





# 1. "ich habe mich verloren" auguste deter



auguste deter
"i have lost myself"





auguste deter
"i have lost myself"

alois alzheimer
"the disease of forgetfulness"



auguste deter
"i have lost myself"





william utermohlen



<sup>'</sup>67

william utermohlen





<sup>'</sup>67

**'**96

william utermohlen







<sup>'</sup>67

**'**96

## william utermohlen







<sup>'</sup>67

'96

'97



198

william utermohlen







<sup>'</sup>67







william utermohlen







<sup>'</sup>67

'96<sub>k</sub>

**'**97







**'98** 

william utermohlen







<sup>'</sup>67

'96<sub>k</sub>

**'**97







**'98** 









Stage I-II









Stage I-II





Stage III-IV







Stage I-II





Stage III-IV





Stage IV-V





Stage I-II





Stage III-IV





Stage IV-V





Stage I-II





Stage III-IV





Stage IV-V





Stage I-II





Stage III-IV





Stage IV-V



## parkinson's disease



#### a-synuclein inclusions



#### parkinson's disease



#### a-synuclein inclusions



## parkinson's disease







#### a-synuclein inclusions



#### parkinson's disease







a-synuclein inclusions



amyotrophic lateral sclerosis

#### parkinson's disease







a-synuclein inclusions



amyotrophic lateral sclerosis



**TDP-43 inclusions** 



#### parkinson's disease







a-synuclein inclusions



amyotrophic lateral sclerosis





**TDP-43 inclusions** 



#### parkinson's disease







a-synuclein inclusions



amyotrophic lateral sclerosis







**TDP-43 inclusions** 



# prion diseases













brain atrophy



## brain atrophy















06.123A



larger ventricules



06.123A



larger ventricules
opening of sulci

06.123A



larger ventricules opening of sulci thinning of cortex

06.123A



larger ventricules opening of sulci thinning of cortex

06.123A

shrinking of hippocampi

















spatial progression

spatial progression





spatial progression











spatial progression

atrophy pattern













spatial progression

atrophy pattern













?



[Lloret-Villa et al. 2017]

# 2. "un peu d'analyse et de calcul" daniel bernoulli

## why math?

# why math?

daniel bernoulli 1760



## why math?

daniel bernoulli 1760

"i simply wish that, in a matter which so closely concerns the wellbeing of the human race, no decision shall be made without all the knowledge which a little analysis and calculation can provide."



## a first model: network diffusion

# transport of toxic proteins



intial seeding

 $\alpha$ —synuclein in parkinson's

- idea: toxic proteins diffuse along axonal pathways
- model: look at diffusion on the structural network





















example:





example:

$$6$$
 $4$ 
 $5$ 
 $1$ 
 $3$ 
 $2$ 

$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

rules: start with node 1

example:

$$6$$
 $4$ 
 $5$ 
 $1$ 
 $3$ 
 $2$ 

$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

rules: start with node 1

example:



$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

rules: start with node 1

-node 1 connected to 2 nodes. place a 2 in line 1 column 1

example:



$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

rules: start with node 1

-node 1 connected to 2 nodes. place a 2 in line 1 column 1

example:



$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

rules: start with node 1

-node 1 connected to 2 nodes. place a 2 in line 1 column 1

-place a -1 in line 1 column 2 and 5

example:



$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

rules: start with node 1

-node 1 connected to 2 nodes. place a 2 in line 1 column 1

-place a -1 in line 1 column 2 and 5

example:



$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

rules: start with node 1

-node 1 connected to 2 nodes. place a 2 in line 1 column 1

-place a -1 in line 1 column 2 and 5

example:



$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

rules: start with node 1

-node 1 connected to 2 nodes. place a 2 in line 1 column 1

-place a -1 in line 1 column 2 and 5

-place a -1 in column 1 line 2 and 5

example:



$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

rules: start with node 1

-node 1 connected to 2 nodes. place a 2 in line 1 column 1

-place a -1 in line 1 column 2 and 5

-place a -1 in column 1 line 2 and 5

example:



$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

rules: start with node 1

-node 1 connected to 2 nodes. place a 2 in line 1 column 1

-place a -1 in line 1 column 2 and 5

-place a -1 in column 1 line 2 and 5

example:



$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

rules: start with node 1

-node 1 connected to 2 nodes. place a 2 in line 1 column 1

-place a -1 in line 1 column 2 and 5

-place a -1 in column 1 line 2 and 5

-repeat with nodes 2,...,6

example:



$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

rules: start with node 1

-node 1 connected to 2 nodes. place a 2 in line 1 column 1

-place a -1 in line 1 column 2 and 5

-place a -1 in column 1 line 2 and 5

-repeat with nodes 2,...,6

graph laplacian

example



$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

next find the eigenmodes

$$Lv = \lambda v$$

graph laplacian



$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix} \quad \lambda = 0.7 \quad \text{and}$$

graph laplacian

next find the eigenmodes

$$Lv = \lambda v$$

solution with second smallest  $\lambda$ :

$$\lambda = 0.7$$
 and  $\mathbf{v} = \begin{bmatrix} -3.8 \\ 0.9 \\ 2.7 \\ -2.7 \\ 10 \end{bmatrix}$ 



$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix} \quad \lambda = 0.7 \quad \text{and}$$

graph laplacian

next find the eigenmodes

$$L_{\mathbf{V}} = \lambda \mathbf{v}$$

solution with second smallest  $\lambda$ :

$$\lambda = 0.7$$
 and  $\mathbf{v} = \begin{bmatrix} -3.8 \\ 0.9 \\ 2.7 \\ -2.7 \\ 10 \end{bmatrix}$ 

#### back to the brain







# The 2<sup>nd</sup> eigenmode of network diffusion











#### 3.

"they violate most of biology's sacred rules" jonah lehrer proust



healthy

misfolding



healthy

misfolding



healthy toxic

templating aggregation

misfolding



healthy toxic









fragmentation



protofibrils



protofibrils



protofibrils fibrils



templating aggregation aggregation misfolding healthy toxic fragmentation

[from walker and jucker 2015]

fibrils

protofibrils







#### a model Assembly of misfolded protein into protofibrils and fibrils Growth, fragmentation Collection of fibrils into characteristic and propagation of aggregates lesions Templated misfolding and aggregation of like protein molecules Misfolding of protein kills axons toxic protein

#### a model



#### a model

# follow concentrations of good and toxic proteins in space and time



# follow concentrations of good and toxic proteins in space and time



rate equations for possible aggregation and fragmentation

# follow concentrations of good and toxic proteins in space and time



- rate equations for possible aggregation and fragmentation
- fast transport along axons, slow transport in the tissue

# follow concentrations of good and toxic proteins in space and time



- rate equations for possible aggregation and fragmentation
- fast transport along axons, slow transport in the tissue

# follow concentrations of good and toxic proteins in space and time



- rate equations for possible aggregation and fragmentation
- fast transport along axons, slow transport in the tissue





$$p + \widetilde{p} \xrightarrow{k_{11'}} p\widetilde{p}$$



$$p + \widetilde{p} \xrightarrow{k_{11'}} p\widetilde{p}$$
  $p - p$ 

$$p + \widetilde{p} \xrightarrow{k_{1'2'}} \widetilde{p}\widetilde{p}$$



$$p + \widetilde{p} \xrightarrow{k_{11'}} p\widetilde{p}$$

$$p + \widetilde{p} \xrightarrow{k_{1'2'}} \widetilde{p} \widetilde{p} \qquad \qquad \widetilde{p} \widetilde{p} \xrightarrow{k_{2'2'}} \widetilde{p} + \widetilde{p}$$

$$\widetilde{p}\widetilde{p} \xrightarrow{\kappa_{2'2'}} \widetilde{p} + \widetilde{p}$$



$$p + \widetilde{p} \xrightarrow{k_{11'}} p\widetilde{p}$$

$$p + \widetilde{p} \xrightarrow{k_{1'2'}} \widetilde{p} \widetilde{p} \qquad \qquad \widetilde{p} \widetilde{p} \xrightarrow{k_{2'2'}} \widetilde{p} + \widetilde{p}$$

$$\widetilde{p}\widetilde{p} \stackrel{k_{2'2'}}{\longrightarrow} \widetilde{p} + \widetilde{p}$$



$$p + \widetilde{p} \xrightarrow{k_{11'}} p\widetilde{p}$$

$$p + \widetilde{p} \xrightarrow{k_{1'2'}} \widetilde{p} \widetilde{p} \qquad \qquad \widetilde{p} \widetilde{p} \xrightarrow{k_{2'2'}} \widetilde{p} + \widetilde{p}$$

$$\widetilde{p}\widetilde{p} \stackrel{\kappa_{2'2'}}{\longrightarrow} \widetilde{p} + \widetilde{p}$$

$$p + \widetilde{p} \xrightarrow{k_{12}} \widetilde{p} + \widetilde{p}$$

$$p + \widetilde{p} \xrightarrow{k_{12}} \widetilde{p} + \widetilde{p}$$

$$p + \widetilde{p} \xrightarrow{k_{12}} \widetilde{p} + \widetilde{p}$$

$$\frac{\partial p}{\partial t} = \text{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p}$$

$$\frac{\partial \widetilde{p}}{\partial t} = \text{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) - \widetilde{k}_{1}\widetilde{p} + k_{12}p\widetilde{p}$$

$$p + \widetilde{p} \xrightarrow{k_{12}} \widetilde{p} + \widetilde{p}$$

$$\frac{\partial p}{\partial t} = \text{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p}$$

$$\frac{\partial \widetilde{p}}{\partial t} = \text{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) - \widetilde{k}_{1}\widetilde{p} + k_{12}p\widetilde{p}$$

$$p + \widetilde{p} \xrightarrow{k_{12}} \widetilde{p} + \widetilde{p}$$

$$\frac{\partial p}{\partial t} = \text{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p}$$

$$\frac{\partial \widetilde{p}}{\partial t} = \text{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) - \widetilde{k}_{1}\widetilde{p} + k_{12}p\widetilde{p}$$

$$p + \widetilde{p} \xrightarrow{k_{12}} \widetilde{p} + \widetilde{p}$$

$$\frac{\partial p}{\partial t} = \text{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p}$$

$$\frac{\partial \widetilde{p}}{\partial t} = \text{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) - (\widetilde{k}_{1}\widetilde{p}) + k_{12}p\widetilde{p}$$
clearance

$$p + \widetilde{p} \xrightarrow{k_{12}} \widetilde{p} + \widetilde{p}$$

$$\frac{\partial p}{\partial t} = \text{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p}$$

$$\frac{\partial \widetilde{p}}{\partial t} = \text{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) - k_{1}p + k_{12}p\widetilde{p}$$
clearance

$$p + \widetilde{p} \xrightarrow{k_{12}} \widetilde{p} + \widetilde{p}$$

$$\frac{\partial p}{\partial t} = \text{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p}$$

$$\frac{\partial \widetilde{p}}{\partial t} = \text{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) - k_{1}p + k_{12}p\widetilde{p}$$
clearance conversion

$$p + \widetilde{p} \xrightarrow{k_{12}} \widetilde{p} + \widetilde{p}$$

$$\frac{\partial p}{\partial t} = \text{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p}$$

$$\frac{\partial \widetilde{p}}{\partial t} = \text{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) - k_{1}p + k_{12}p\widetilde{p}$$

$$\frac{\partial \widetilde{p}}{\partial t} = \text{Clearance conversion}$$

for  $p \gg \tilde{p}$  and p at equilibrium we have

$$p + \widetilde{p} \xrightarrow{k_{12}} \widetilde{p} + \widetilde{p}$$

$$\frac{\partial p}{\partial t} = \text{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p}$$

$$\frac{\partial \widetilde{p}}{\partial t} = \text{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) - k_{1}p + k_{12}p\widetilde{p}$$

$$\frac{\partial \widetilde{p}}{\partial t} = \text{conversion}$$

for  $p \gg \tilde{p}$  and p at equilibrium we have

$$\frac{\partial c}{\partial t} = \text{Div}(\mathbf{D} \cdot \nabla c) + \alpha c(1 - c)$$

$$p + \widetilde{p} \xrightarrow{k_{12}} \widetilde{p} + \widetilde{p}$$

$$\frac{\partial p}{\partial t} = \text{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p}$$

$$\frac{\partial \widetilde{p}}{\partial t} = \text{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) - k_{1}p + k_{12}p\widetilde{p}$$

for  $p \gg \tilde{p}$  and p at equilibrium we have

$$\frac{\partial c}{\partial t} = \text{Div}(\mathbf{D} \cdot \nabla c) + \alpha c (1 - c)$$

anisotropic fisher equation (1937)



$$\frac{\partial c}{\partial t} = \text{Div}(\mathbf{D} \cdot \nabla c) + \alpha c (1 - c)$$



fast axonal transport d along  $\mathbf{n}$ 

slow extracellular diffusion  $\delta$  perpendicular to  $\mathbf{n}$ 

$$\frac{\partial c}{\partial t} = \text{Div}(\mathbf{D} \cdot \nabla c) + \alpha c (1 - c)$$



$$\frac{\partial c}{\partial t} = \text{Div}(\mathbf{D} \cdot \nabla c) + \alpha c (1 - c)$$



$$\frac{\partial c}{\partial t} = \text{Div}(\mathbf{D} \cdot \nabla c) + \alpha c (1 - c)$$



$$\frac{\partial c}{\partial t} = \text{Div}(\mathbf{D} \cdot \nabla c) + \alpha c (1 - c)$$



$$\frac{\partial c}{\partial t} = \text{Div}(\mathbf{D} \cdot \nabla c) + \alpha c (1 - c)$$





[with m. turk]

#### 1. data acquisition



#### 1. data acquisition



#### 2. segmentation



#### 3. information on axonal direction



#### 3. information on axonal direction



4. 3d model

# seeding of toxic proteins



[jucker, walker, 2013],

[weickenmeier, jucker, ag, kuhl 2018]





tau propagation in Alzheimer's disease onset 

late-stage

tau infestation mid-stage





tau propagation in Alzheimer's disease onset 

late-stage

tau infestation mid-stage





















4.

"the struggle of whether we connect more"

4.

"the struggle of whether we connect more" marck zuckerberg



define p and  $\widetilde{p}$  at all points



define p and  $\widetilde{p}$  at all points



define  $p_i$  and  $\tilde{p}_i$  at each node i



define p and  $\tilde{p}$  at all points

$$\frac{\partial p}{\partial t} = \text{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p}$$

$$\frac{\partial \widetilde{p}}{\partial t} = \text{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) - \widetilde{k}_{1}\widetilde{p} + k_{12}p\widetilde{p}$$

### discrete model



define  $p_i$  and  $\tilde{p}_i$  at each node i



define p and  $\tilde{p}$  at all points

$$\frac{\partial p}{\partial t} = \text{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p}$$

$$\frac{\partial \widetilde{p}}{\partial t} = \text{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) - \widetilde{k}_{1}\widetilde{p} + k_{12}p\widetilde{p}$$

### discrete model



define  $p_i$  and  $\tilde{p}_i$  at each node i

$$\frac{dp_i}{dt} = -\sum_{j=1}^n L_{ij}p_j + k_0 - k_1p_i - k_{12}p_i\widetilde{p}_i$$

$$\frac{d\widetilde{p}_i}{dt} = -\sum_{j=1}^n L_{ij}\widetilde{p}_j - \widetilde{k}_1p_i - k_{12}p_i\widetilde{p}_i$$



define p and  $\widetilde{p}$  at all points

$$\begin{split} \frac{\partial p}{\partial t} &= \mathrm{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p} \\ \frac{\partial \widetilde{p}}{\partial t} &= \mathrm{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) \qquad - \widetilde{k}_{1}\widetilde{p} + k_{12}p\widetilde{p} \end{split}$$

partial differential equations

#### discrete model



define  $p_i$  and  $\tilde{p}_i$  at each node i

$$\frac{dp_i}{dt} = -\sum_{j=1}^n L_{ij}p_j + k_0 - k_1p_i - k_{12}p_i\widetilde{p}_i$$

$$\frac{d\widetilde{p}_i}{dt} = -\sum_{j=1}^n L_{ij}\widetilde{p}_j \qquad -\widetilde{k}_1p_i - k_{12}p_i\widetilde{p}_i$$



define p and  $\tilde{p}$  at all points

$$\begin{split} \frac{\partial p}{\partial t} &= \mathrm{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p} \\ \frac{\partial \widetilde{p}}{\partial t} &= \mathrm{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) \qquad - \widetilde{k}_{1}\widetilde{p} + k_{12}p\widetilde{p} \end{split}$$

partial differential equations

#### discrete model



define  $p_i$  and  $\tilde{p}_i$  at each node i

$$\frac{dp_i}{dt} = -\sum_{j=1}^n L_{ij}p_j + k_0 - k_1p_i - k_{12}p_i\widetilde{p}_i$$

$$\frac{d\widetilde{p}_i}{dt} = -\sum_{j=1}^n L_{ij}\widetilde{p}_j \qquad -\widetilde{k}_1p_i - k_{12}p_i\widetilde{p}_i$$

ordinary differential equations



weighted graph Laplacian



 $L_{ij} = D_{ij} - A_{ij}$  with  $A_{ij} = \frac{n_{ij}}{l_{ij}}$ 

|  | 0 |  |  |   |  |  |
|--|---|--|--|---|--|--|
|  |   |  |  | X |  |  |
|  |   |  |  |   |  |  |
|  |   |  |  |   |  |  |
|  |   |  |  |   |  |  |

|  | 0 |  |  |   |  |  |
|--|---|--|--|---|--|--|
|  |   |  |  | X |  |  |
|  |   |  |  |   |  |  |
|  |   |  |  |   |  |  |
|  |   |  |  |   |  |  |

clinical data



continuum model

clinical data

continuum model





[frisoni, fox, jack, scheltens, thompson 2010]

[fornari, schafer, jucker, ag, kuhl, 2019]





[fornari, schafer, jucker, ag, kuhl, 2019]













## increasing clearance







## increasing clearance







## increasing clearance



# epilogue "c'est la première loi de la nature" voltaire

# what did we learn?

spatial progression

atrophy pattern

















[art: g. dunn & b. edwards] 





# What did we learn?



[Robert Fludd]