1,λ(Ω) for all λ ∈ (0, 1)
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Sketch of key arguments......

• convergence in Ω : given solns (uk, vk), there exists (ukn, vkn) such that

ukn → u, vkn → v in W 1,2
0 (Ω) as kn →∞, and

w := αu− v ∈ C1,λ(Ω) for all λ ∈ (0, 1)

• convergence in Ω \ A :

0 = ∆u + f (u)− ru v in Ω \ A
0 = ∆v + g(v)− su v in Ω \ A

• convergence in A : ukvk → 0 uniformly in A as k →∞, and linear

combination wk := αuk − vk satisfies

−∆wk = αf (uk)− g(vk)− (αs− r)ukvk in Ω,

∴ −∆w = αf (α−1w+)− g(−w−) a.e. in A



The limit problem

The limit pair (u, v) and the function w = αu− v satisfy the problem

−∆w = αf (α−1w+)− g(−w−) a.e. in A,

w = ψ on ∂A,

u = α−1w+, v = −w− a.e. in A,

−∆u = f (u)− s u v in Ω \ A,
−∆v = g(v)− r u v in Ω \ A,

u = v = 0 on ∂Ω,

u = α−1ψ+, v = −ψ− on ∂A,

α
∂u

∂ν
− ∂w+

∂ν
=
∂v

∂ν
− ∂(−w−)

∂ν
on ∂A,

u ≥ 0, v ≥ 0 in Ω

where boundary function ψ is given by w|A and ν is the normal direction to ∂A pointing into A
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v = 0 on ∂Ω

e.g. if g(v) = av(1− v) where a > λ1, the least eigenvalue of −∆ on Ω

with v = 0 on ∂Ω, there exists a unique positive solution of (*)



Are solutions of the limit problem limits of coexistence states?

• Not always.....

• Example : a pair (u, v) = (0, v) is a solution of the limit problem whenever

v is a positive solution of

(∗) −∆v = g(v) in Ω

v = 0 on ∂Ω

e.g. if g(v) = av(1− v) where a > λ1, the least eigenvalue of −∆ on Ω

with v = 0 on ∂Ω, there exists a unique positive solution of (*)

• But if positive solutions (uk, vk)→ (0, v) as k →∞, then f ′(0) has to be

an eigenvalue of the linear problem

−∆y + svy = λ y in Ω \ A,
y = 0 on ∂(Ω \ A)

with a non-negative eigenfunction (idea of proof : take limits of uk/‖uk‖∞)



Further work on elliptic and parabolic k →∞ problems

• systems of 2 equations

(1) elliptic systems

- Dancer and Yihong Du; Dancer and Zongming Guo; C. and Dancer;

Zhou, Zhang, Liu+Lin

(2) parabolic systems

general d1, d2: convergence of (uk, vk) as k →∞ on QT = Ω× [0, T ] to

(w+,−w−), where w is the unique (suitably defined) weak solution of

wt = d1∆w+ + d2∆w− + f (w+)− g(−w−), (x, t) ∈ QT

+ appropriate boundary conditions

- Dancer, Hilhorst, Mimura and Peletier; C., Dancer, Hilhorst, Mimura and

Ninomiya; Hilhorst, Martin and Mimura



Further work on elliptic and parabolic k →∞ problems.....ctd

d1 = d2: long-time convergence to stationary solutions of the system when

k is large under a non-degeneracy condition on stationary solutions of limit

problem, by using the Lyapunov function∫
Ω

d1

2
|∇w|2 −H(w) dx

for the limit equation

wt = d1∆w + h(w),

where

h(w) := f (w+)− g(−w−)

- Dancer and Zhitao Zhang JDE 2002; C., Hilhorst and Dancer
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• systems of more than 2 equations

- limit problem is typically no longer a scalar equation, but a

system of inequalities

- monotonicity lemmas (e.g. Alt-Caffarelli-Friedman) are useful for

(i) regularity of limiting densities

(ii) uniform-in-k regularity (e.g. Hölder) properties of uk, vk, via

blow-up arguments and then use of a monotonicity lemma to

prove a Liouville-type theorem that gives contradiction

- in some cases, have a “clean-up” lemma, that locally reduces a

multi-species system to a two-species system at ‘most’ points of the domain

- some results require symmetric competition terms −bijuiuj; that is

bij = bji



Further work on elliptic and parabolic k →∞ problems.....ctd

(1) elliptic systems

- Conti, Terracini and Verzini; Conti and Felli; Kelei Wang and Zhitao Zhang;

Caffarelli, Karakhanyan and Lin

(2) parabolic systems

equal di:

- some results on long-time convergence when k is large under

non-degeneracy conditions on stationary solutions

- Kelei Wang and Zhitao Zhang; Dancer, Kelei Wang and Zhitao Zhang

general di:

- variational structure for limit problem as gradient flow for harmonic

maps into a metric space with non-positive curvature

- Kelei Wang, DCDS A 2015



Further work on elliptic and parabolic k →∞ problems.....ctd

• applications to biological invasions of strongly competing species

(i) sign of speed c ∈ R of travelling wave

(u1, u2)(x, t) = (w1, w2)(x− ct)
connecting two stable steady states can be determined by the

free-boundary condition in a limit problem

invades

c > 0⇒

c < 0⇒

invades

⇒ up to constants, the more diffusive species is the invading species

(contrasts with results for heterogenous Ω of Dockery et al, 1998, where

the least diffusive species was the invader)

- Girardin and Nadin, 2015; 2018



Further work on elliptic and parabolic k →∞ problems.....ctd

• applications to biological invasions of strongly competing species...ctd

(ii) diffusion depends periodically on space, e.g.,

∇ · (d(x)∇u)

- homogenisation and strong competition limits used to study the influence

of high-frequency oscillations in the diffusion on the direction of invasion

- Hutridurga and Venkataraman, 2018

(iii) rôle of movement-response/taxis terms in determining speed of

invasion e.g.,

ut = .......− c1∇ · (u∇v) + .....

vt = .......− c2∇ · (v∇u) + .....

- Petrovskii and Potts, 2017
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• applications to biological invasions of strongly competing species...ctd

(ii) diffusion depends periodically on space, e.g.,

∇ · (d(x)∇u)

- homogenisation and strong competition limits used to study the influence

of high-frequency oscillations in the diffusion on the direction of invasion

- Hutridurga and Venkataraman, 2018

(iii) rôle of movement-response/taxis terms in determining speed of

invasion e.g.,

ut = .......− c1∇ · (u∇v) + .....

vt = .......− c2∇ · (v∇u) + .....

- Petrovskii and Potts, 2017

Thank you for your attention....


