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e Parabolic systems of form

w = di Au+ f(u) — kuv, = €Q, t>0,
v = do Av+ g(v) — akuv, x€Q t>0

model populations of densities u, v that compete in domain {2 € RY

form of self-interaction functions f, g

e.g. f(u)=u(l —u)
M =1

u, v compete

inside ~ /\

+ boundary conditions



e Parabolic systems of form

di Au+ f(u) — kuv, =€, t>0,
do Av + g(v) — akuv, z€Q t>0

Uy

Ut

model populations of densities w1, v that compete in domain 2 € RY

form of self-interaction functions f, g

e.g. f(u) =u(l —u)
M =1

u, v compete

inside 4 /\‘\

+ boundary conditions

- called competition-diffusion systems or Gause-Lotka-Volterra systems

- arise in, e.g., ecology, population genetics, chemical morphogenesis
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e Elliptic systems of form

0 = diAu+ f(u) — kuv, x € €,
0 = doAv + g(v) — akuv, x €

model equilibria (steady states) of populations ., v that compete in 2 € RY

form of self-interaction functions f, g

e.g. f(u)=u(l —u)
M =1

u, v compete

inside ~ /\

+ boundary conditions

e densities non-negative = u,v > (0 e competition parameters k£, o > 0



e Boundary conditions and their ecological interpretation

- zero-flux boundary conditions

ou ou
a(l',t) — g(f,t) — O, T < @Q,

where v is the outward unit normal vector to 02
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e Boundary conditions and their ecological interpretation

- zero-flux boundary conditions

ou ou

Tty =T ) = 0
5,2 t) = o-(2,1) =0,z €0,

where v is the outward unit normal vector to 02

- homogeneous Dirchet boundary conditions (also called ‘absorbing’)
u(x,t) =v(x,t) =0, x € 0
- inhomogeneous Dirchet boundary conditions

u(z,t) = mi(z,1), v(wt) =ma(z,t), €00

for some given functions my, my > 0 (determined by u, v outside ())



A few famous results for the system
up = di Au~+ u(r — au) — kuv,

vy = dy Av +v(s — bv) — akuv,
with zero-flux boundary conditions
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1. Equilibria play a major role in characterising longtime behaviour

For ‘almost all’ initial conditions u(x, 0), v(x, 0), the solution (u, v) to the
initial value problem converges as ¢t — oo to the set of all equilibria

- I.e. the w-limit set consists entirely of equilibria

(Hirsch, 1982; Matano and Mimura, 1983)



1. Equilibria play a major role in characterising longtime behaviour

For ‘almost all’ initial conditions w(x, 0), v(x, 0), the solution (u, v) to the
initial value problem converges as ¢t — oo to the set of all equilibria

- I.e. the w-limit set consists entirely of equilibria
(Hirsch, 1982; Matano and Mimura, 1983)

- in fact, under various additional conditions, can show convergence of all
non-negative solutions as ¢t — oo to a single equilibrium

e.g. Dancer and Zhang, 2002, assumptions include
k large + non-degeneracy conditions on equilibria of a limit problem



Key ingredient

Under the change of variables w = 1 — v, system becomes
u = dy Au+ fu) — ku(l —w)
wy = do Aw — g(1 —w) + aku(l — w)

which is co-operative when 0 < u, v < 1, since

8% (f(u) — ku(l —w)) >0, {% (—g(1 —w) + aku(l —w)) >0



Key ingredient

Under the change of variables w = 1 — v, system becomes
w = dy Au+ f(u) — ku(l —w)
wy = do Aw — g(1 —w) + aku(l — w)

which is co-operative when 0 < u, v < 1, since

8% (f(u) — ku(l —w)) >0, % (—g(1 —w) + aku(l —w)) >0

and hence is order-preserving

if u, 1 : 2 — R? are bounded and such that
u(x,0) < u(x,0) forall x € Q, wu(x,t) <ulx,t) if x € 0,
and
up < Augpt+f(u), U > Atg,+f(a) forall (z,t) € 2x(0,00),
then

u(x,t) < u(x,t) forall (z,t) € Qx|0,00)




e.g. if 4 is a known/constructed function that satisfies u; > At + f(1)

(called a supersolution) and w is a solution of u; = Au,, + f(u) such that

w(x,0) < au(z,0), v €Q, and ulx,t) < u(z,t), x € I,

then
u(r,t) < ulx,t)
. known function © dominates/controls . at later times ¢t > 0
t=20 t>0

supersolution _

u(z,0)

supersolution
()

u(z,0)
(sub)solution

u(x, t)
(sub)solution




2. Any spatially non-constant equilibrium is unstable if {2 is convex
(Kishimoto and Weinberger, 1985)

() convex

- builds on earlier results for one equation of Chafee, 1975 (N = 1) and
Carsten and Holland, 1978, Matano, 1979 (/N > 1)



2. Any spatially non-constant equilibrium is unstable if {2 is convex
(Kishimoto and Weinberger, 1985)

() convex

- builds on earlier results for one equation of Chafee, 1975 (N = 1) and
Carsten and Holland, 1978, Matano, 1979 (/N > 1)

.". do not expect to see non-constant steady states in convex habitats



Special case: when £ is large, there are two stable spatially constant

equilibria, i.e.,

(o) =
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Special case: when £ is large, there are two stable spatially constant

w=(G 1), o0

nullclines

\ u(r —au) — kuv =0

v(s —bv) — akuv =0

equilibria, i.e.,

unstable

unstable

- if {2 is convex, these are the only stable equilibria

.". u and v cannot co-exist in a convex habitat if they are strongly competing



3. Stable non-constant equilibria may exist if {1 is not convex

If ) has a suitable ‘dumb-bell’ shape and & is large,

Q2

there exist stable non-constant equilibria where the components concentrate
in separate parts of the domain

(Matano and Mimura, 1983)



3. Stable non-constant equilibria may exist if {1 is not convex

If ) has a suitable ‘dumb-bell’ shape and & is large,

Q2

there exist stable non-constant equilibria where the components concentrate
in separate parts of the domain

(Matano and Mimura, 1983)

.". two strongly competing species may co-exist if the habitat is non-convex



e But the picture can change with different boundary conditions.....
e.g., with in-homogeneous Dirchlet conditions

u(x,t) =my, v(z,t) = my, x € )
where mq(x), mo(x) > 0 and myms = 0, and

2=1(0,1) x (0,1)  (convex)
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e But the picture can change with different boundary conditions.....
e.g., with in-homogeneous Dirchlet conditions

u(x,t) =my, v(z,t) = my, x € )
where mq(x), mo(x) > 0 and myms = 0, and

(2= (0,1) x (0,1)  (convex)
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.". shows co-existence of strongly competing species in a convex habitat,
in contrast to the zero-flux boundary condition case
(C., Dancer, Hilhorst, Mimura, Ninomiya, 2004; C., Dancer, Hilhorst 2007)
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e Focus on elliptic systems

0 = diAu+ f(u) — kuv, x € €,
0 = doAv + g(v) — akuv, =z €

with homogeneous Dirichlet boundary conditions

u(x) = v(xr) =0, r € 0f)



e a simplifying rescaling : we have

0 = Au+d; ' f(u) — kd tuv, r € €,
0 = Av+dy g(v) — akady, uv, €

u(x) = v(x) =0, r € 0f)
so defining
U= ady,'u, 0:=d; v,
and
f(0) = ady 'y fla7 o),  § = dytdy g(did),
gives



e a simplifying rescaling: we have

0 = Au+d; ' f(u) — kd tuv, r € €,
0 = Av+dy g(v) — akady, uv, €

u(x) = v(x) =0, r € 0f)
so defining
U= ady,'u, 0:=d; v,
and
f(@) = adi'dy ' fla dott), g = di'dy g(dao),
gives

0 = A+ f(a) — kad, xeq,
(P 0 = Abd+ g(0) — ko, T € Q,
u(x) = v(x) =0, r € 0f)

e note: this uses that (i) system is elliptic (i) only two components



e Interest in the large-competition (kK — oo) limit comes from

(i) the k-dependent system is difficult to analyse; for example, it is not in
general the Euler-Lagrange equations of an energy functional, whereas the
limit problem is a scalar equation

(i) the &k — oo limit is linked to spatial segregation in population dynamics, or
to chemical separation in fast chemical reactions



e Interest in the large-competition (k — o0) limit comes from

(i) the k-dependent system is difficult to analyse; for example, it is not in
general the Euler-Lagrange equations of an energy functional, whereas the
limit problem is a scalar equation

(i) the £ — oo limit is linked to spatial segregation in population dynamics, or
to chemical separation in fast chemical reactions

e Related problem
Au+ f(u) — kuv* = 0, x €,
Av+gv) —ku*v =0, z €

- limit & — oo linked to phase separation in Bose-Einstein condensates
- Is variational, being the Euler-Lagrange equations of a functional of form

1 1
J(u,v) = / 5(]Vu|2 + |[Vv|?) = F(u) — G(v) + §/~cu2v2 dx
0

(references: Conti, Terracini, Verzini; Squassina; Dancer, Wang and Zhang...)



Large-competition limit & — oo of solutions (u"*, v")

Seminal ref: Dancer and Du, Journal Diff. Egs. 114 (1994) 434-475
o (u",v") converge to the positive and negative parts resp. of a limit function
w satistying the scalar equation
Aw+ f(w") —g(—w™) =0, z€q,
w(z) = 0, z € o
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(i) the linear combination w
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which does not depend explicitly on & = good bounds for wk independent of &
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Large-competition limit & — oo of solutions (u"*, v")
Seminal ref: Dancer and Du, Journal Diff. Egs. 114 (1994) 434-475

e (u",v") converge to the positive and negative parts resp. of a limit function
w satisfying the scalar equation
Aw+ f(w") —g(—w™) =0, z€q,
w(z) = 0, z € 0

e Key ingredients:

k. k

(i) the linear combination w" := " — v* satisfies

Aw" + f(u®) — gv*) =0, 2e€Q

which does not depend explicitly on &k = good bounds for w" independent of k

k

(ii) u”, v converge (in some sense) to limits u, v as k — oo, by compactness

¥ and v* segregate , since k u*v* bounded = u*v* — 0ask —

\

(iii) w
uw =0 a.e.

and u,v >0 =

w=u—"nv



e Note: there are two aspects to large-interaction limit problem

(1) to show that (uk, v’“) converges as k — oo to a solution of the limit problem
Aw+ f(w") —g(—w™) =0, z€q,
w(xr) =0, x € )

(il) conversely, to show that given a solution w of the limit problem, there exists

a sequence of solutions of the k-dependent system (u*, v*) that converge

towas k — oo
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limit nonlinearity
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\ /\ fw™) methods: e.g. degree
theory in cones
B w
g(—w™) \ \

not continuously differentiable




e Note: there are two aspects to large-interaction limit problem

(1) to show that (uk, vk) converges as kK — oo to a solution of the limit problem
Aw+ f(w") —g(—w™) =0, z€q,
w(z) = 0, z € 0

(if) conversely, to show that given a solution w of the limit problem, there exists

a sequence of solutions of the k-dependent system (u*, v*) that converge

tow as k — oo

limit nonlinearity

+
methods: e.g. degree

theory in cones

f(w?™)
g(—w") \ \ N

not continuously differentiable

Mainly focus on (i) here



Theorem Given a sequence of non-negative solutions (u*, v*) of
k-dependent elliptic system (°), there exist subsequences {u*"}, {vfn}
and non-negative functions v, v € L>(€)) N Wol’z(Q) such that

. 1,2
o u =, V™ — v in WyY(Q) as k, — oo;
o uv=20 a.e. in (),

and the function w := u — v is such that w* = u, w~ = —v, w is a weak
solution of the equation

Aw+ f(w™) —g(—w™) =0 in Q,
w = 0 on 0f)
in the sense that for all ¢ € W, (1),

_ /Q Vo Vodst | [fw) - g-w o do =0,

0
and satisfies

w e WH(Q)n CH1(Q)
forallp € [1,00) andn € (0, 1)



Basic estimates on solutions (u”*, v") of (")

(i) L>-bound:
0<u’ v"< M forallz € Q k>0

by maximum principle, since f(u), g(v) < 0 when u,v > M and so if, say,
u® attains a maximum value u*(xy) > M, then

—Au*(zg) < f(u"(z0)) <0,

which is impossible



Basic estimates on solutions (u”*, v") of (")

(i) L>-bound:
0<u’ v"< M forallz € Q k>0

by maximum principle, since f(u), g(v) < 0 when u,v > M and so if, say,
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(i) L?-gradient bound: there exists K; > 0 such that
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since, e.g., multiplication of u* equation by «* and integration over () gives

—/\Vuk\Q d:v+/ukf(uk) dx > 0
Q Q



Basic estimates on solutions (u”*, v") of (")

(i) L>-bound:
0<u’ "< M forallz € Q k>0

by maximum principle, since f(u), g(v) < 0 when u,v > M and so if, say,
u® attains a maximum value u*(xy) > M, then

—Au(xg) < flu"(zg)) <0,

which is impossible
(i) L?-gradient bound: there exists K; > 0 such that

/Vuk(x)|2 dz, /]Vvk(x)\Q dr < K; forall k>0
0 Q

since, e.g., multiplication of u* equation by u* and integration over () gives
—/ Vu"|? da:Jr/ukf(uk) dx > 0
0 0

(i) + (i) = ", v* bounded in W, () = uf» — win W,*(Q), etc



(iii) L'-“segregation” bound: there exists K» > 0 such that

/kukvk dr < Ko
0

Og/kukvkdx—/ﬁu + flu”
0
:/—d:er/f

because

LA

since

ai<0 and 0<uf <M
ov



Identification of the &k — oo limit of (")

k

o if whn = yf» — pkn then

Awkn + f(ukﬂ) o g<vkn) — O)
so for each ¢ € W, %(Q),

@) [ vutVode = [ () - gt do,

Q

e let k, — oo in (x) using
ubn —~ o, ok <y in W, P(Q),

bt — u, v v ae. in Q



Better convergence properties for solutions (u*, v") of (")

(&

(i) Convergence of w"" := u* — ™ in C1(Q)) for each \ € (0, 1)
e since 0 < u”, v* < M and
Aw* + f(u') — g(v™) =0,
we have
Aw" is bounded in L>(Q2), and w" = 0 on 99
e — w" is bounded independently of k in
W?#P(Q) foreach p € [1,00),

and hence in
C1A(Q) foreach X € (0,1)

® SO
W — w=u—7v in CLA(Q_) foreach A\ € (0, 1)



Better convergence properties for solutions (u*, v"*) of (")

(if) Improved segregation by blow-up argument Given € > 0, there exists
ko € N such that if k > kg and (u”, v*) is a solution of (°¥), then for each
x € (),

0 <uf(x) <egp or 0<v"(x) < e

ldea of proof :
e If not, there exist g > 0 and sequences k; — oo and z; € () such that
u'i(x;) > gy and v"i(z;) > €.
e rescaled variables centered on x;
(U5 VR (Vs — 2)) = (b, 0" (@), = €0
e compactness arguments give bounded solution of limit system
AU = UV
AV = UV  on RY
with U(0), V(0) > €y > 0 ............ which is impossible



(ilf) consequence of (i)+(ii) for uniform convergence of u"“n, v

pointwise spatial segregation =

(wh) T — ufn — 0

() . uniformly in €2
w')” + o —= 0

kn ok k

where w u™m — ™", so since

Kn

W' — w uniformly in €2,

it follows that

ubn —  wt | |
uniformly in €2

v —w

kn



Related problem (C.-Dancer): what happens as £ — oo if u and v may
compete to some extent on the whole of {2 but compete strongly only on a
subdomain A?

0 = Au+ f(u) —ruv — kyauv, x € S,
0 = Av+ g(v) — suv — akyuv, x € S,
u(x) = v(x) =0, r € 0f),

u, U may compete
to some extent

u, v compete strongly



Related problem (C.-Dancer): what happens as £ — oo if © and v may
compete to some extent on the whole of {) but compete strongly only on a
subdomain A?

0 = Au+ f(u) —ruv — kyxyauv, x €,
0 = Av+ g(v) — suv — akyiuv, x € S,
u(x) = v(x) =0, r € 02,

u, v may compete
to some extent

u, v compete strongly

e Related earlier work ....
- problems with refuge/protection zone : Lépez-Gémez, Cano-Casanova, Du, Liang, .....

- localised strong interaction with non-competitive coupling: Igbida, Karami, .....



Sketch of key arguments......
e convergence in () : given solns (u”*, v*), there exists (u*, v*) such that
utn > w, o' T in W,(Q) as k, — oo, and

Wi=Qqu—"7 € C“(ﬁ) forall A € (0,1)
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Sketch of key arguments......

e convergence in () : given solns (u”, v*), there exists (u

uhn 5w, o' T in W) as k, — oo,

Wi=Qqu—"7 € C“(ﬁ) forall A € (0,1)

e convergence in {2\ A:
0 = Au+ f(u)—ruv in O\ A
0= Av+g(®) —suv in O\ A

kn v such that

and

e convergence in A : u*v* — 0 uniformly in A as k — oo, and linear

combination w”* ‘= au® — v* satisfies

—Auw® = af(u”) — gv®) — (as — r)u*v" in Q,
—AW = af(aw) —g(—w) a.e. inA



The limit problem

The limit pair (@, ) and the function W = au — v satisfy the problem

~Aw =af(aw?) —g(—w) a.e.in A,
w =1 on 0A,
U =a 'wt, v=—-w" a.e.in A,

~Au = f(u) — suv in O\ A,

~AT =g(0) —ruv in O\ A,
u=v =10 on Of),

u =a Yt v=—9Y" on OA,
a— — = — on OA,

u >0,v>0 in €2

where boundary function 1) is given by w| 4 and v is the normal direction to J A pointing into A



Are solutions of the limit problem limits of coexistence states?

e Not always.....
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e Not always.....
e Example : a pair (u,v) = (0,v) is a solution of the limit problem whenever
v IS a positive solution of
(x) —AD = ¢g(v) in Q
v = 0 on 0f)

e.g. if g(v) = av(1 — v) where a > Ay, the least eigenvalue of —A on )
with v = 0 on 0f), there exists a unique positive solution of (*)



Are solutions of the limit problem limits of coexistence states?

e Not always.....

e Example : a pair (u,v) = (0,v) is a solution of the limit problem whenever
v IS a positive solution of

(%) — Av = ¢g(v) in Q
v = 0 on 0Of)

e.g. if g(v) = av(1l — v) where a > Ay, the least eigenvalue of —A on )
with v = 0 on 0f), there exists a unique positive solution of (*)

e But if positive solutions (u”*, v*) — (0,7) as k — oo, then f(0) has to be
an eigenvalue of the linear problem

—Ay+ svy = Ay in Q\ A,
y =0 on 0(Q\ A)

with a non-negative eigenfunction (idea of proof : take limits of u”* /||u"]| )



Further work on elliptic and parabolic £ — oo problems

e systems of 2 equations
(1) elliptic systems

- Dancer and Yihong Du; Dancer and Zongming Guo; C. and Dancer,
Zhou, Zhang, Liu+Lin

(2) parabolic systems
general dy, dy: convergence of (u*, v*) as k — coon Qr = Q2 x [0, 7] to
(w™, —w™), where w is the unique (suitably defined) weak solution of
wy = diAwT + doAw™ + f(w™) — g(—w™), (z,t) € Qr
+ appropriate boundary conditions
- Dancer, Hilhorst, Mimura and Peletier; C., Dancer, Hilhorst, Mimura and

Ninomiya; Hilhorst, Martin and Mimura



Further work on elliptic and parabolic £ — oo problems.....ctd

d; = dy: long-time convergence to stationary solutions of the system when
k is large under a non-degeneracy condition on stationary solutions of limit
problem, by using the Lyapunov function

d
/ —|\Vuw|? — H(w) dz
q 2

for the limit equation
wy = diAw + h(w),

where

- Dancer and Zhitao Zhang JDE 2002; C., Hilhorst and Dancer
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e systems of more than 2 equations

- limit problem is typically no longer a scalar equation, but a
system of inequalities

- monotonicity lemmas (e.g. Alt-Caffarelli-Friedman) are useful for

(i) regularity of limiting densities

(ii) uniform-in-k regularity (e.g. Holder) properties of u*, v*, via
blow-up arguments and then use of a monotonicity lemma to

prove a Liouville-type theorem that gives contradiction

- In some cases, have a “clean-up” lemma, that locally reduces a
multi-species system to a two-species system at ‘most’ points of the domain

- some results require symmetric competition terms —b; ;u;u;; that is

bi]‘ = b]'i
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(1) elliptic systems
- Conti, Terracini and Verzini; Conti and Felli; Kelei Wang and Zhitao Zhang;
Caffarelli, Karakhanyan and Lin

(2) parabolic systems

equal d;:

- some results on long-time convergence when k is large under
non-degeneracy conditions on stationary solutions

- Kelei Wang and Zhitao Zhang,; Dancer, Kelei Wang and Zhitao Zhang

general d;:
- variational structure for limit problem as gradient flow for harmonic
maps into a metric space with non-positive curvature

- Kelei Wang, DCDS A 2015
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e applications to biological invasions of strongly competing species

(i) sign of speed ¢ € R of travelling wave
(ug, us)(x,t) = (wy, ws)(x — ct)

connecting two stable steady states can be determined by the
free-boundary condition in a limit problem

<

c>0= @ invades

c< 0= . invades

=> up to constants, the more diffusive species is the invading species

(contrasts with results for heterogenous €2 of Dockery et al, 1998, where
the least diffusive species was the invader)
- Girardin and Nadin, 2015; 2018
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e applications to biological invasions of strongly competing species...ctd

(i) diffusion depends periodically on space, e.g.,
V- (d(x)Vu)

- homogenisation and strong competition limits used to study the influence
of high-frequency oscillations in the diffusion on the direction of invasion

- Hutridurga and Venkataraman, 2018

(iii) role of movement-response/taxis terms in determining speed of
invasion e.g.,

- Petrovskii and Potts, 2017
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e applications to biological invasions of strongly competing species...ctd

(i) diffusion depends periodically on space, e.g.,
V- (d(x)Vu)

- homogenisation and strong competition limits used to study the influence

of high-frequency oscillations in the diffusion on the direction of invasion

- Hutridurga and Venkataraman, 2018

(iii) role of movement-response/taxis terms in determining speed of

iInvasion e.g.,
Up = e — V- (uVv) + ...

Vp = oo — oV - (vVu) + .....

- Petrovskii and Potts, 2017
Thank you for your attention....



