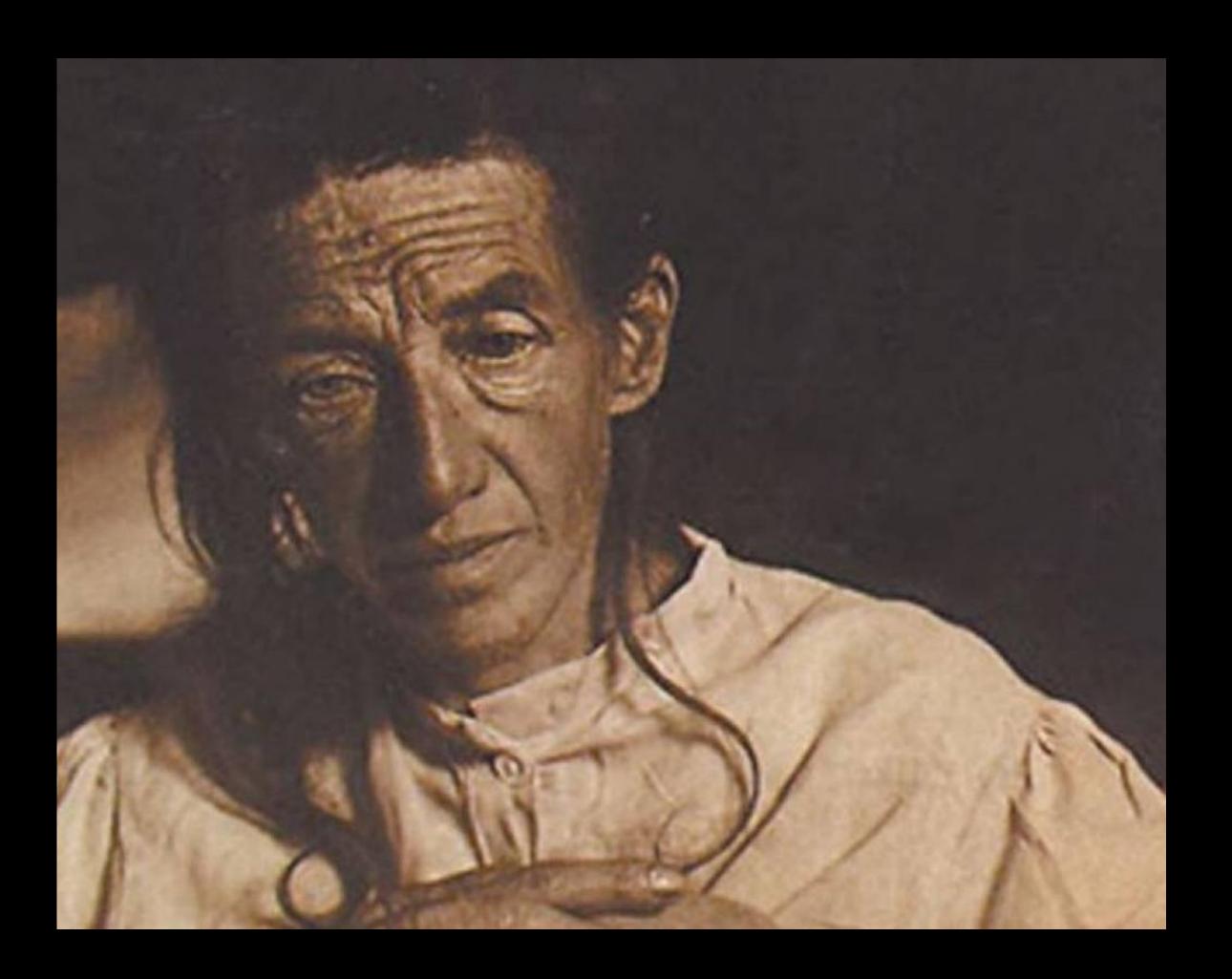
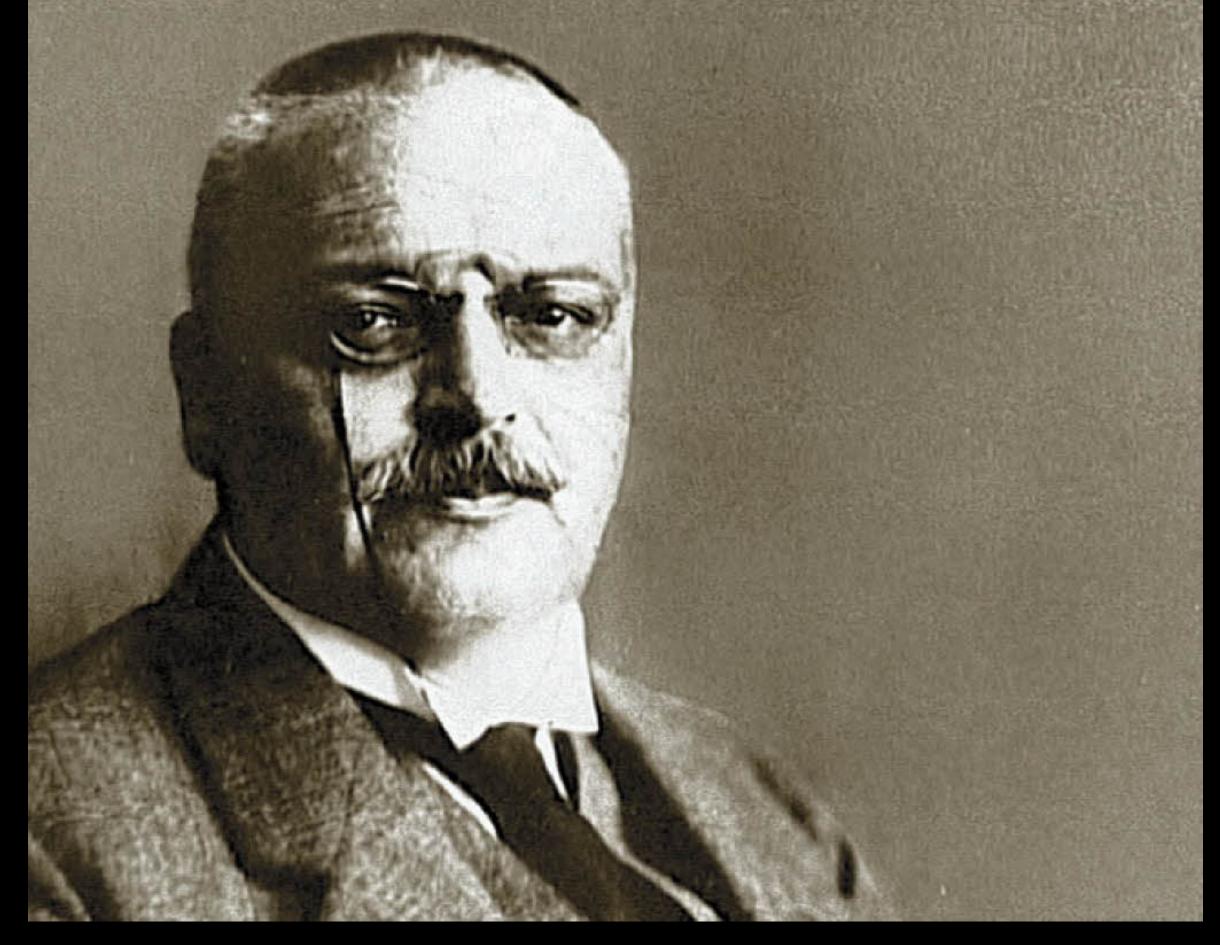


1. "ich habe mich verloren" auguste deter



auguste deter
"i have lost myself"



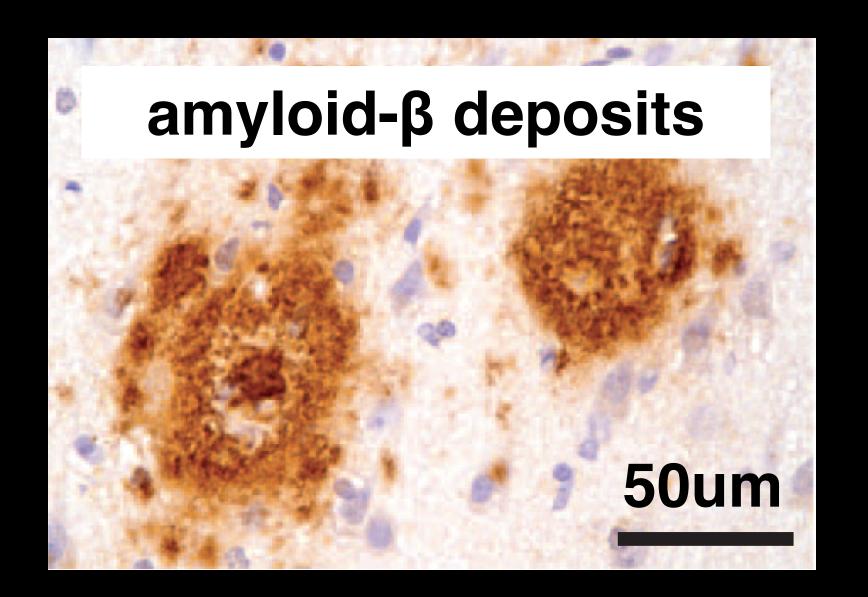


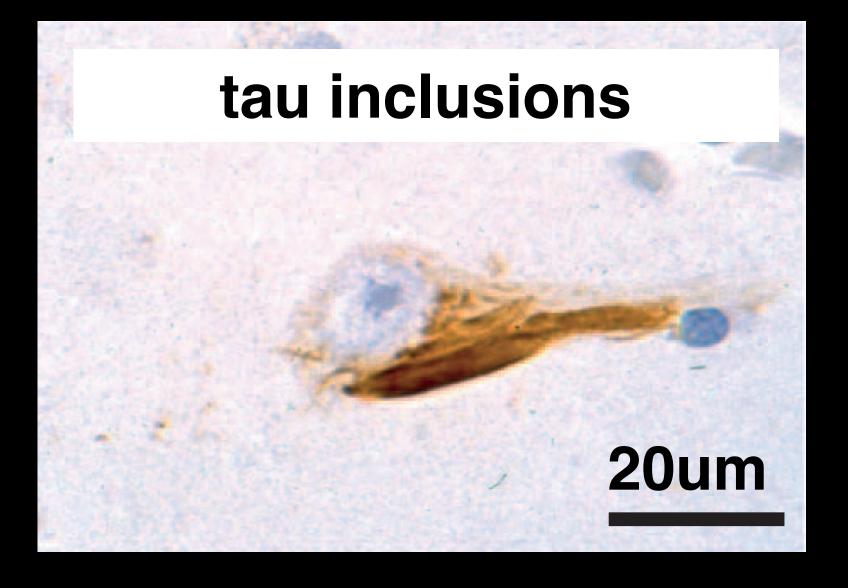
auguste deter
"i have lost myself"

alois alzheimer
"the disease of forgetfulness"

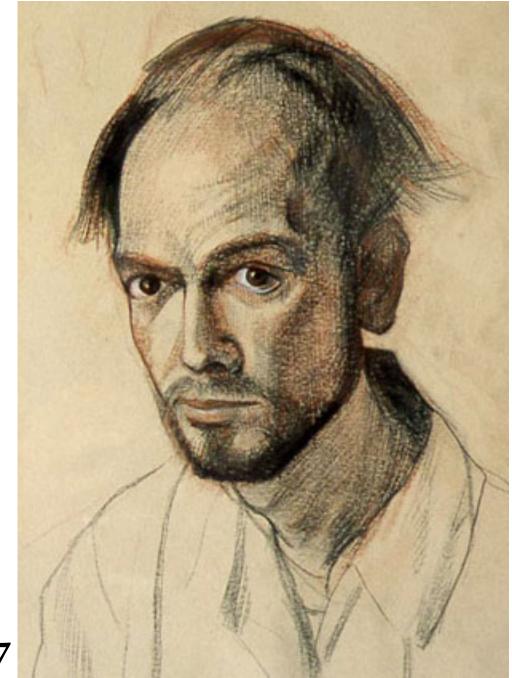


auguste deter
"i have lost myself"



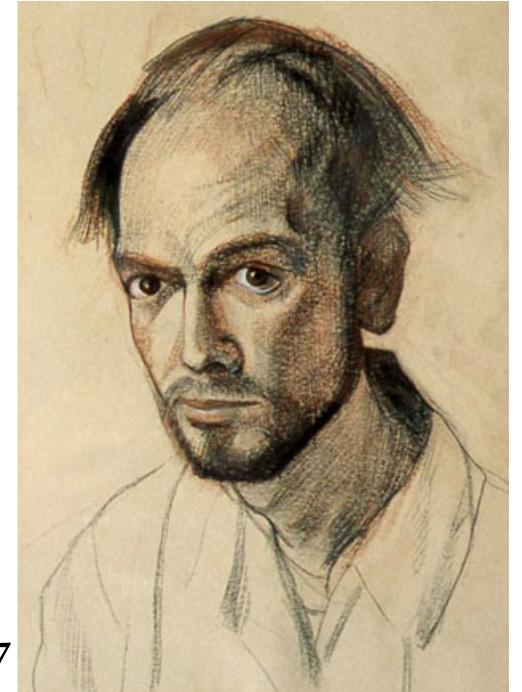


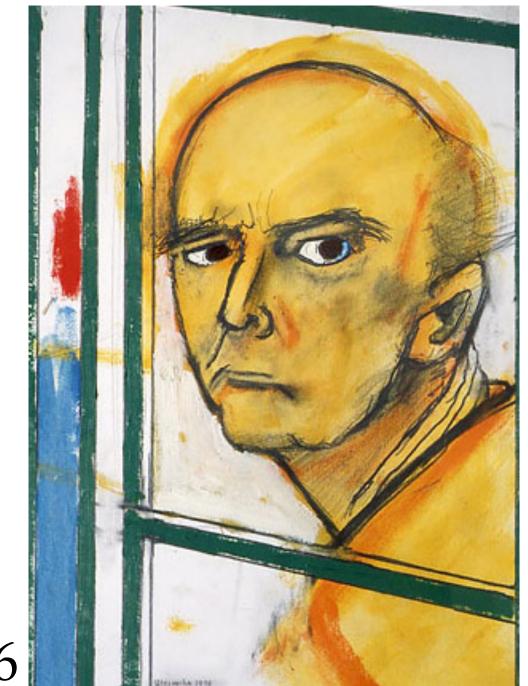
william utermohlen



[']67

william utermohlen

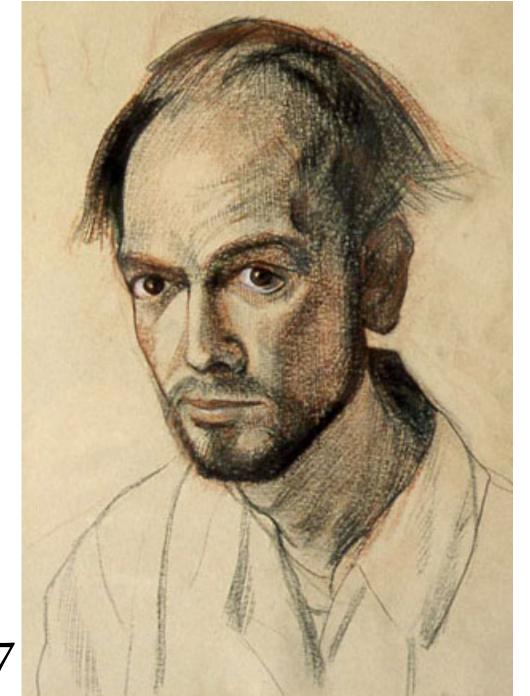


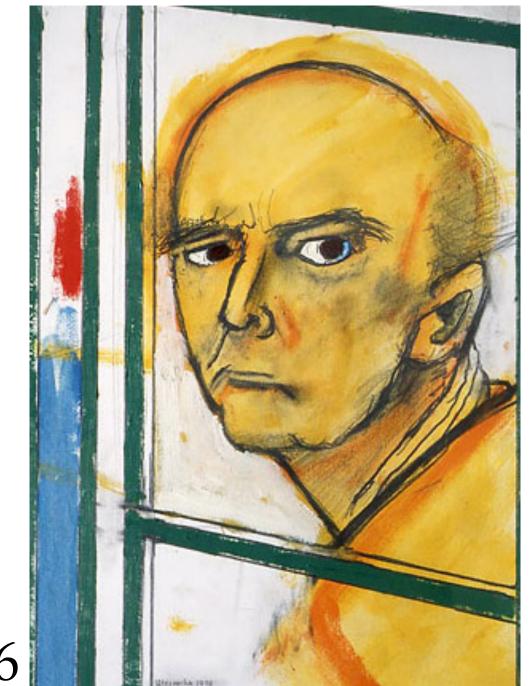


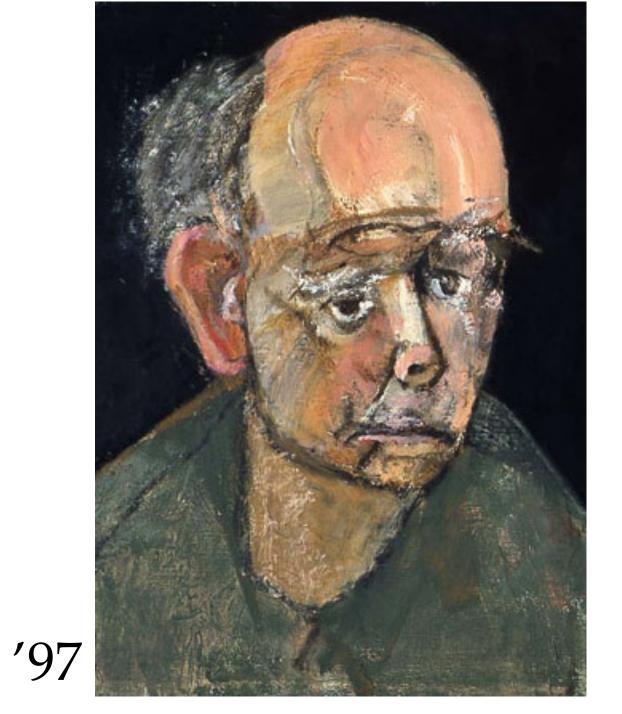
[']67

'96

william utermohlen



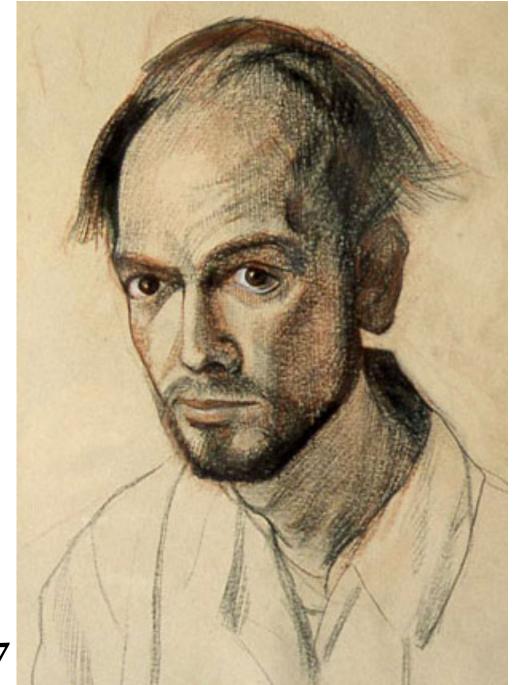


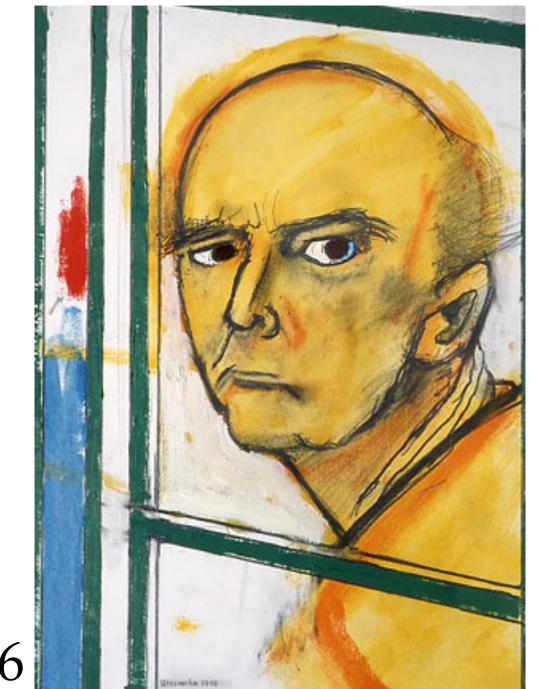


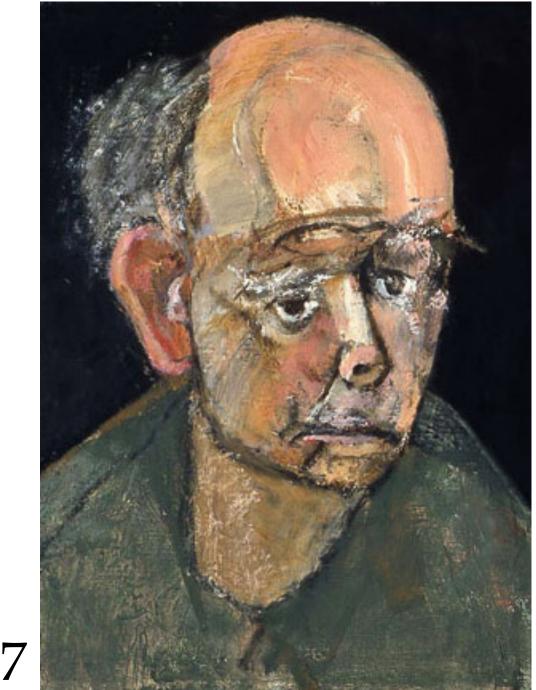
[']67

'96

william utermohlen



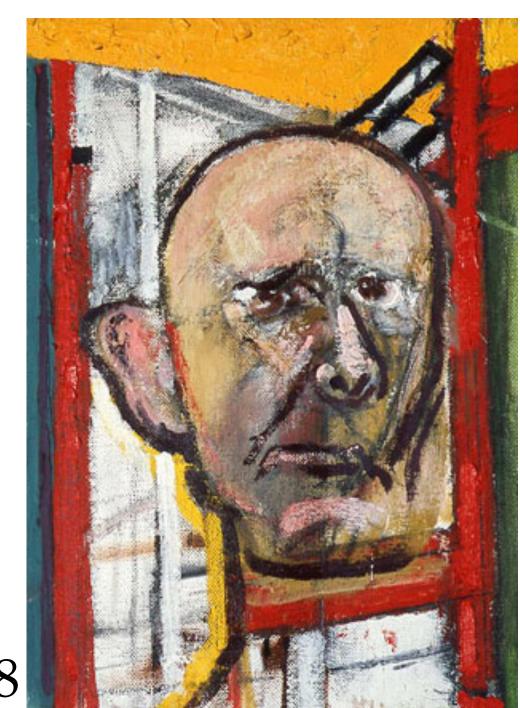




[']67

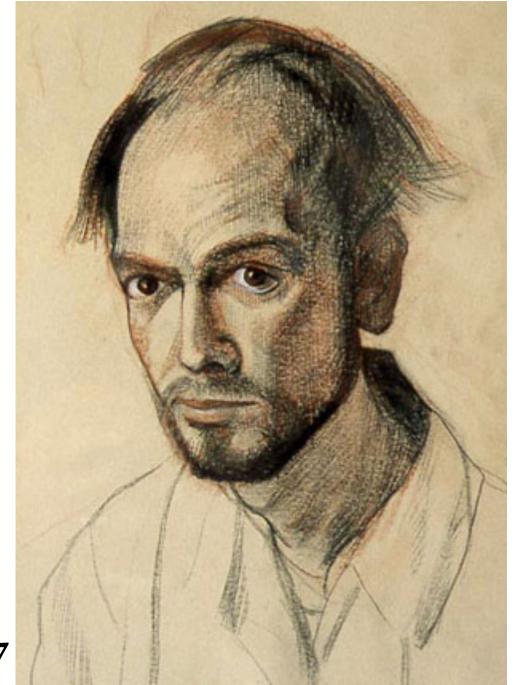
'96

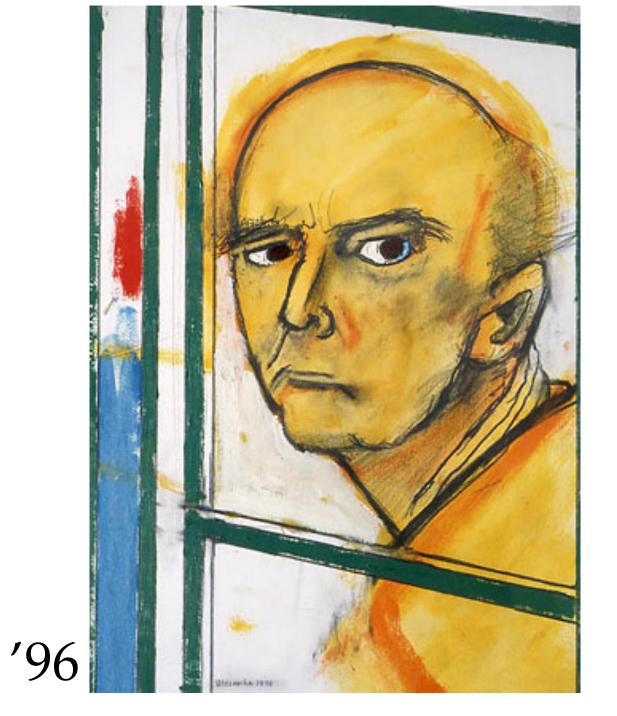
'97

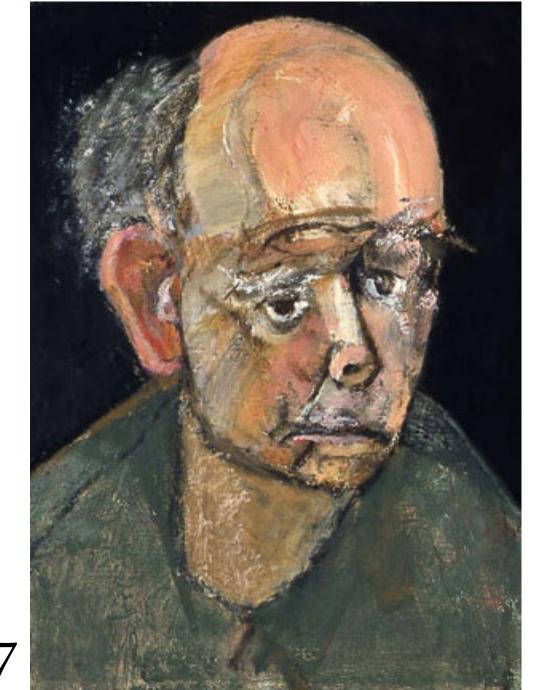


198

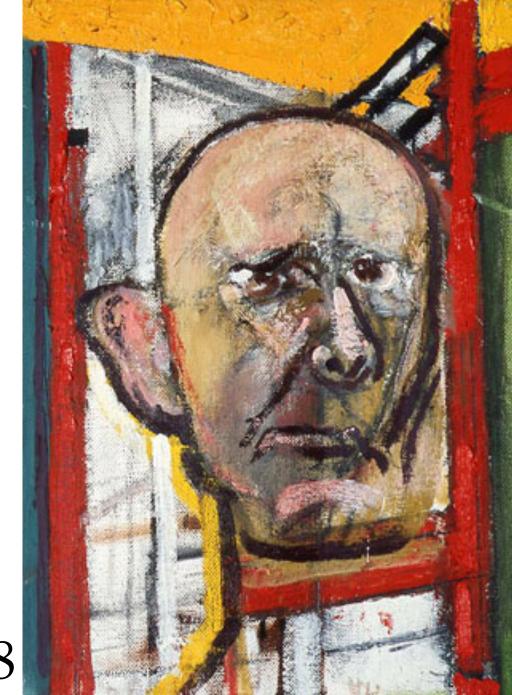
william utermohlen



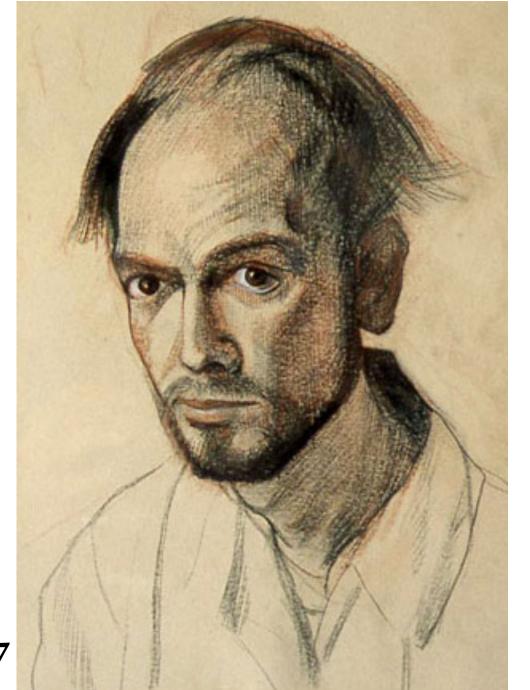


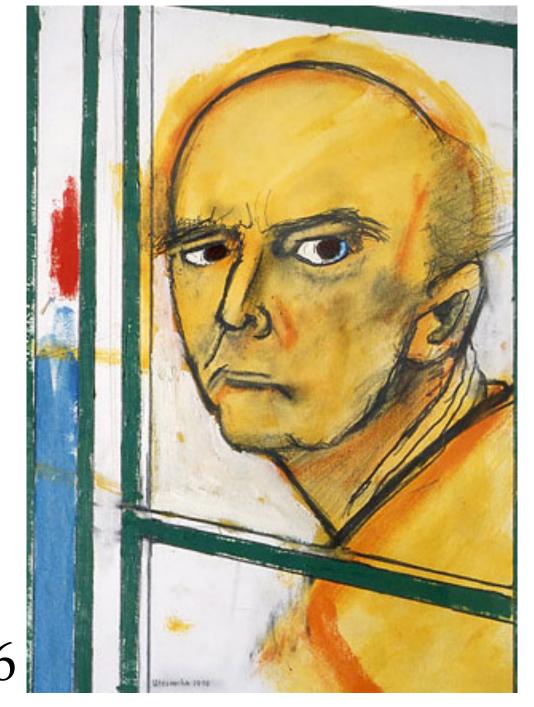


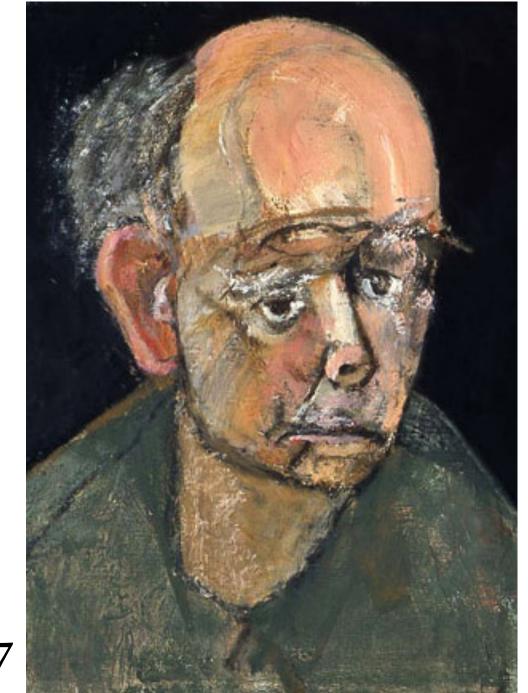
[']67



william utermohlen



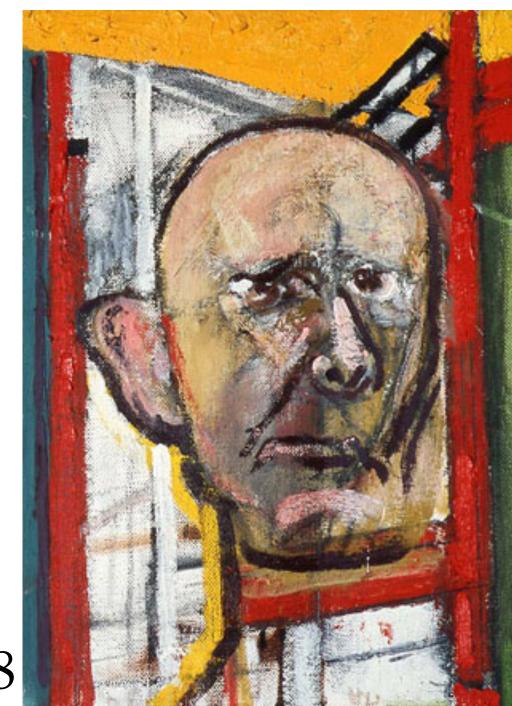




[']67

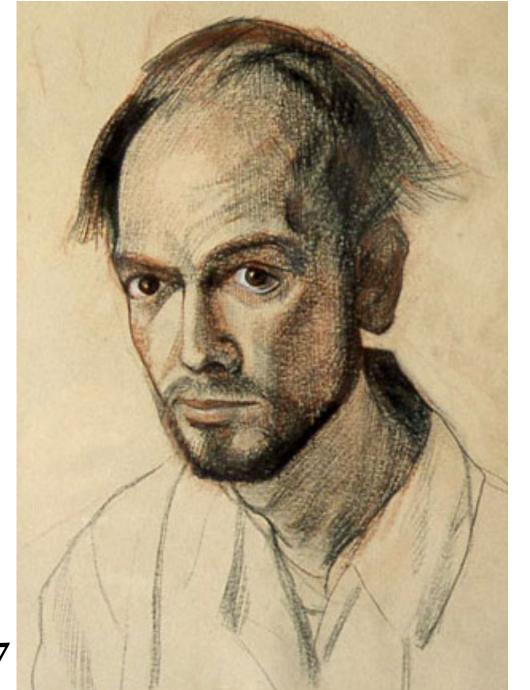
'96_k

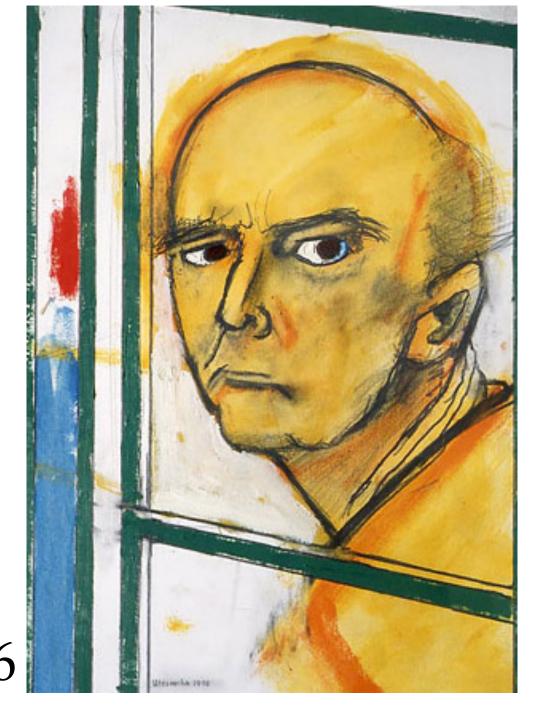
'97

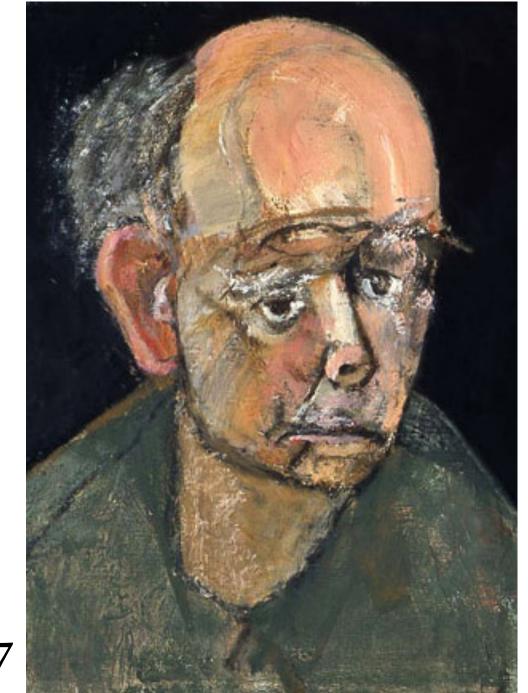


'98

william utermohlen



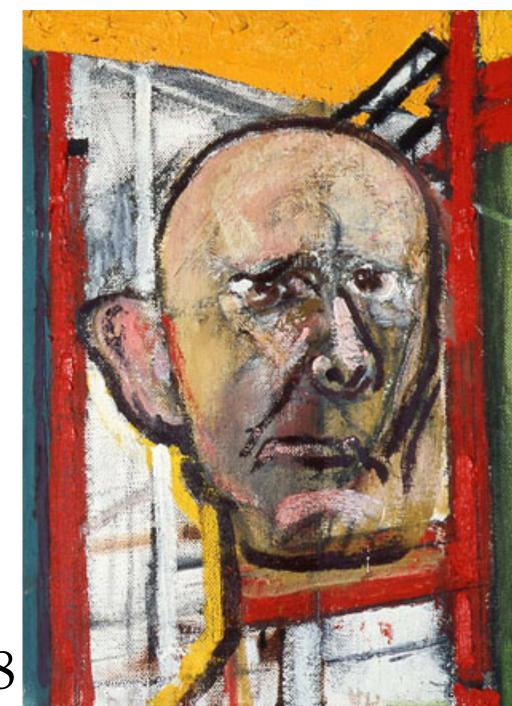




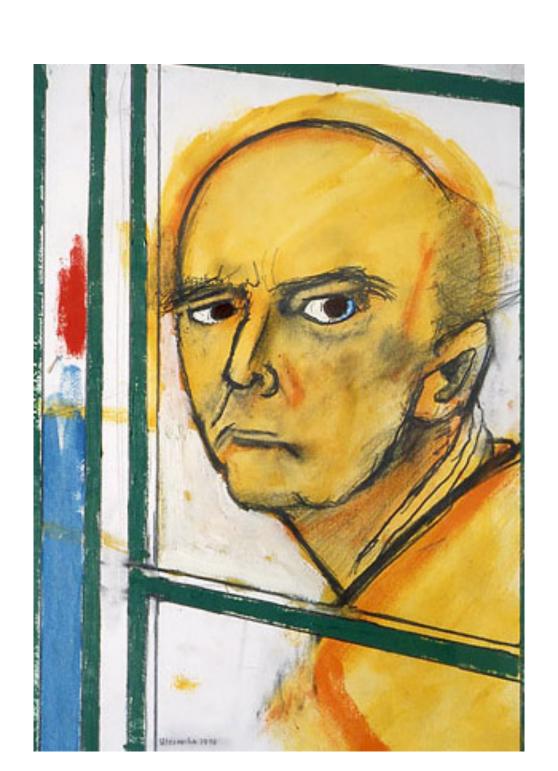
[']67

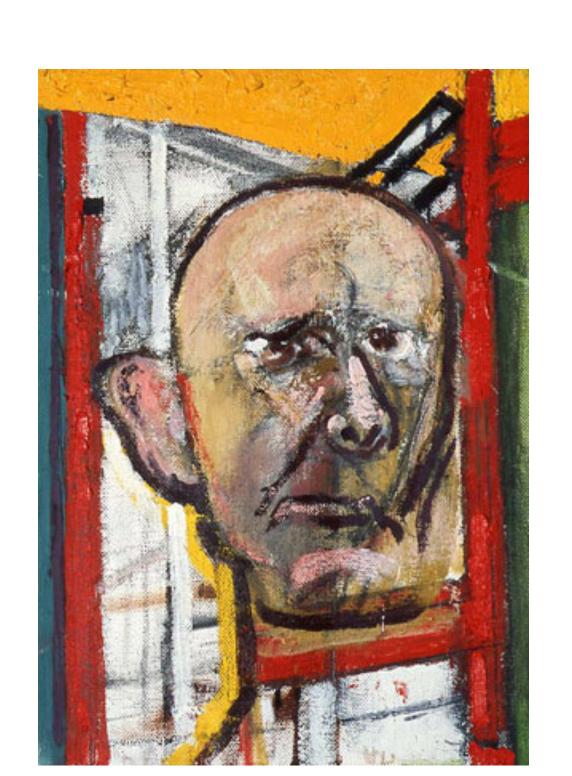
'96_k

'97

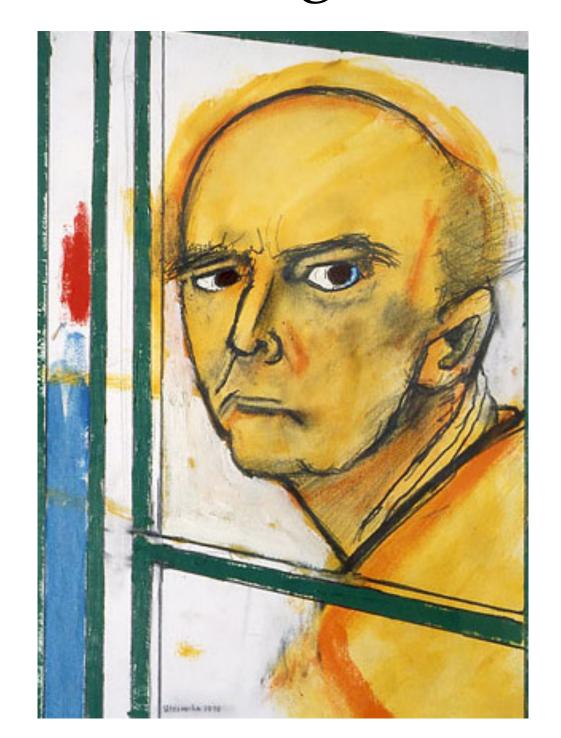


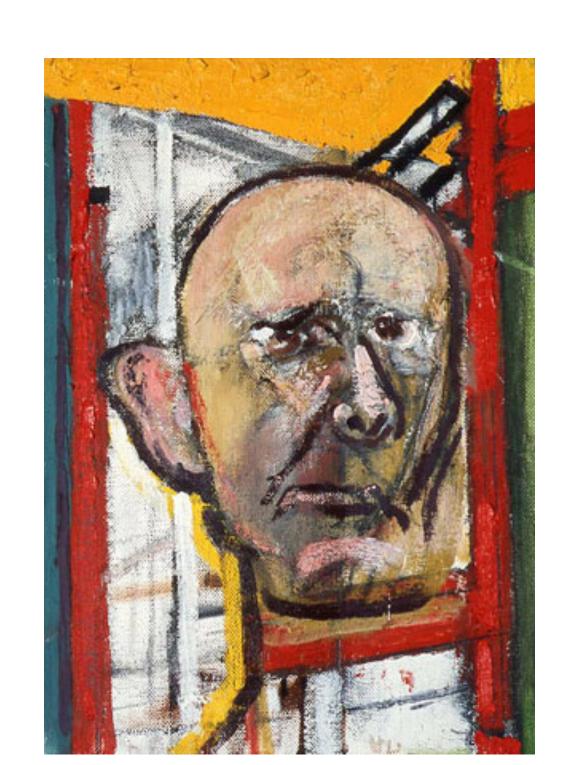
'98



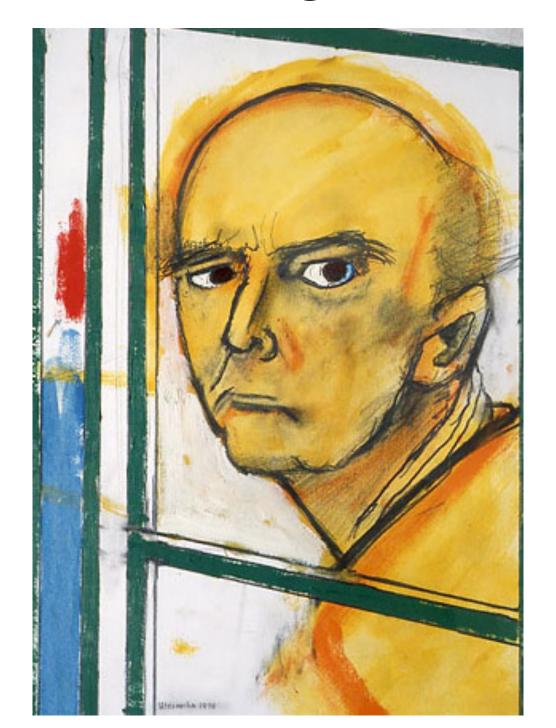


Stage I-II

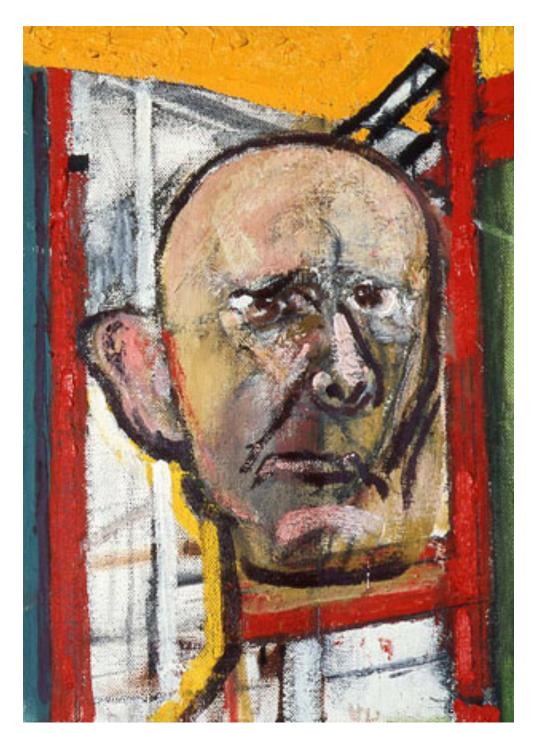




Stage I-II

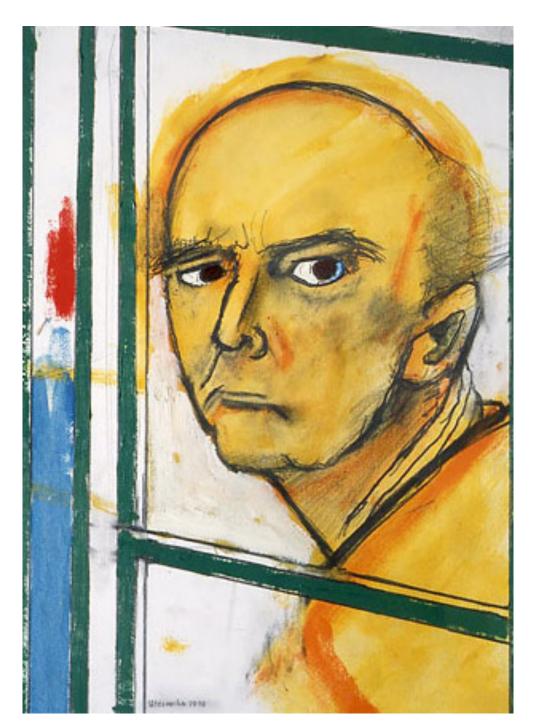


Stage III-IV

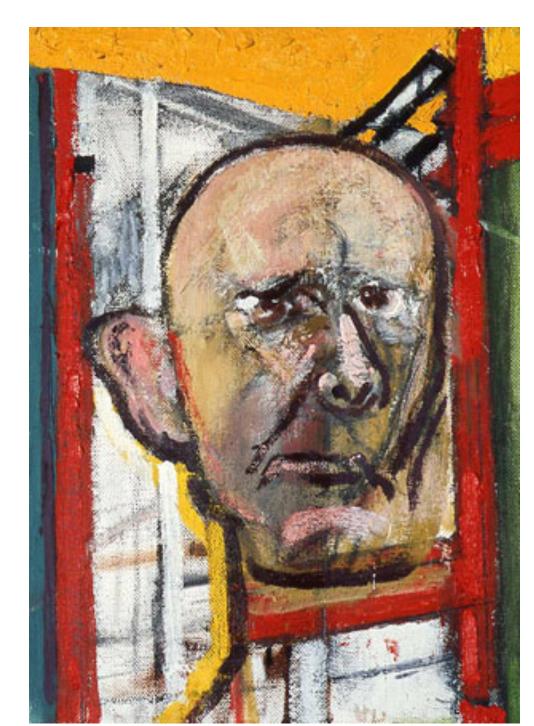




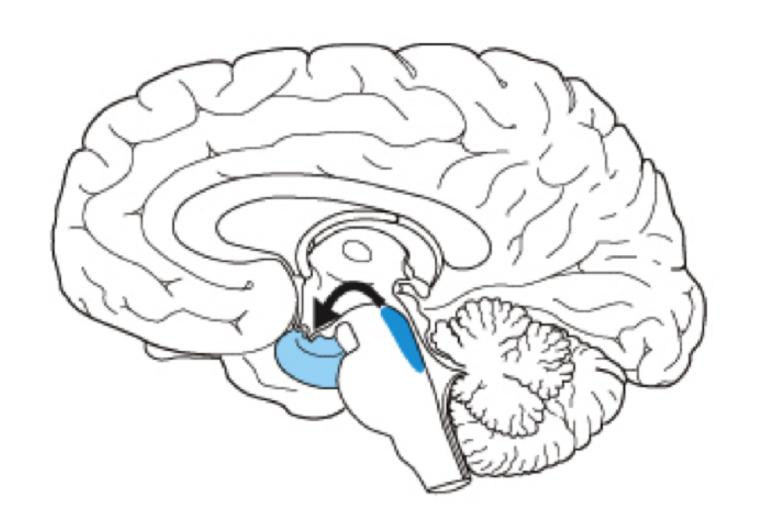
Stage I-II



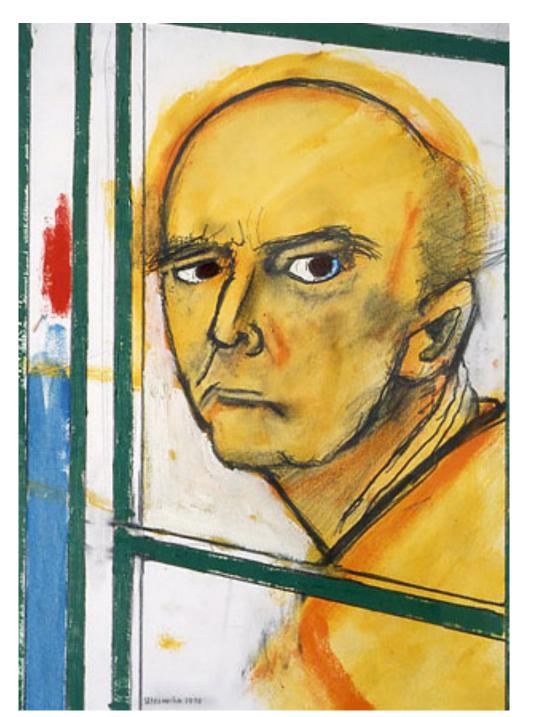
Stage III-IV



Stage IV-V

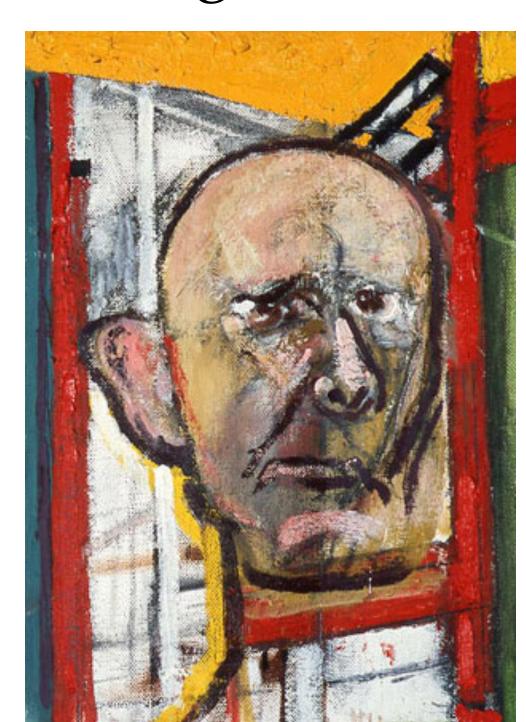


Stage I-II

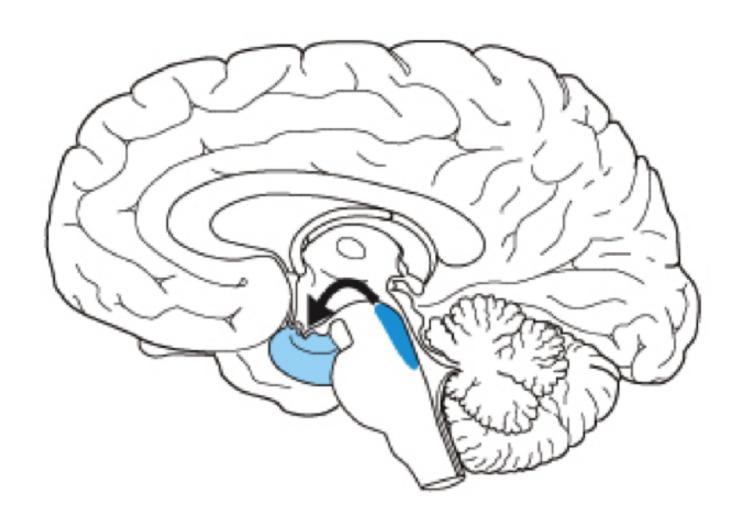




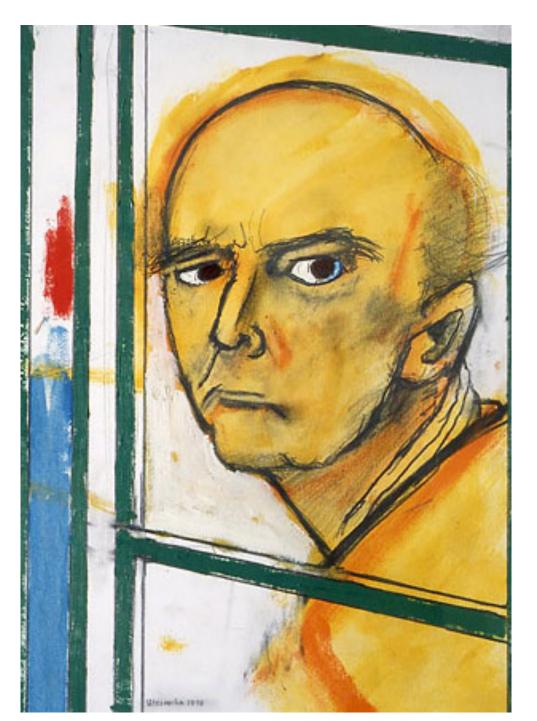
Stage III-IV

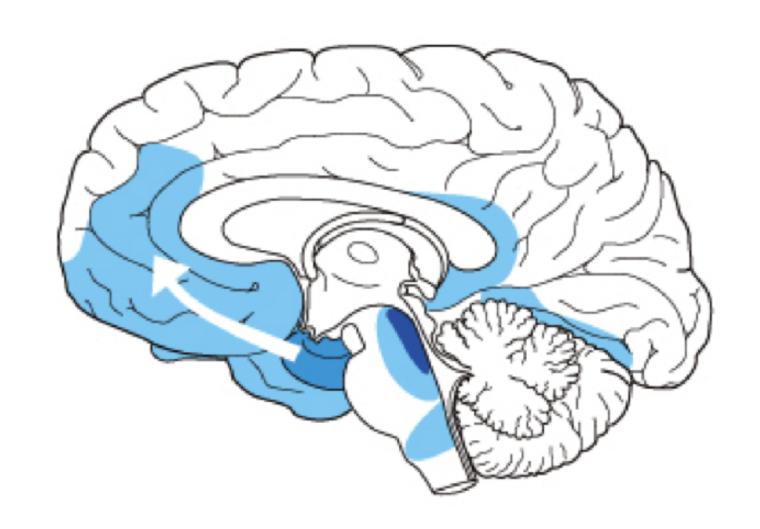


Stage IV-V

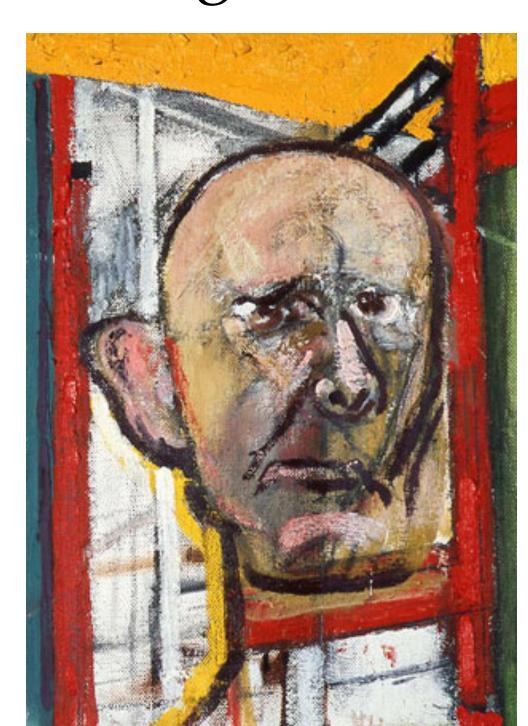


Stage I-II

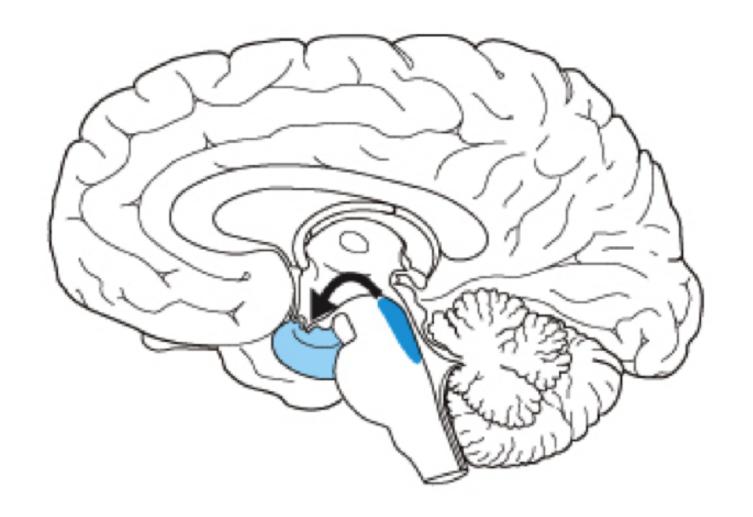




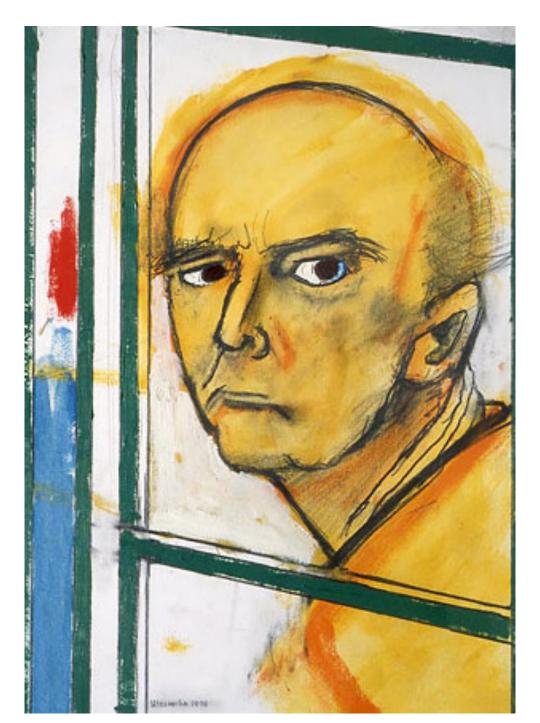
Stage III-IV

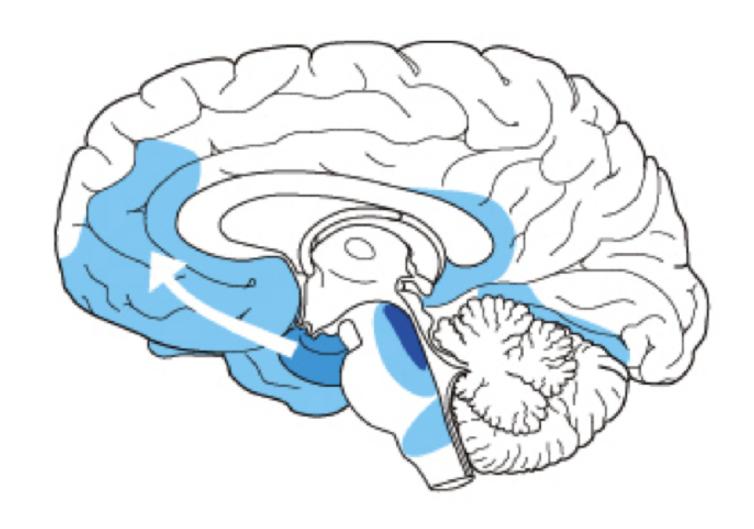


Stage IV-V

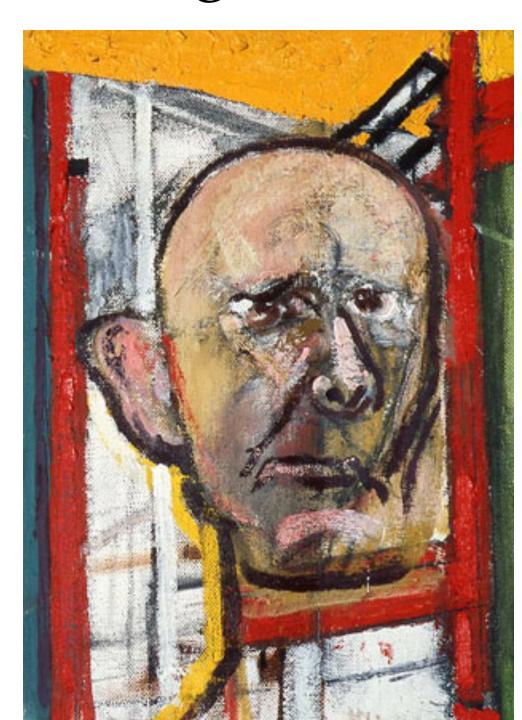


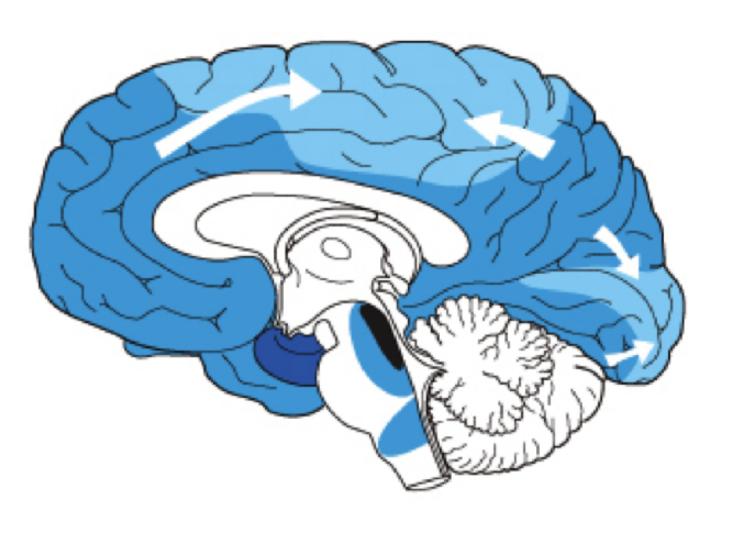
Stage I-II





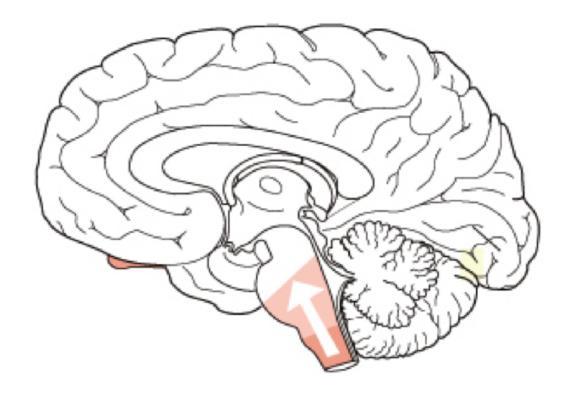
Stage III-IV



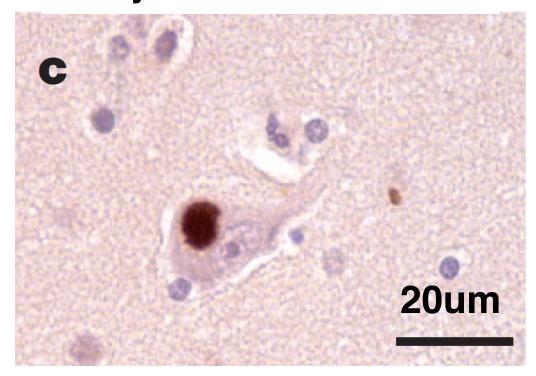


Stage IV-V

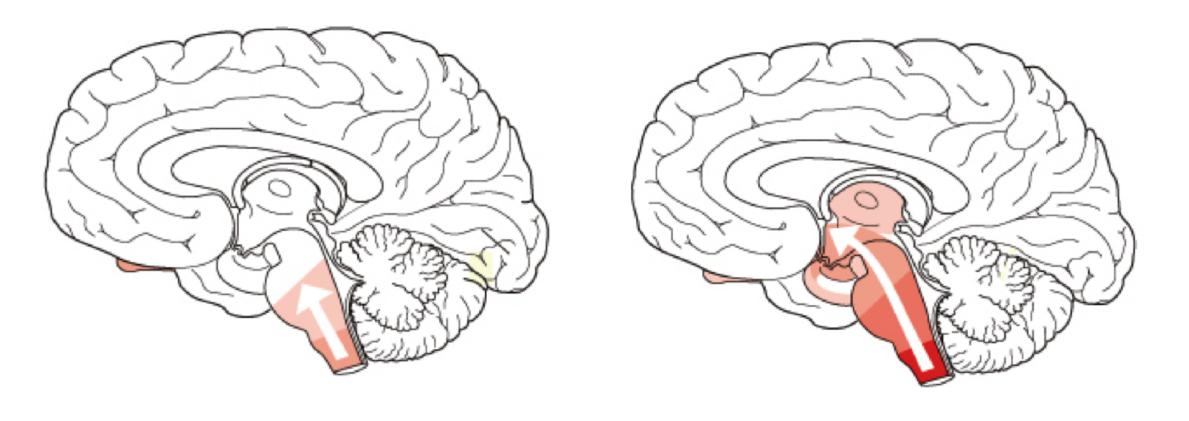
parkinson's disease



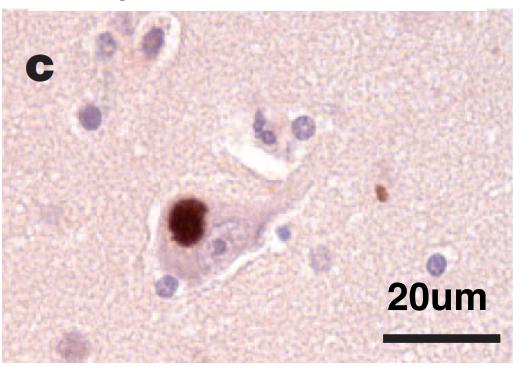
a-synuclein inclusions



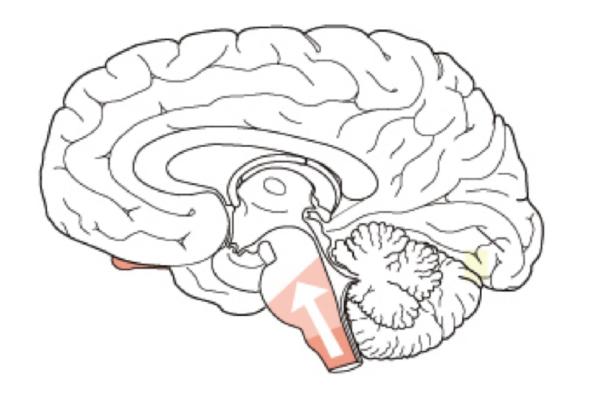
parkinson's disease

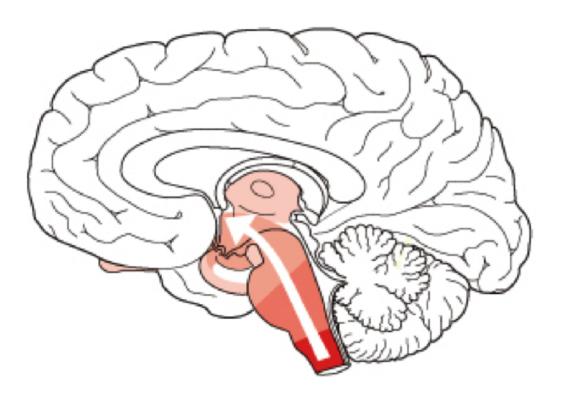


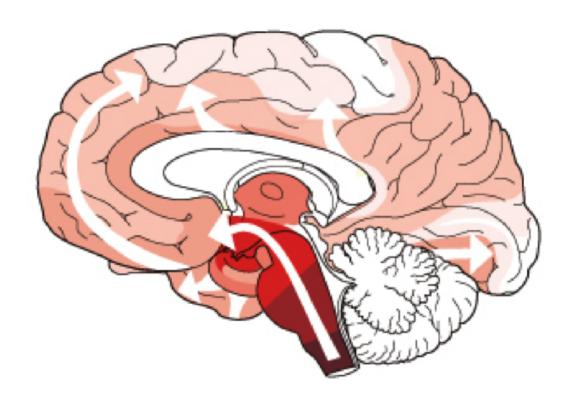
a-synuclein inclusions



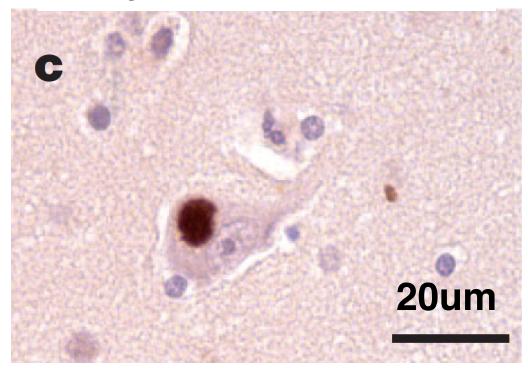
parkinson's disease



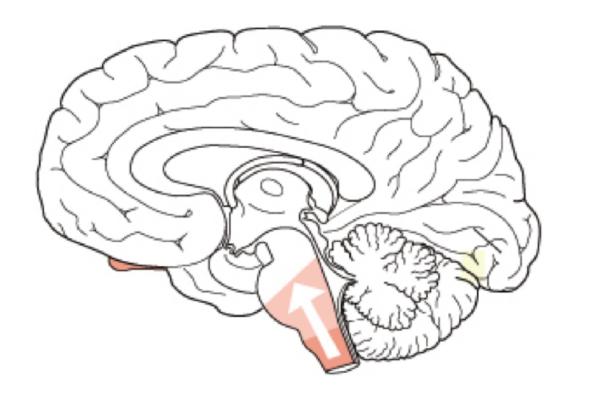


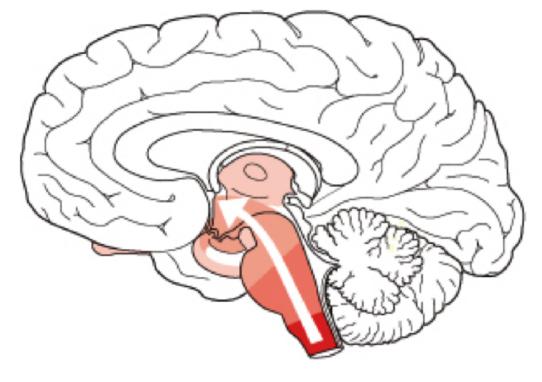


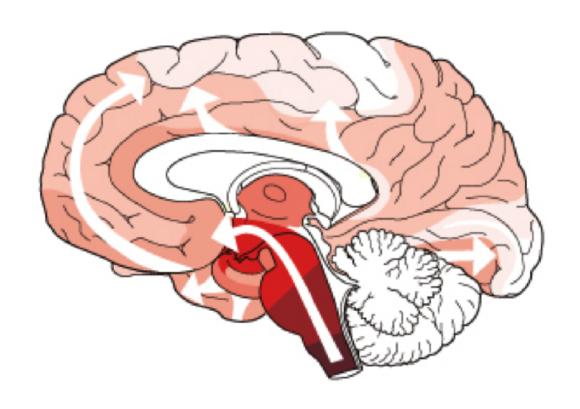
a-synuclein inclusions



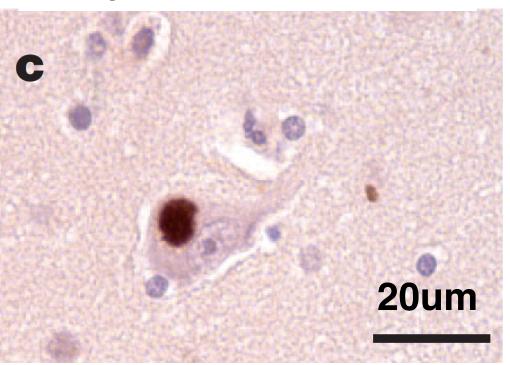
parkinson's disease





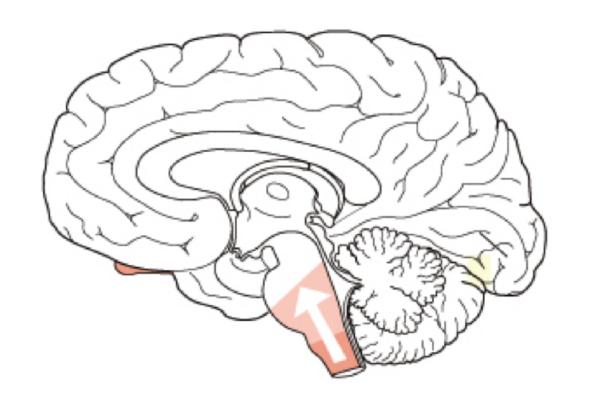


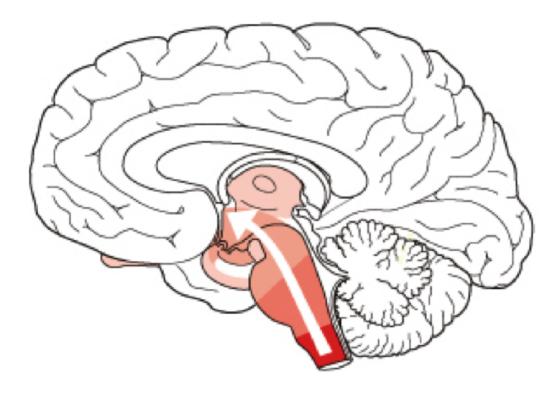
a-synuclein inclusions

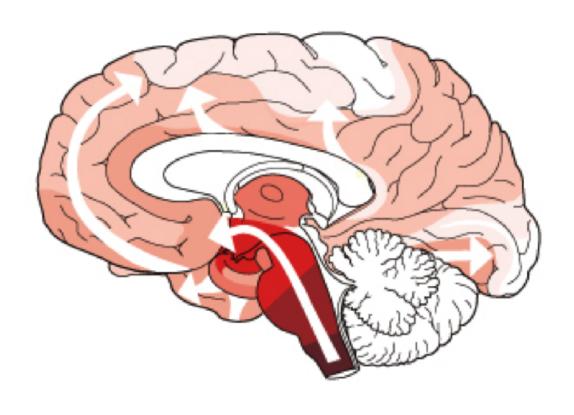


amyotrophic lateral sclerosis

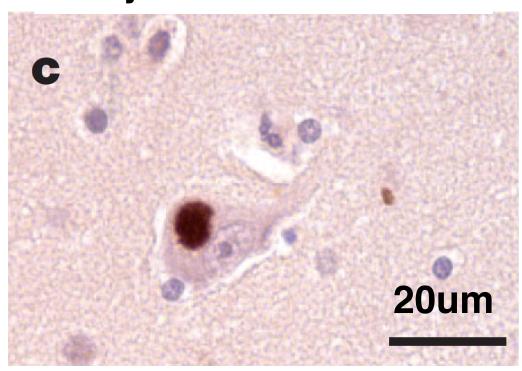
parkinson's disease



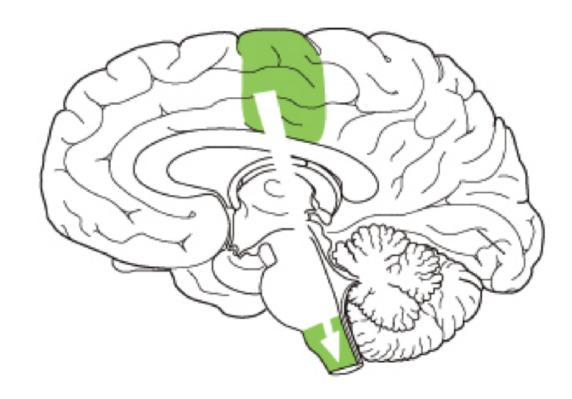




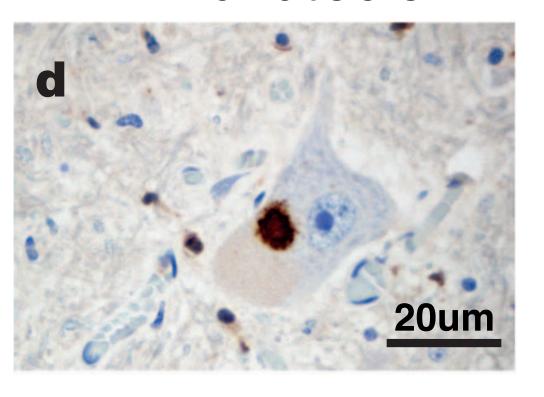
a-synuclein inclusions



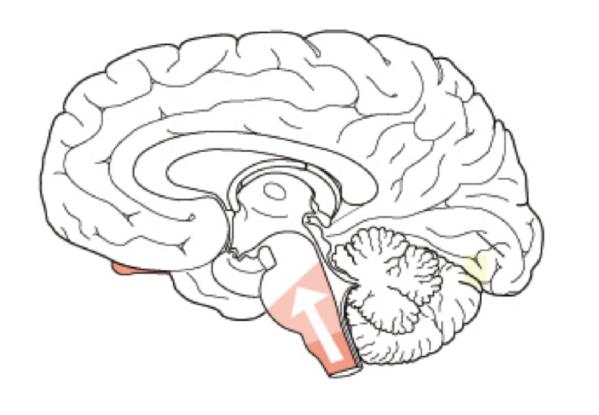
amyotrophic lateral sclerosis

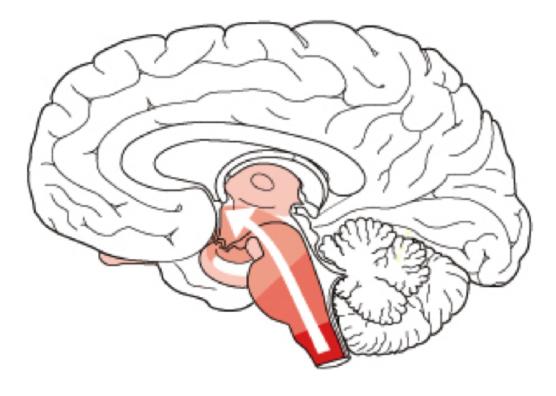


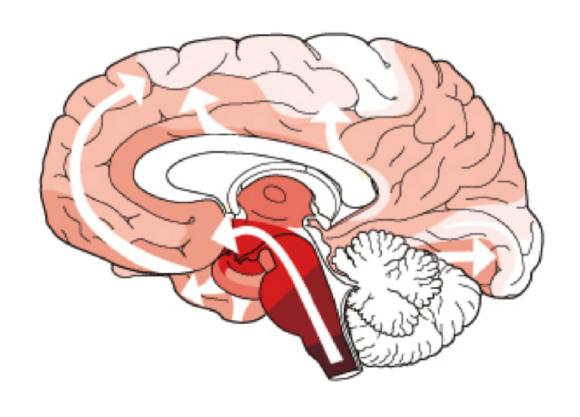
TDP-43 inclusions



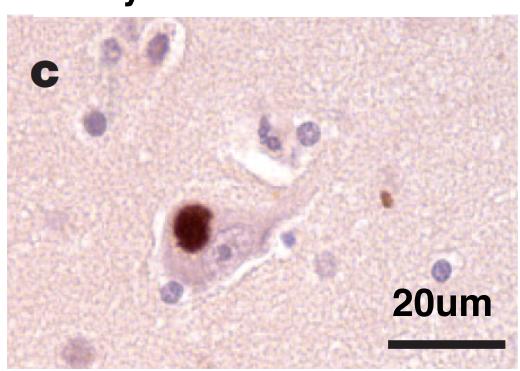
parkinson's disease



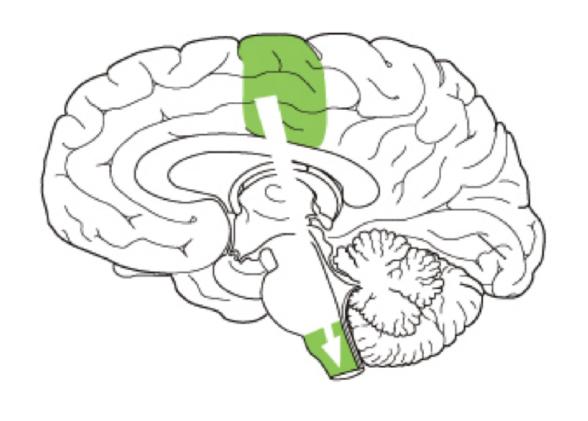


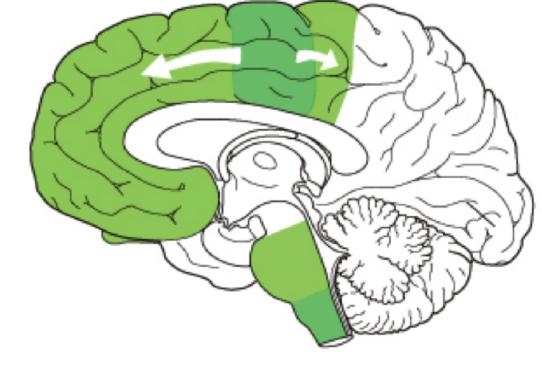


a-synuclein inclusions

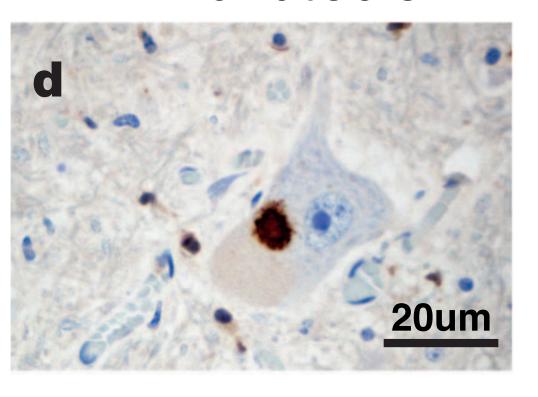


amyotrophic lateral sclerosis

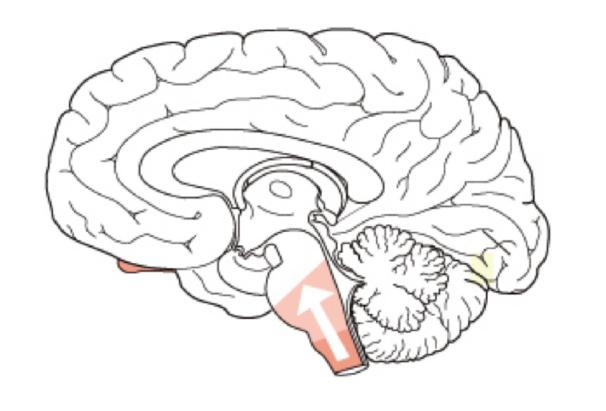


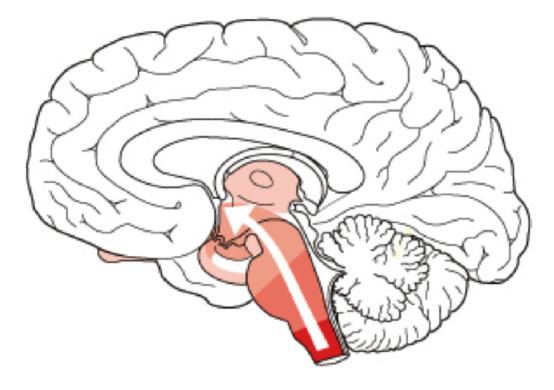


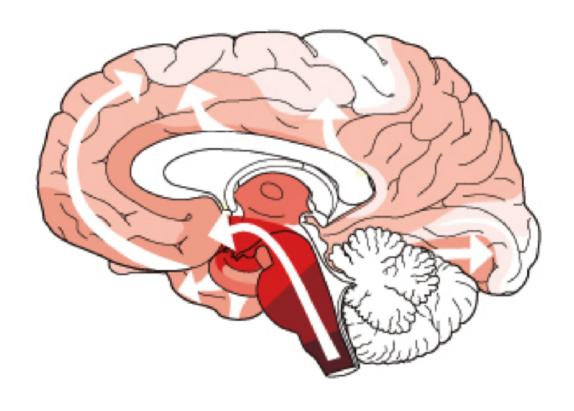
TDP-43 inclusions



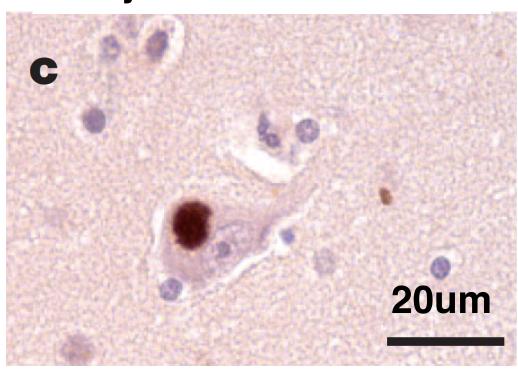
parkinson's disease



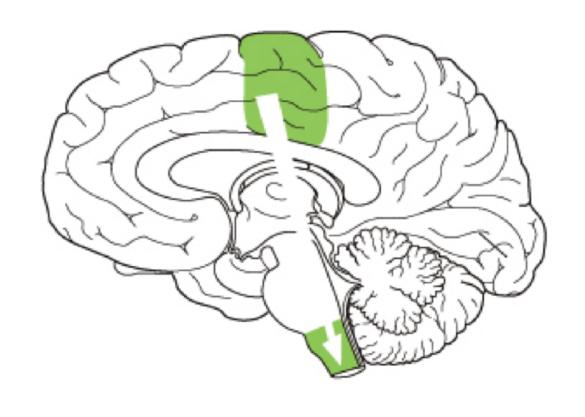


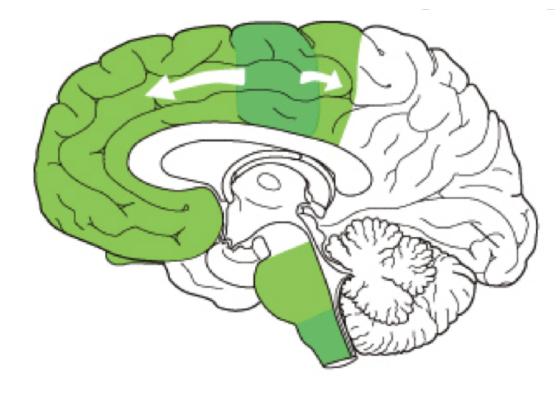


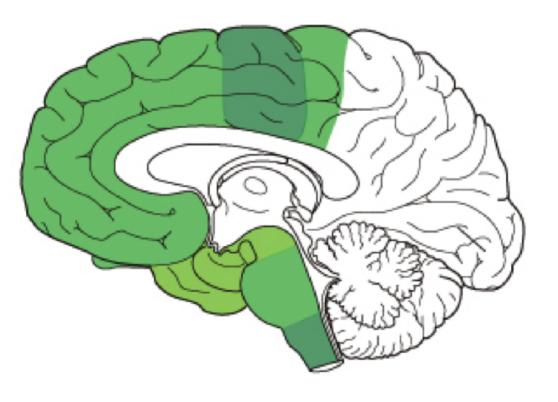
a-synuclein inclusions



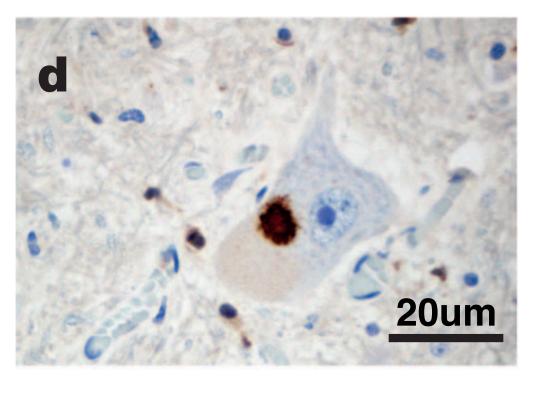
amyotrophic lateral sclerosis



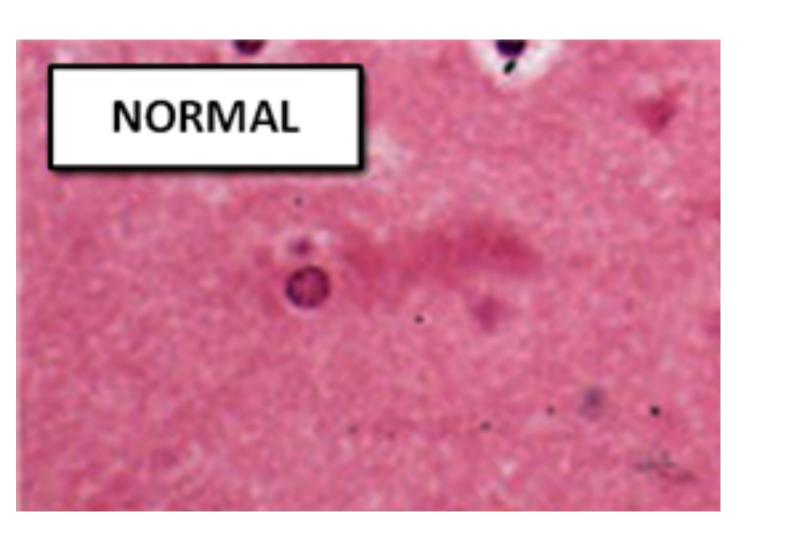


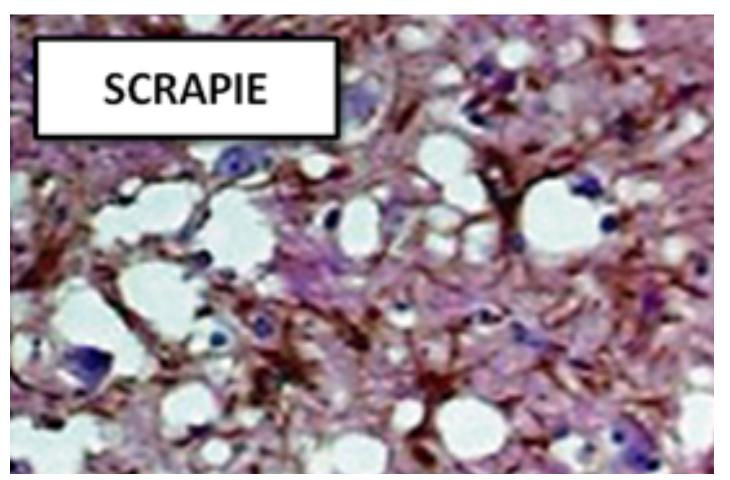


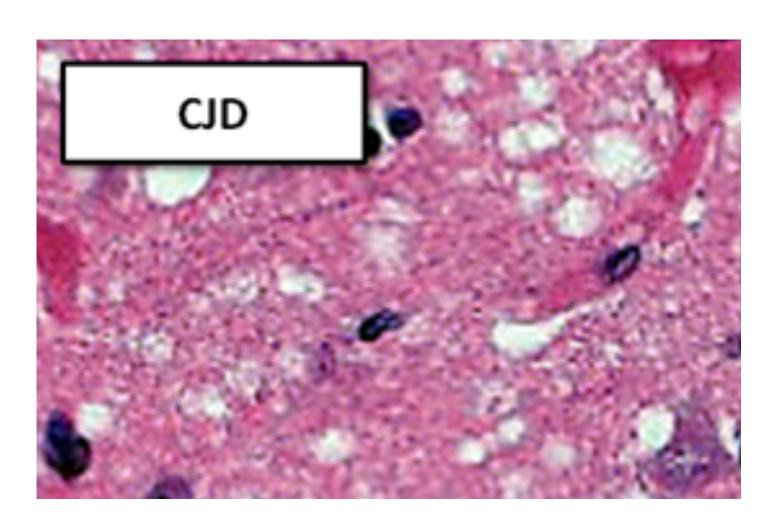
TDP-43 inclusions

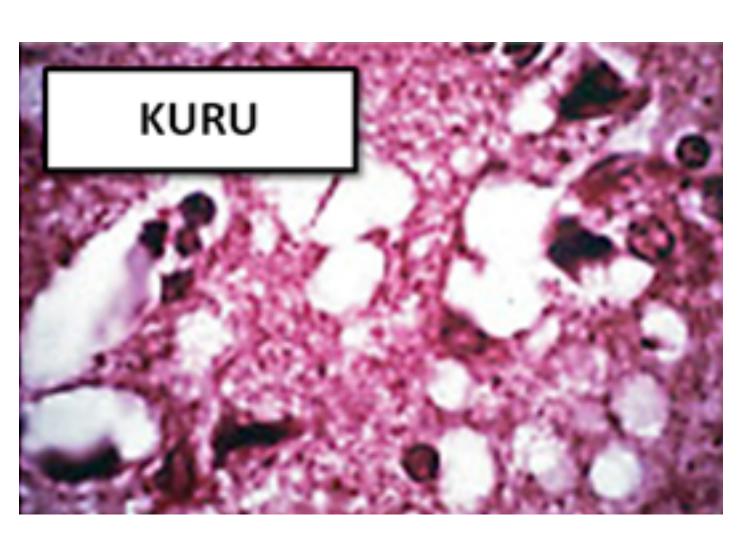


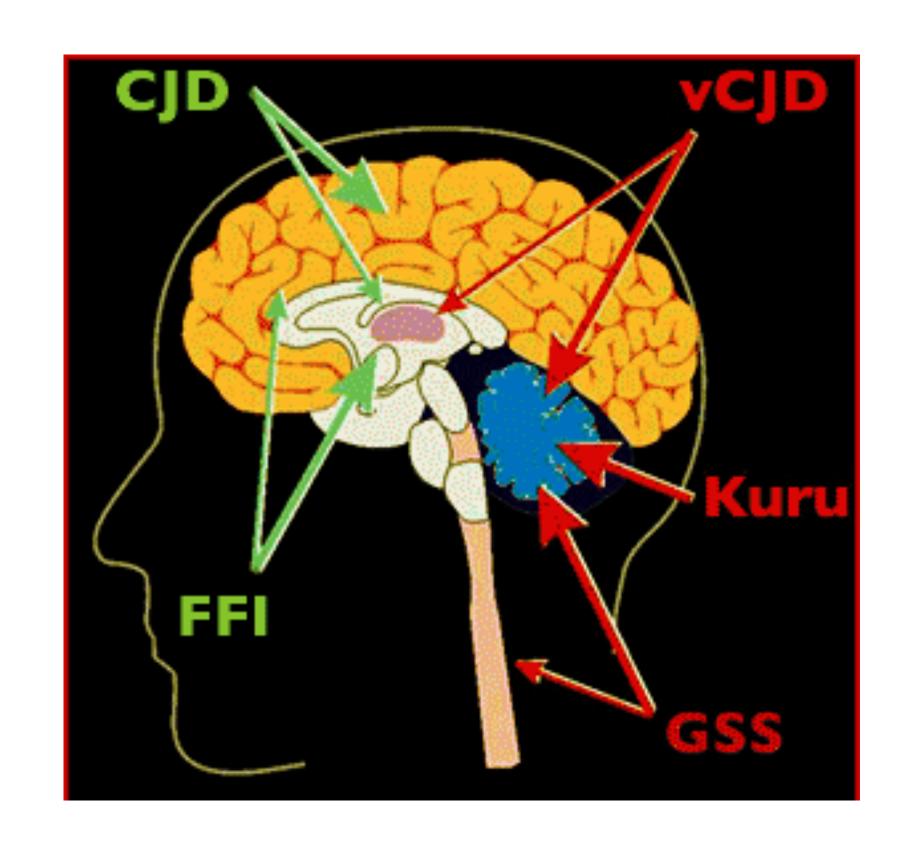
prion diseases

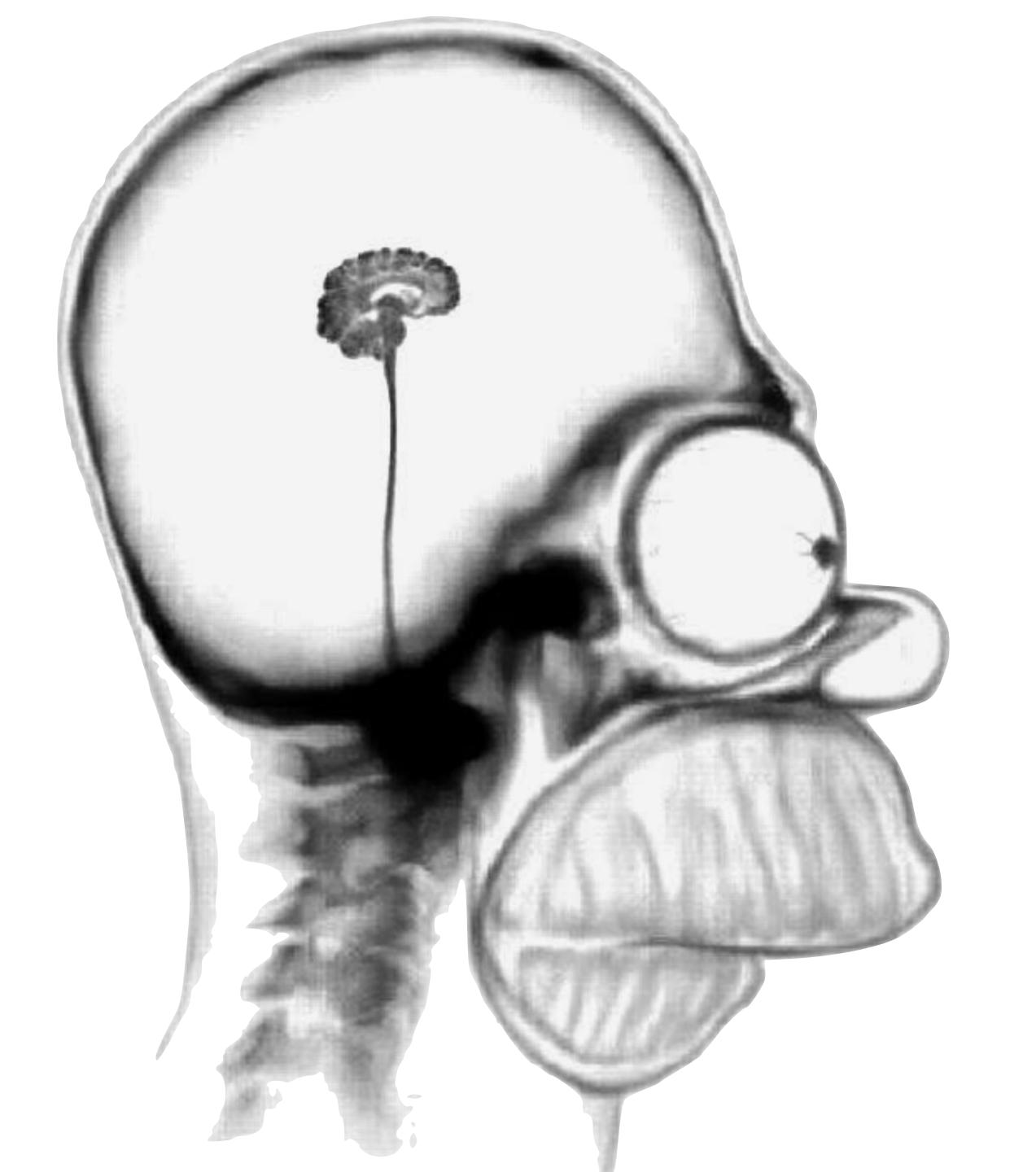




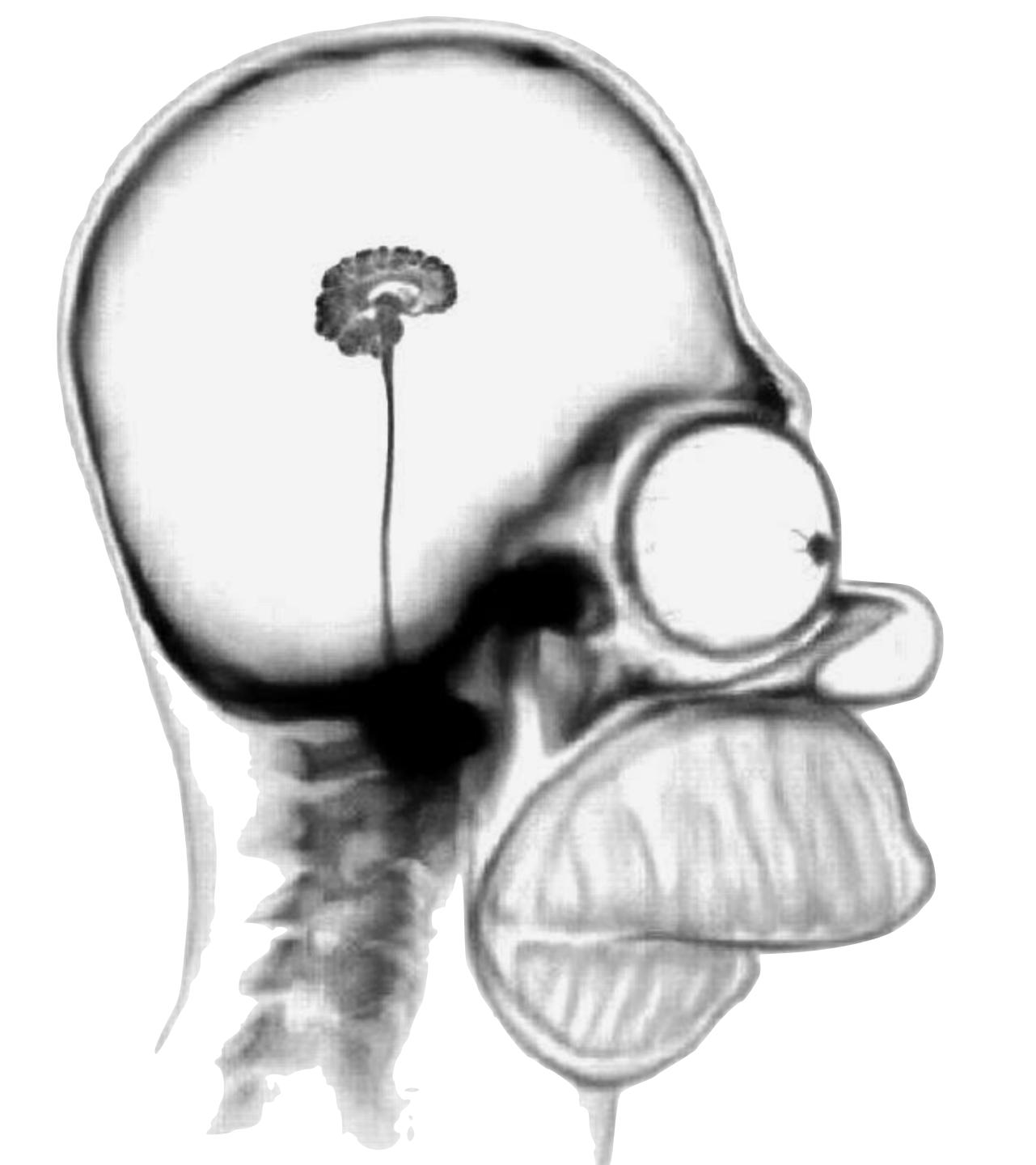




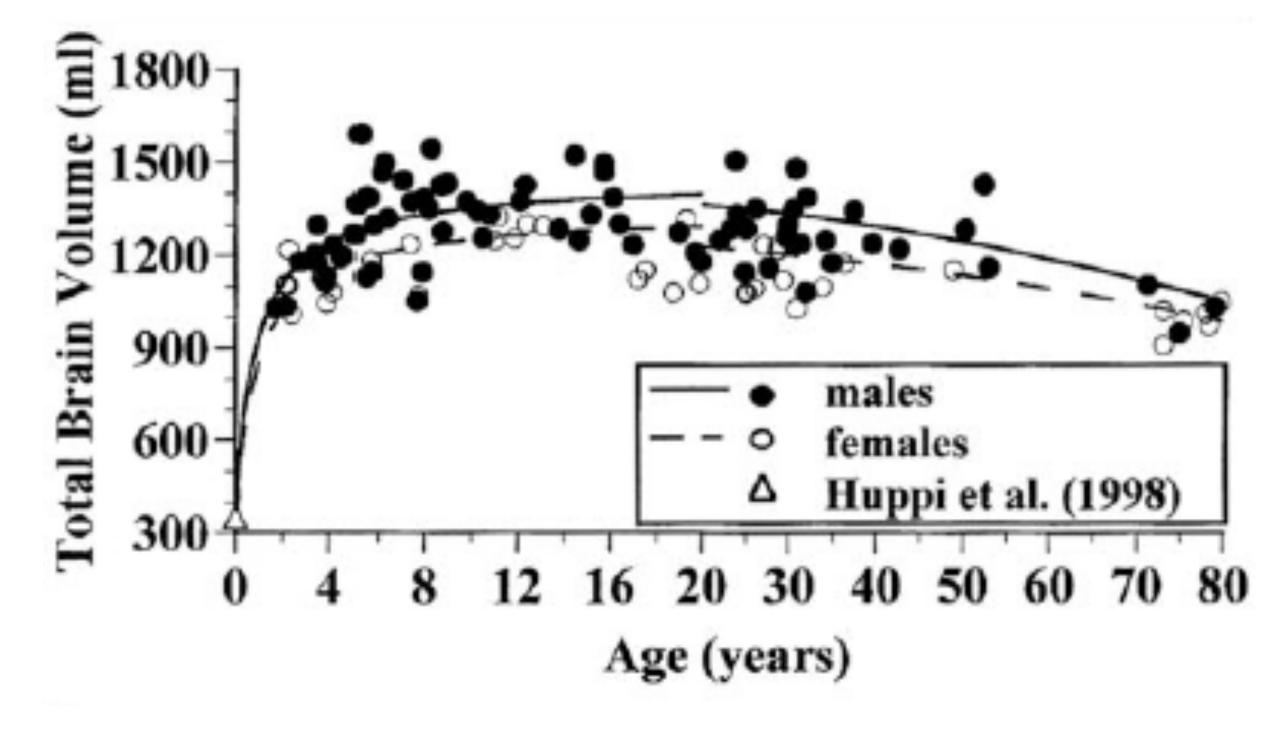


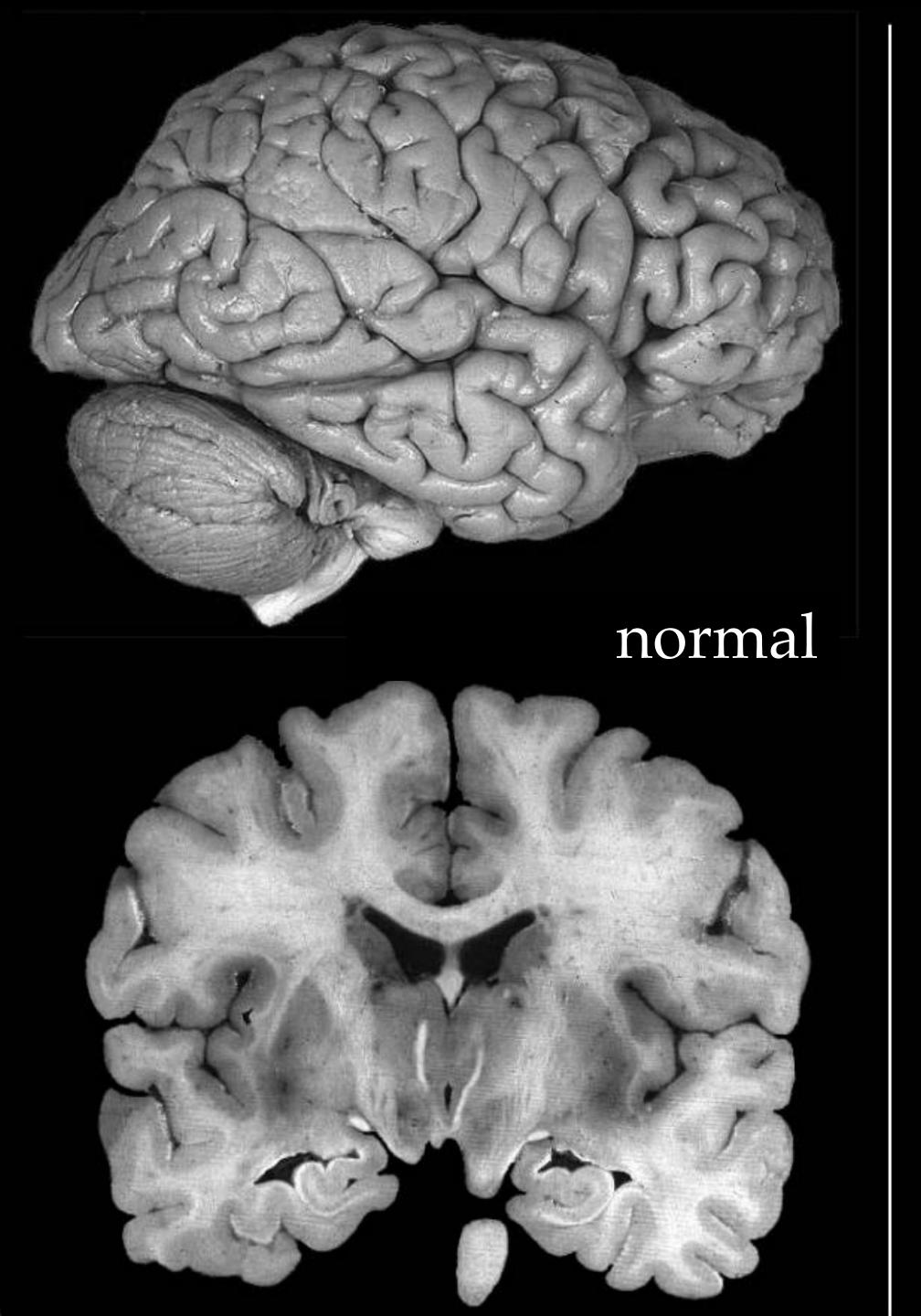


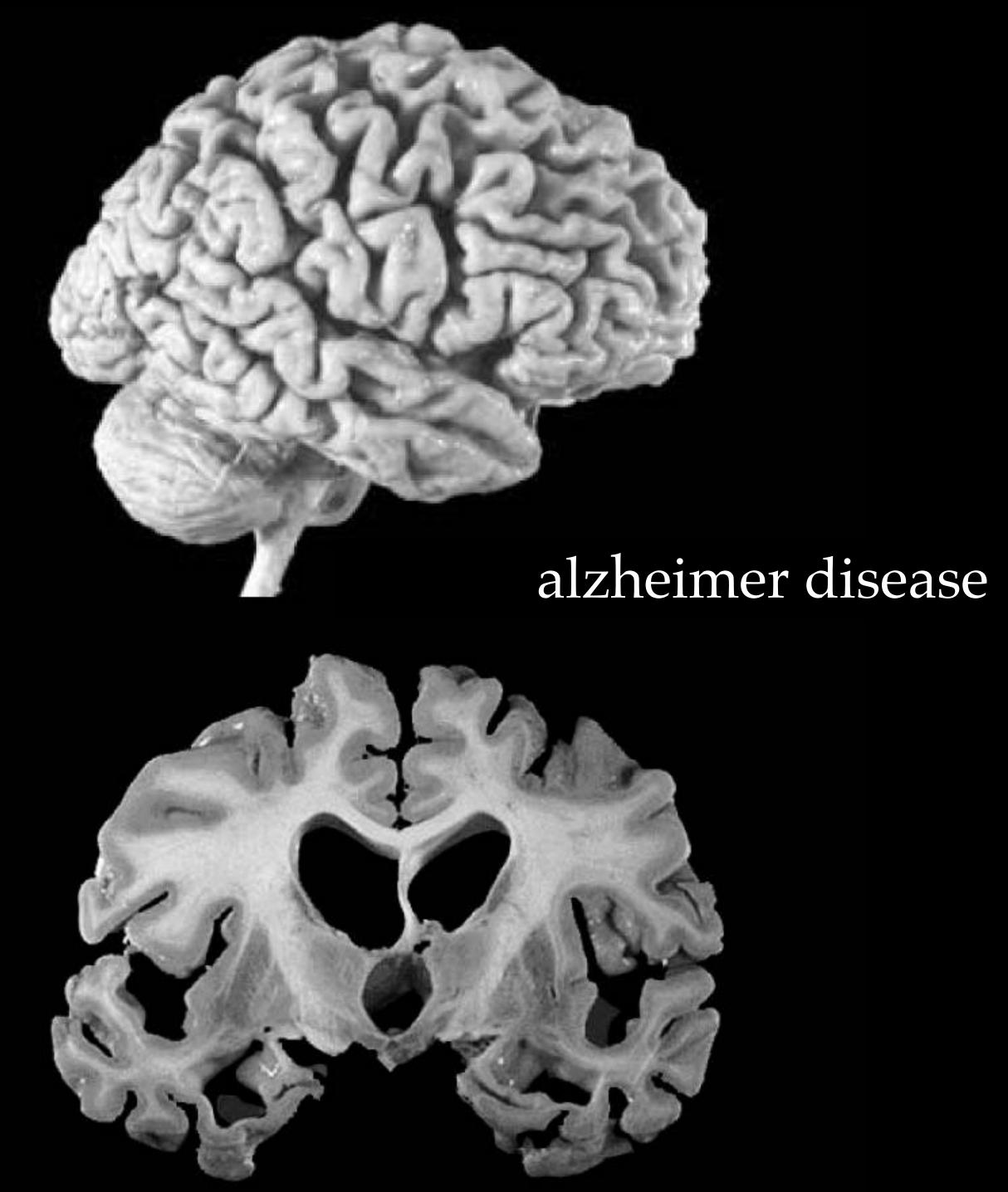
brain atrophy

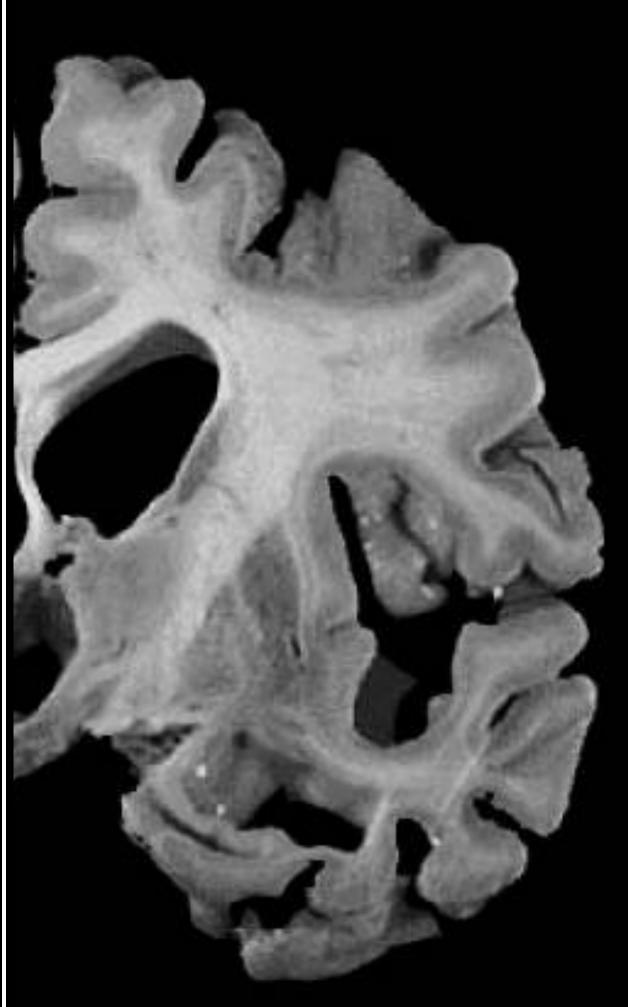


brain atrophy

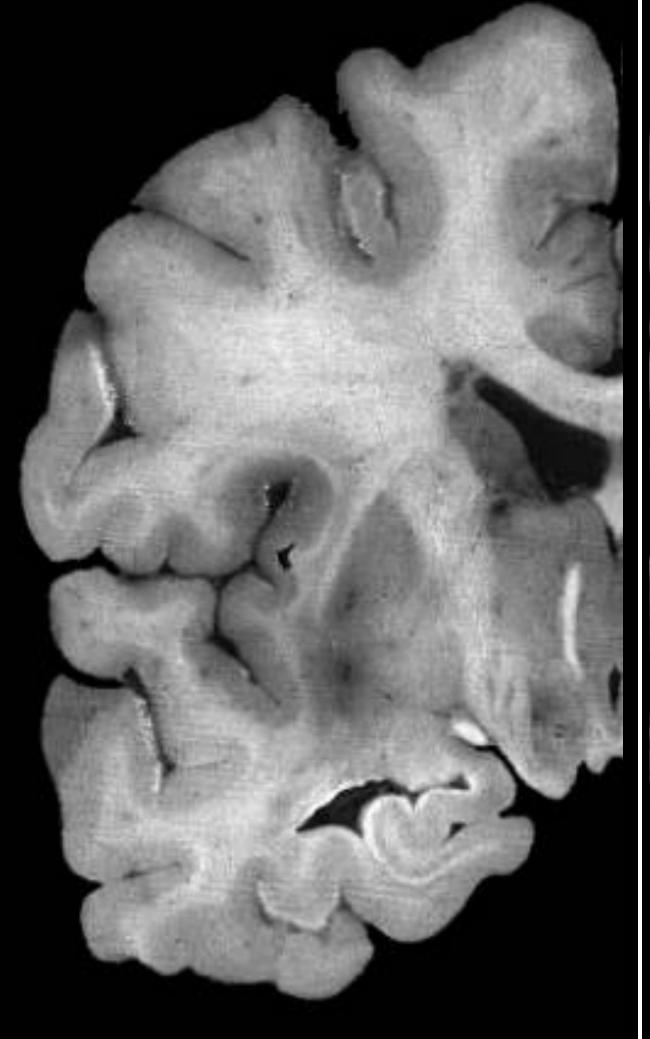




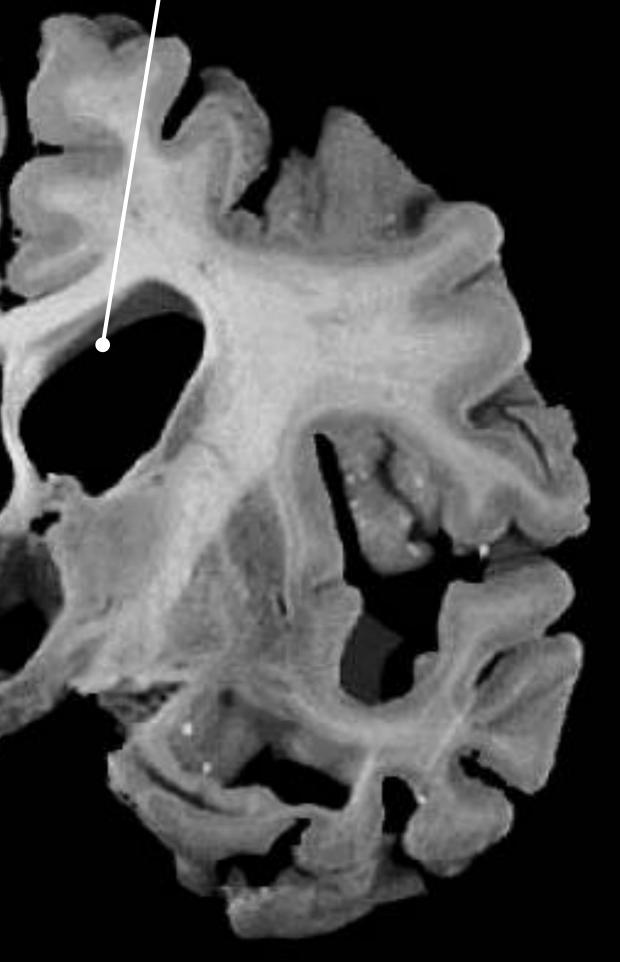




06.123A



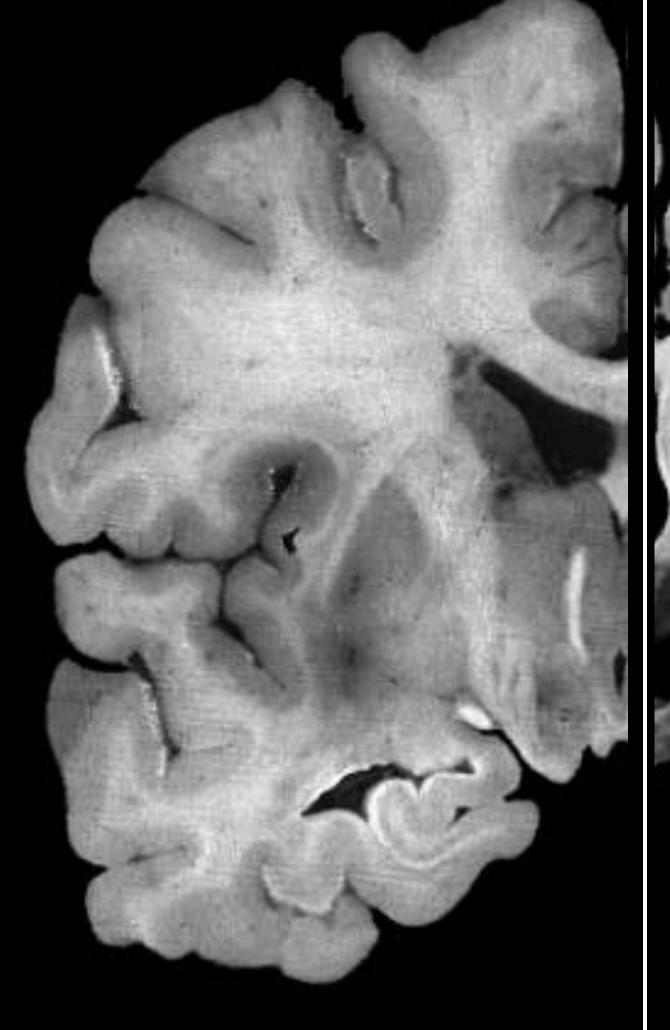
larger ventricules



06.123A

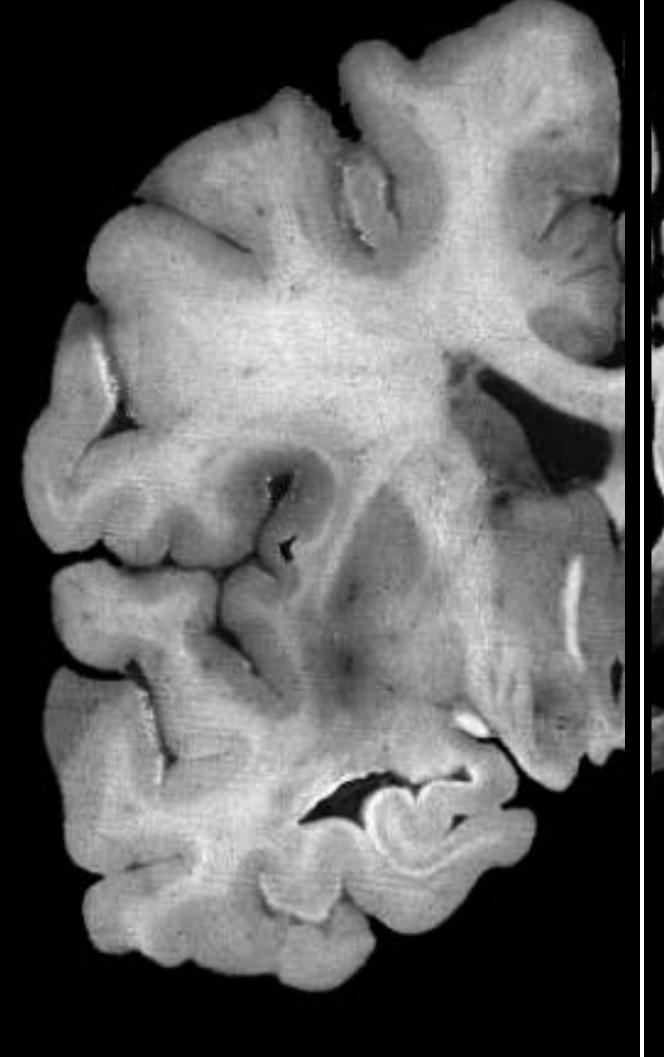
larger ventricules
opening of sulci

06.123A



larger ventricules opening of sulci thinning of cortex

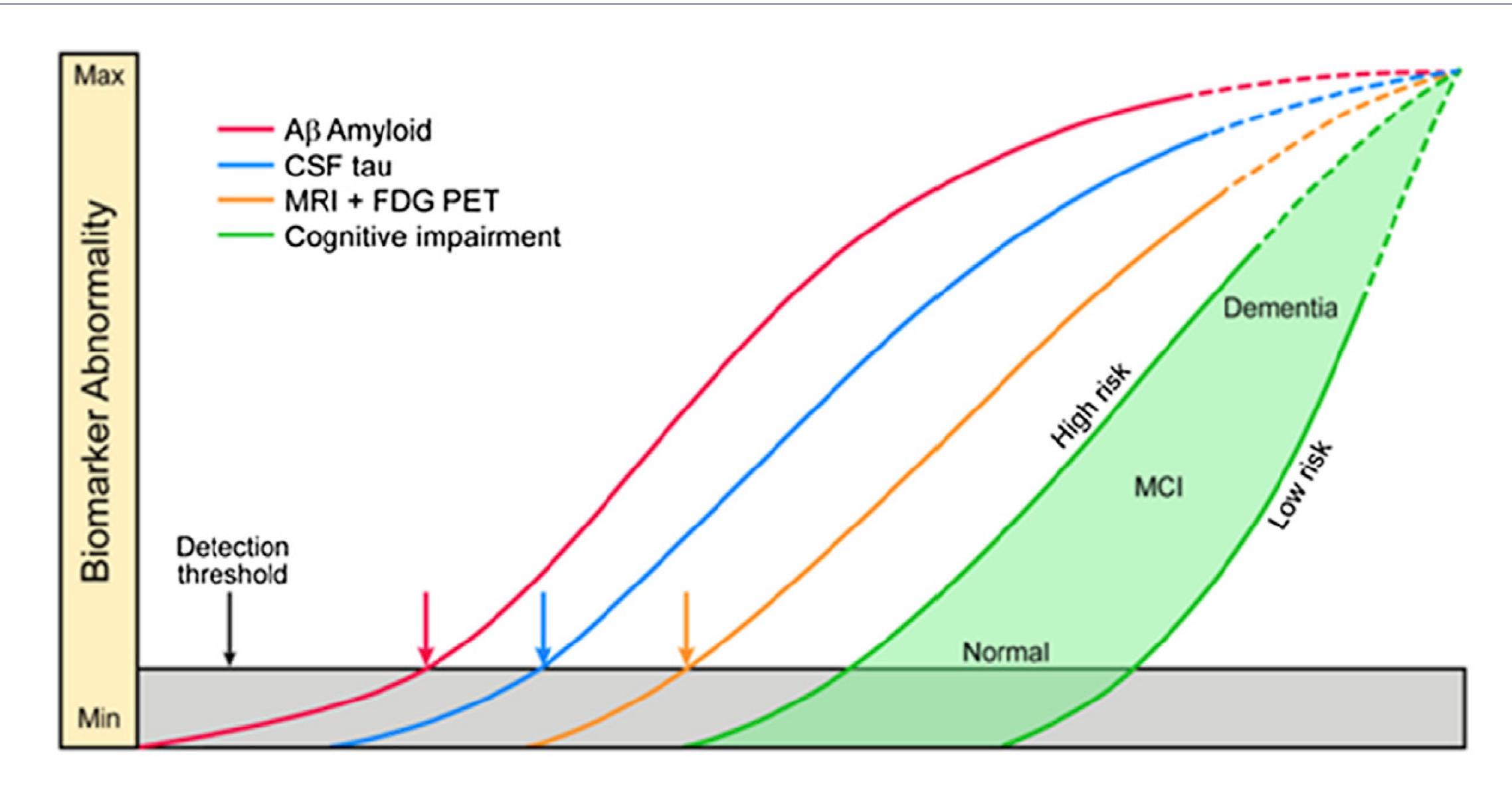
06.123A

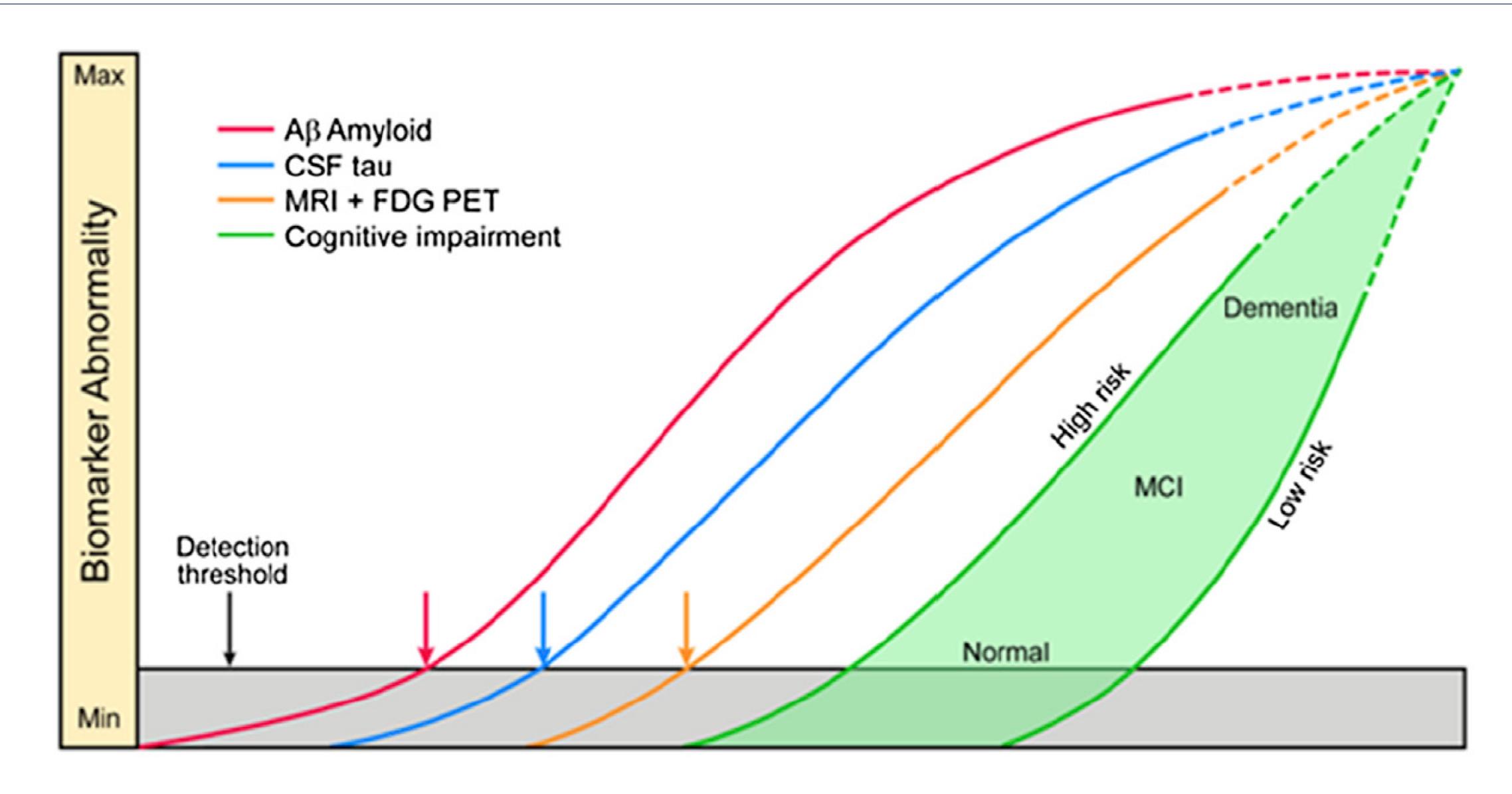


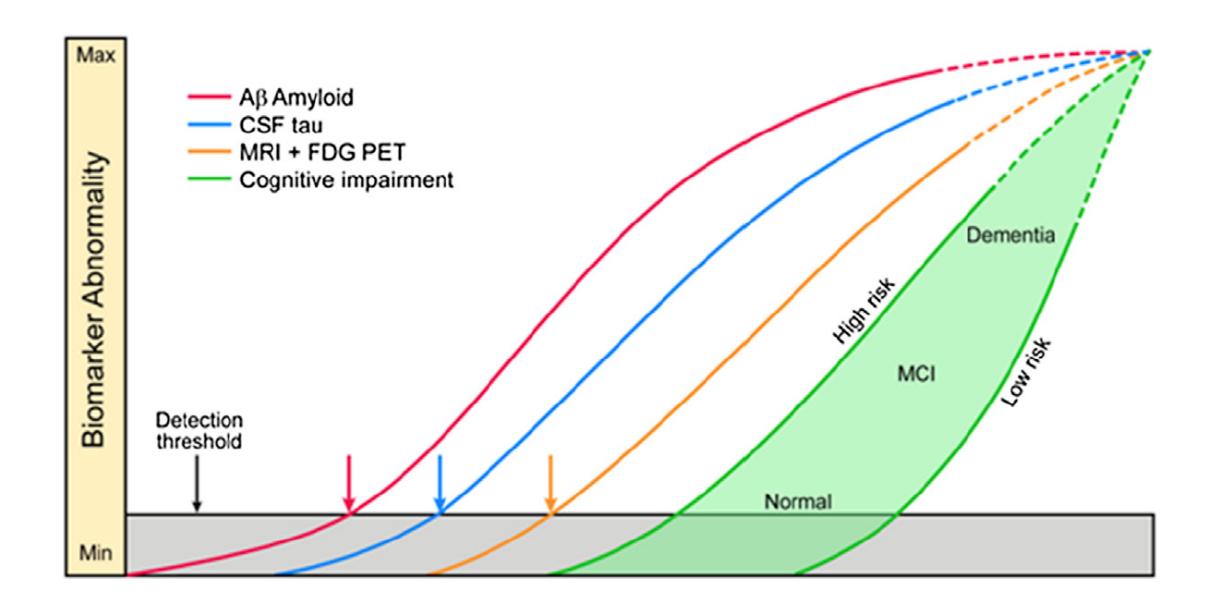
larger ventricules opening of sulci thinning of cortex

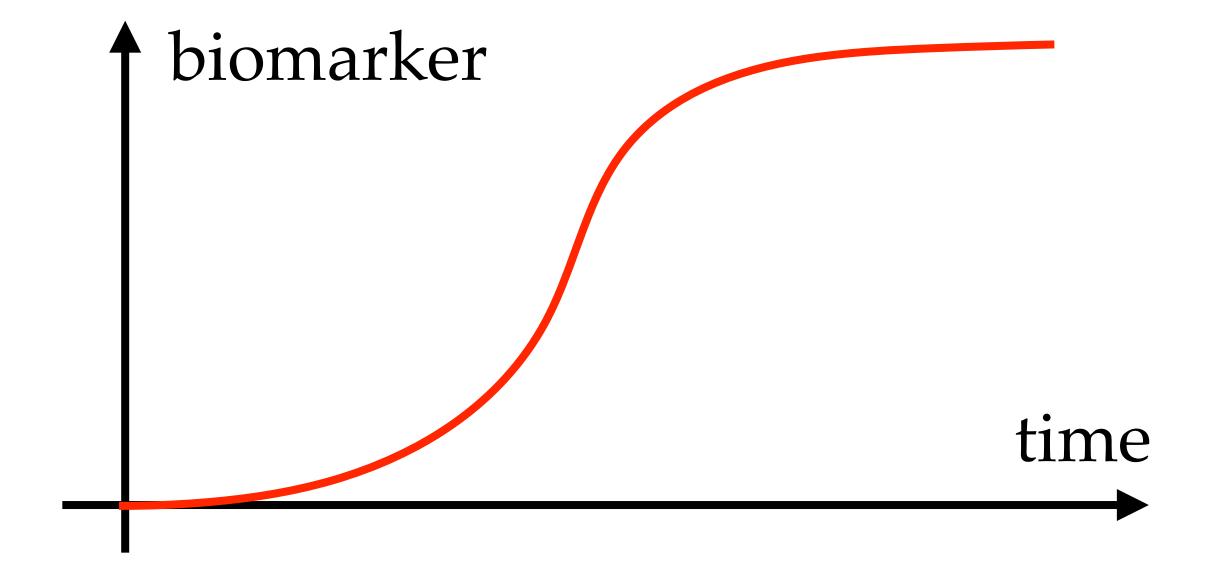
06.123A

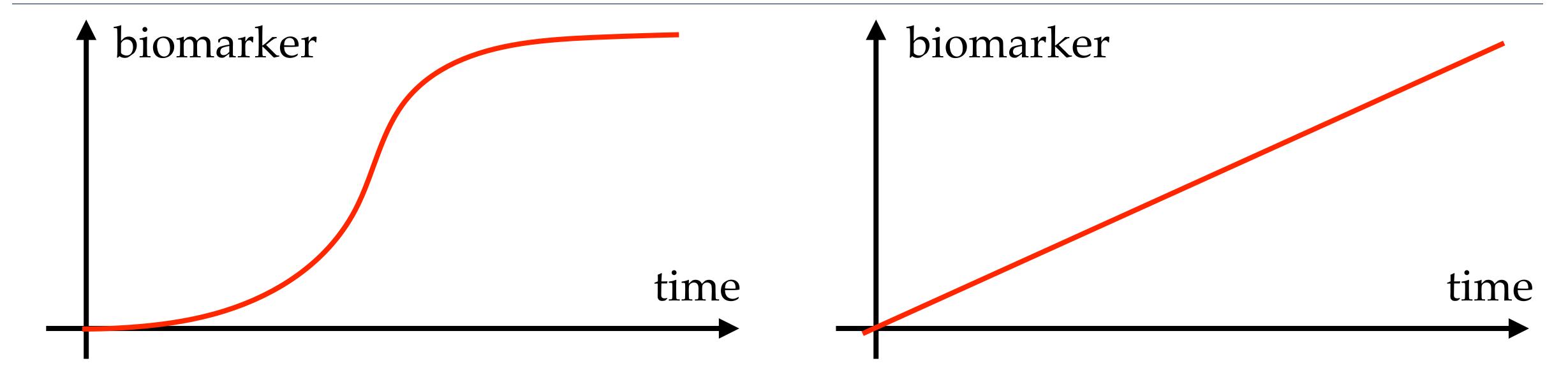
shrinking of hippocampi

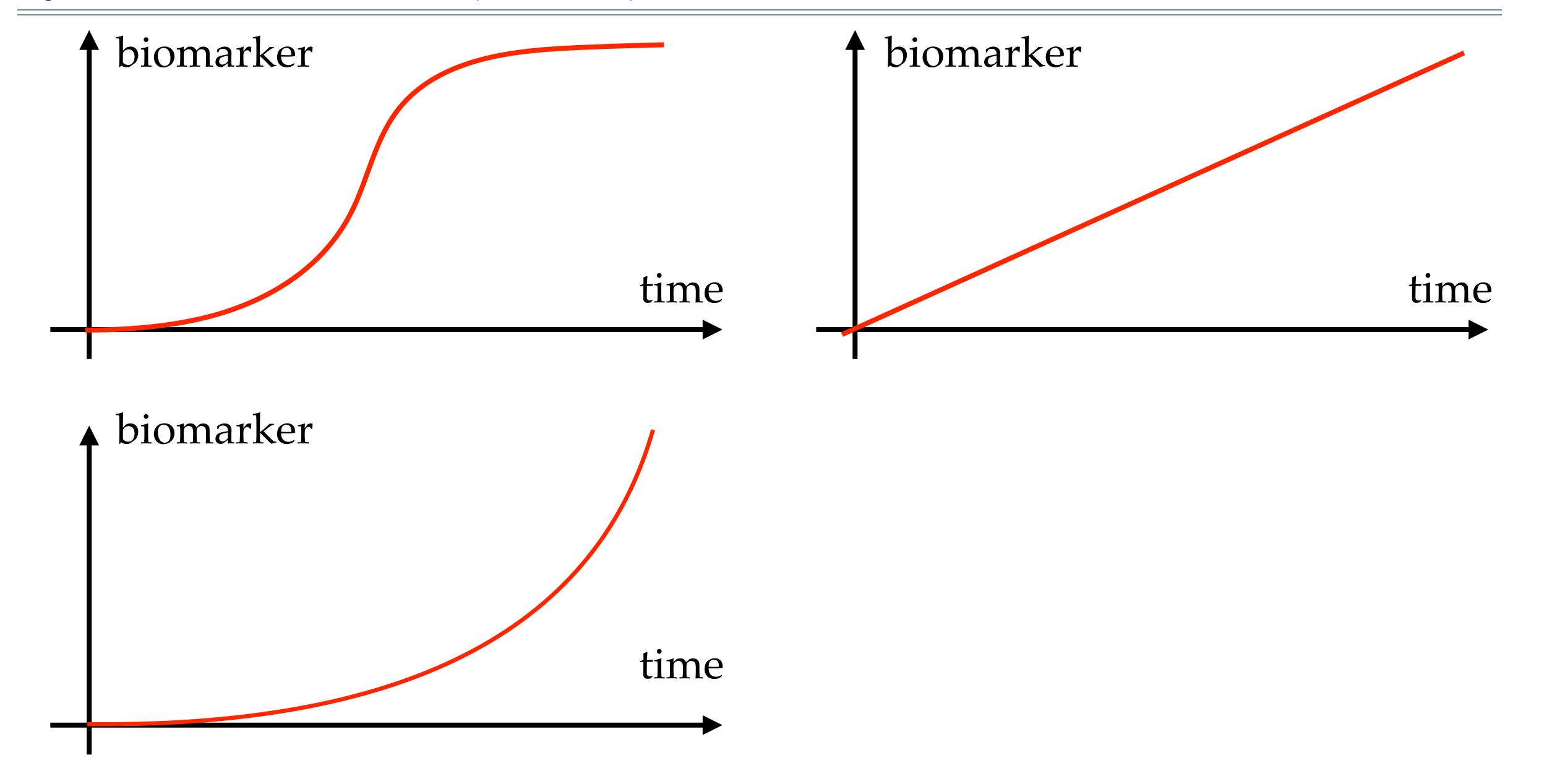


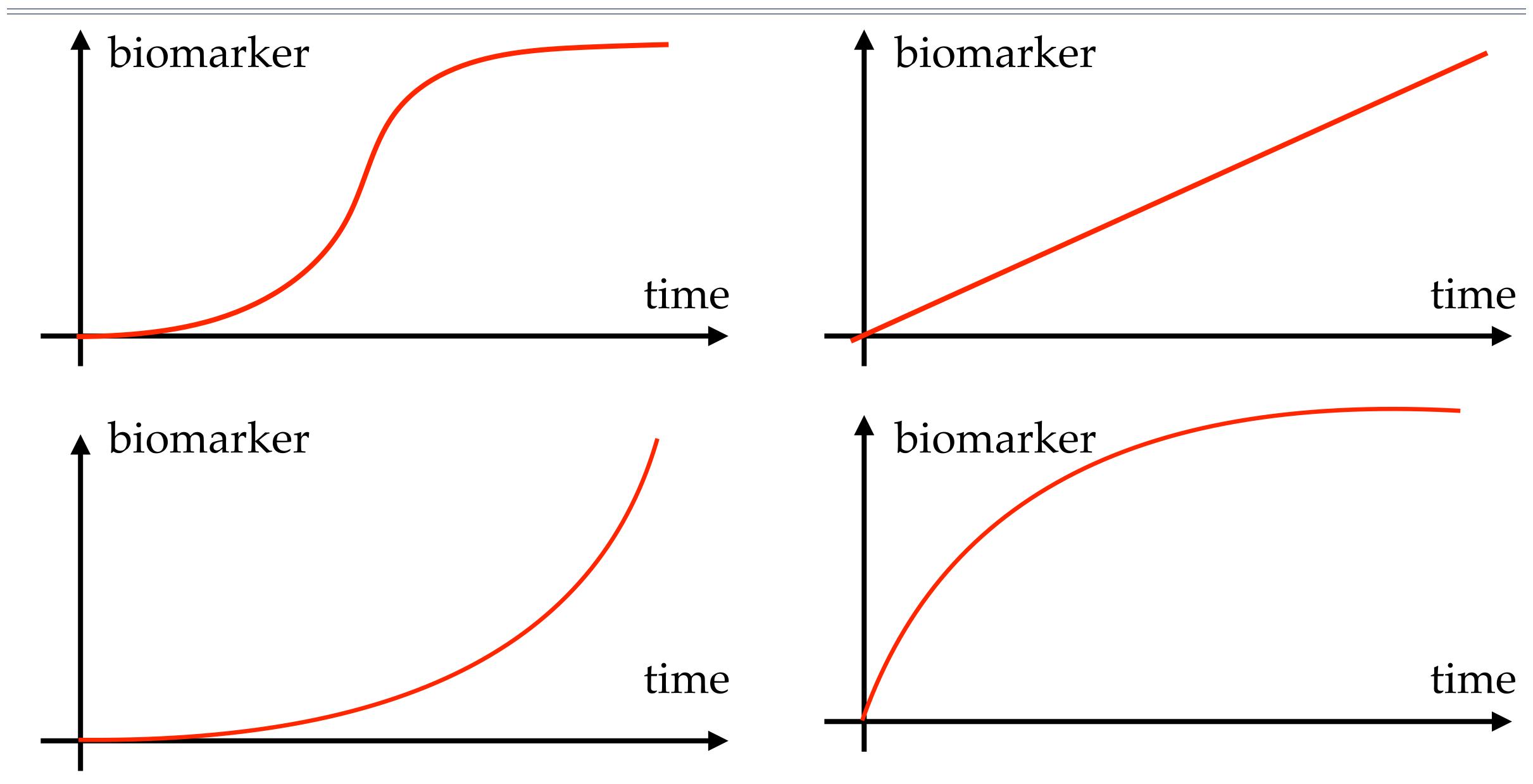


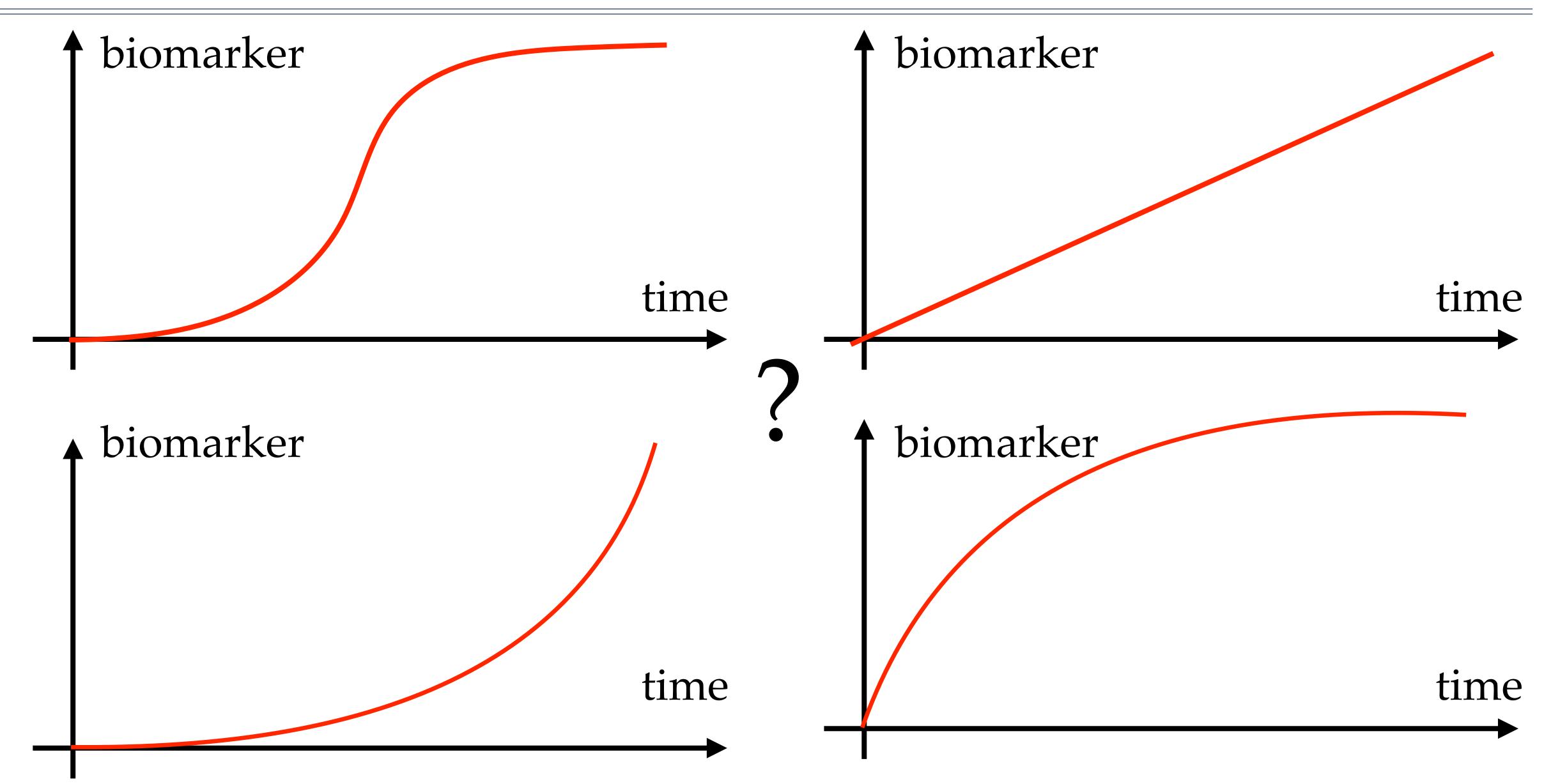






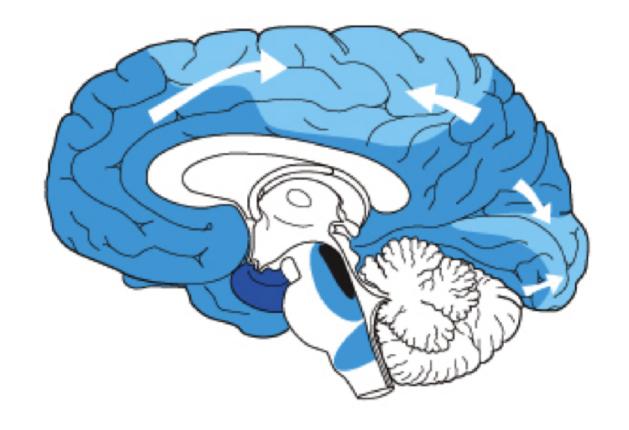


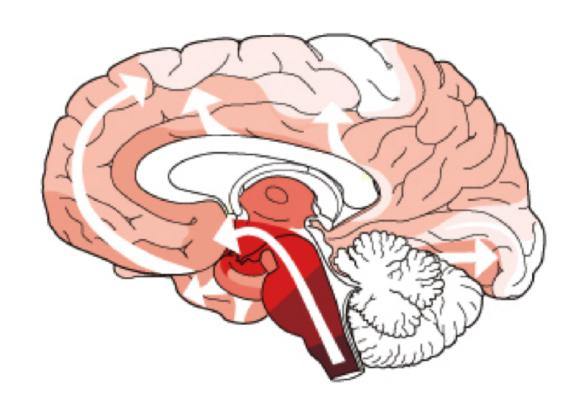




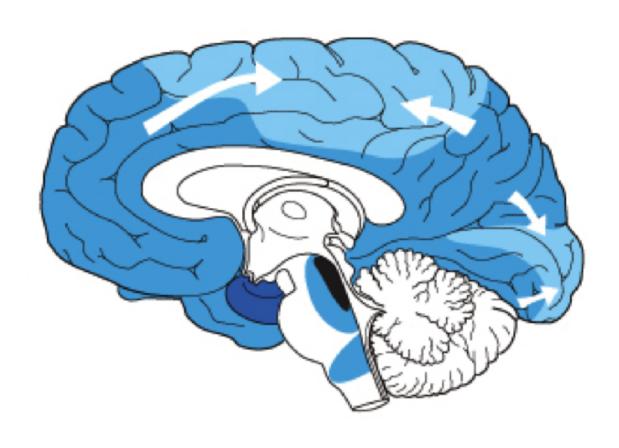
spatial progression

spatial progression

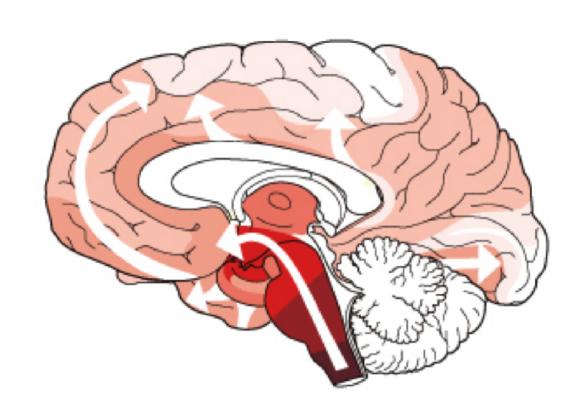




spatial progression

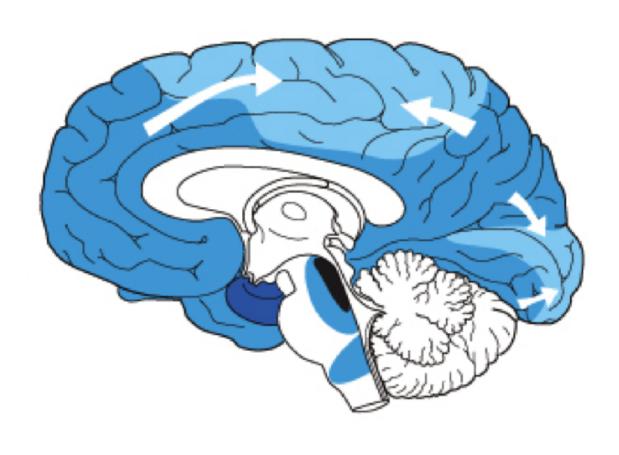




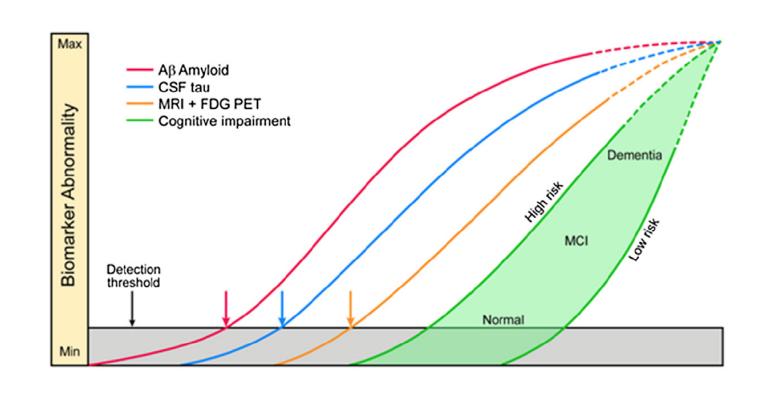


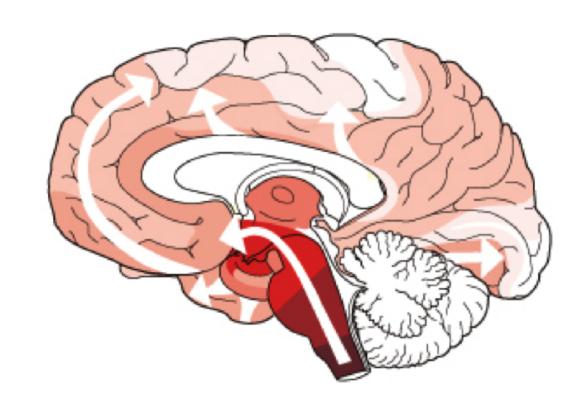
spatial progression

atrophy pattern



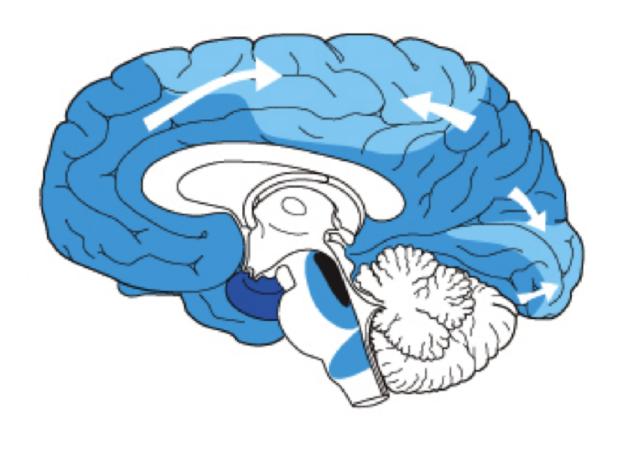


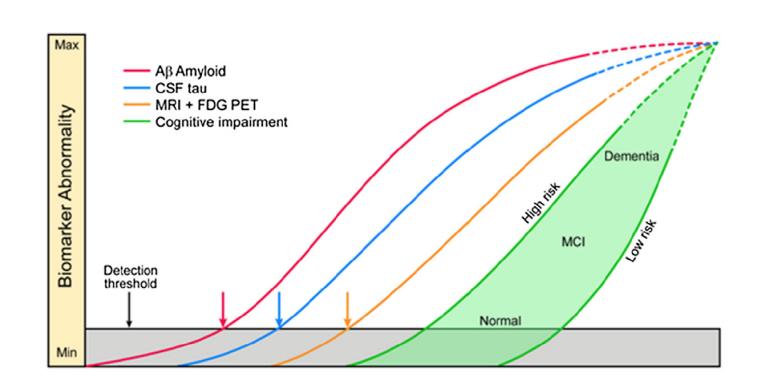


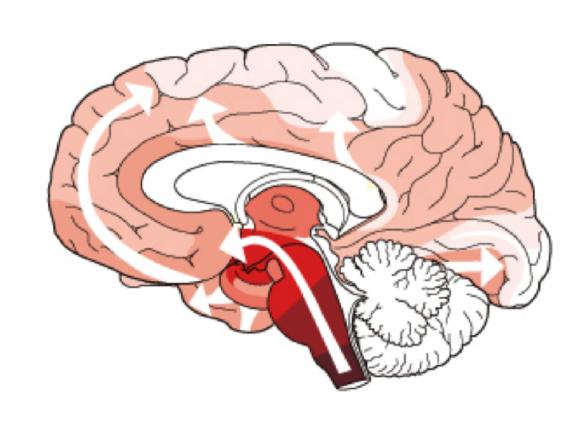


spatial progression

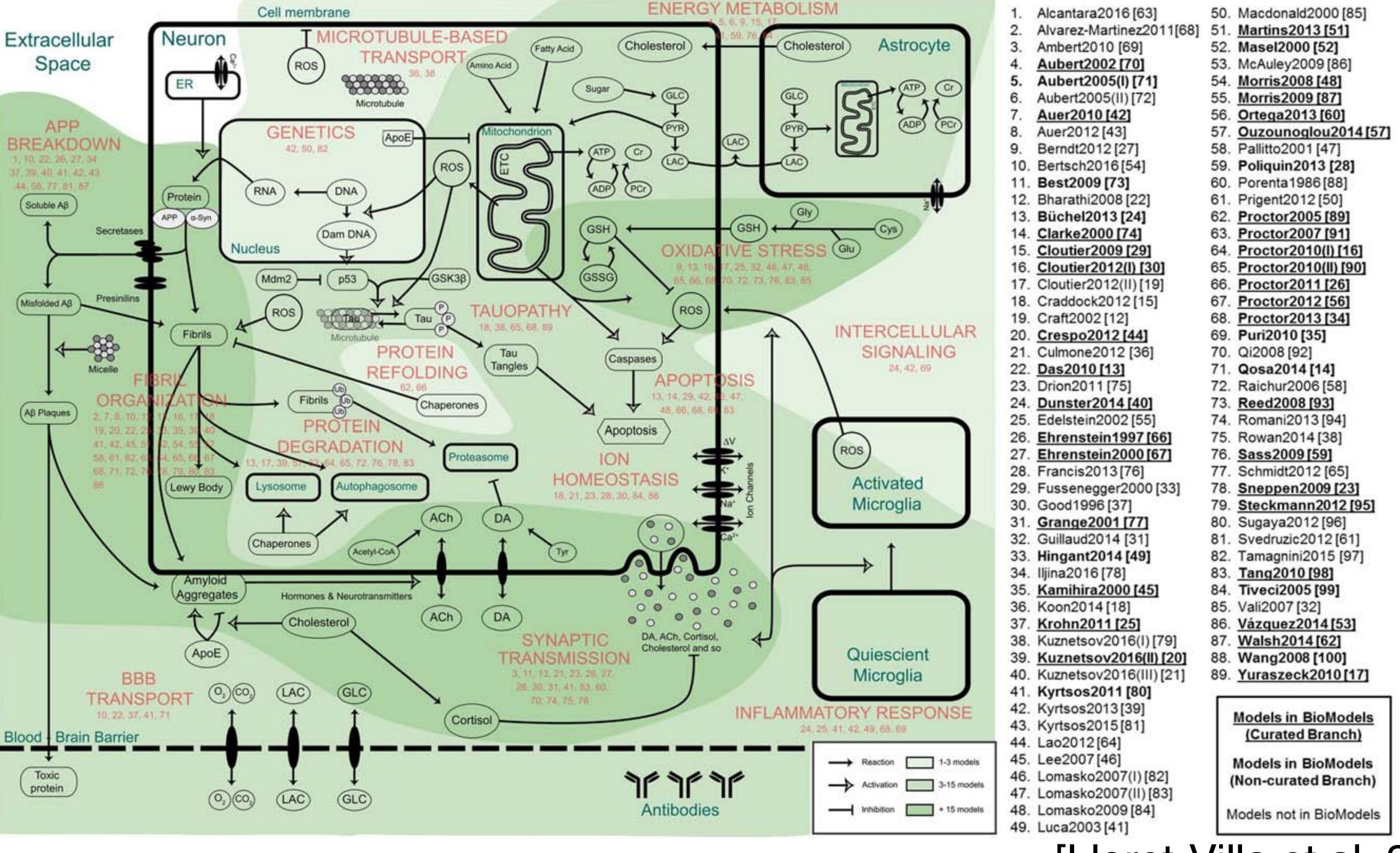
atrophy pattern







?



[Lloret-Villa et al. 2017]

2. "un peu d'analyse et de calcul" daniel bernoulli

why math?

why math?

daniel bernoulli 1760

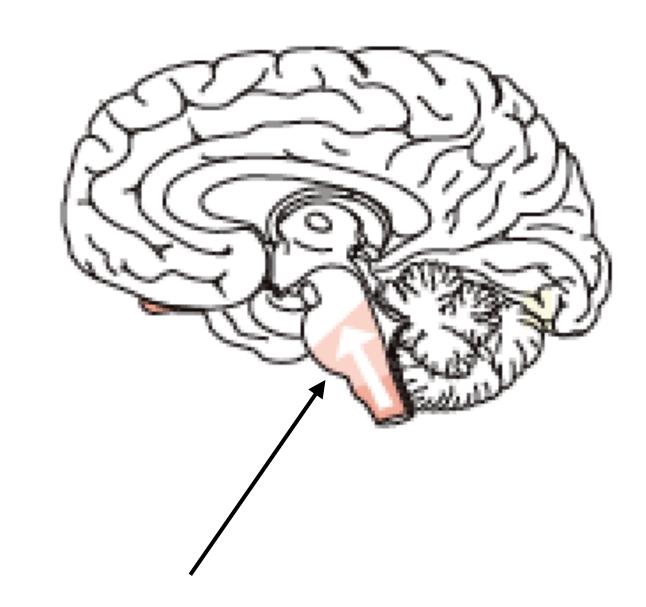
why math?

daniel bernoulli 1760

"i simply wish that, in a matter which so closely concerns the wellbeing of the human race, no decision shall be made without all the knowledge which a little analysis and calculation can provide."

a first model: network diffusion

transport of toxic proteins

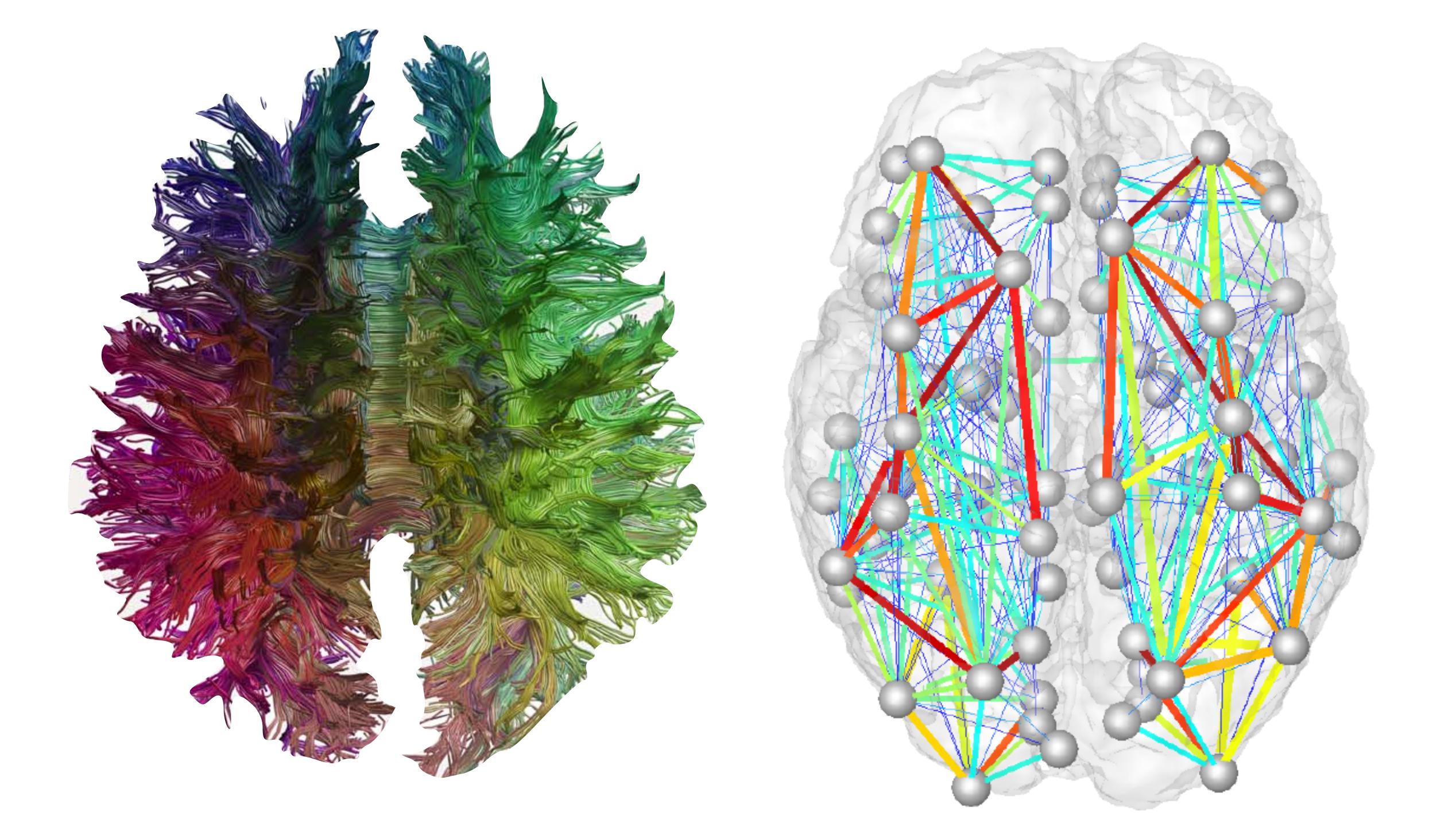


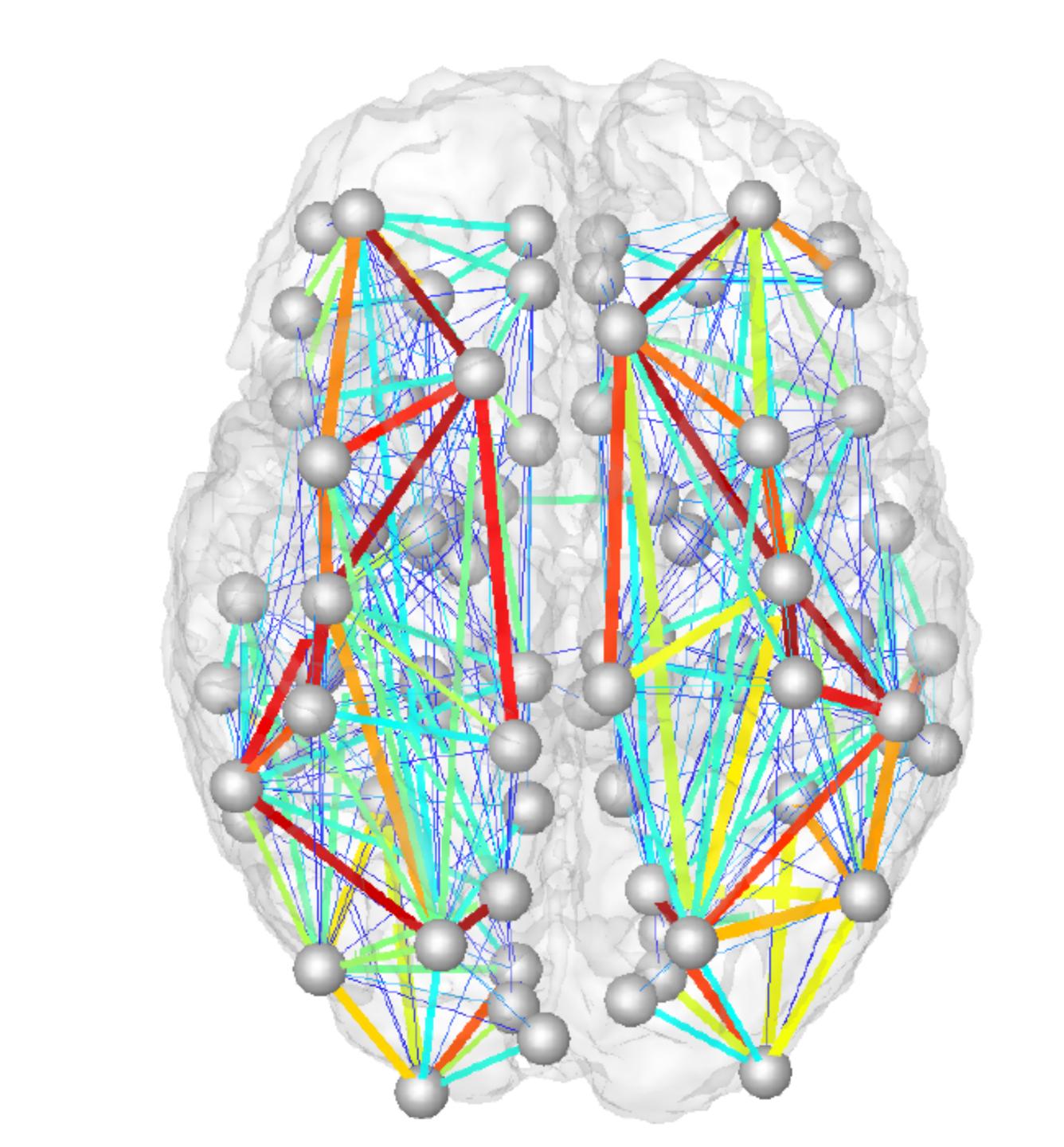
intial seeding

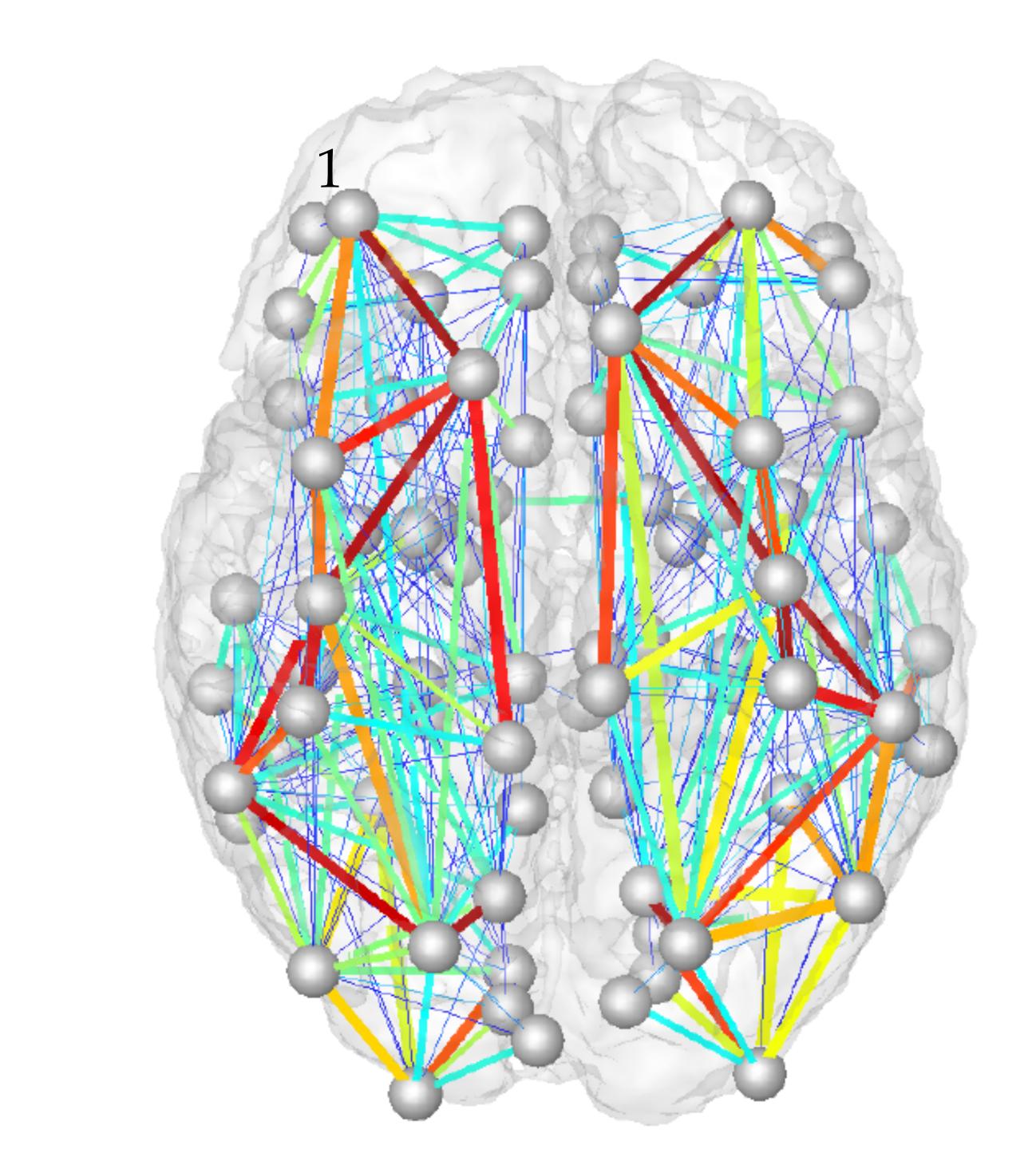
 α —synuclein in parkinson's

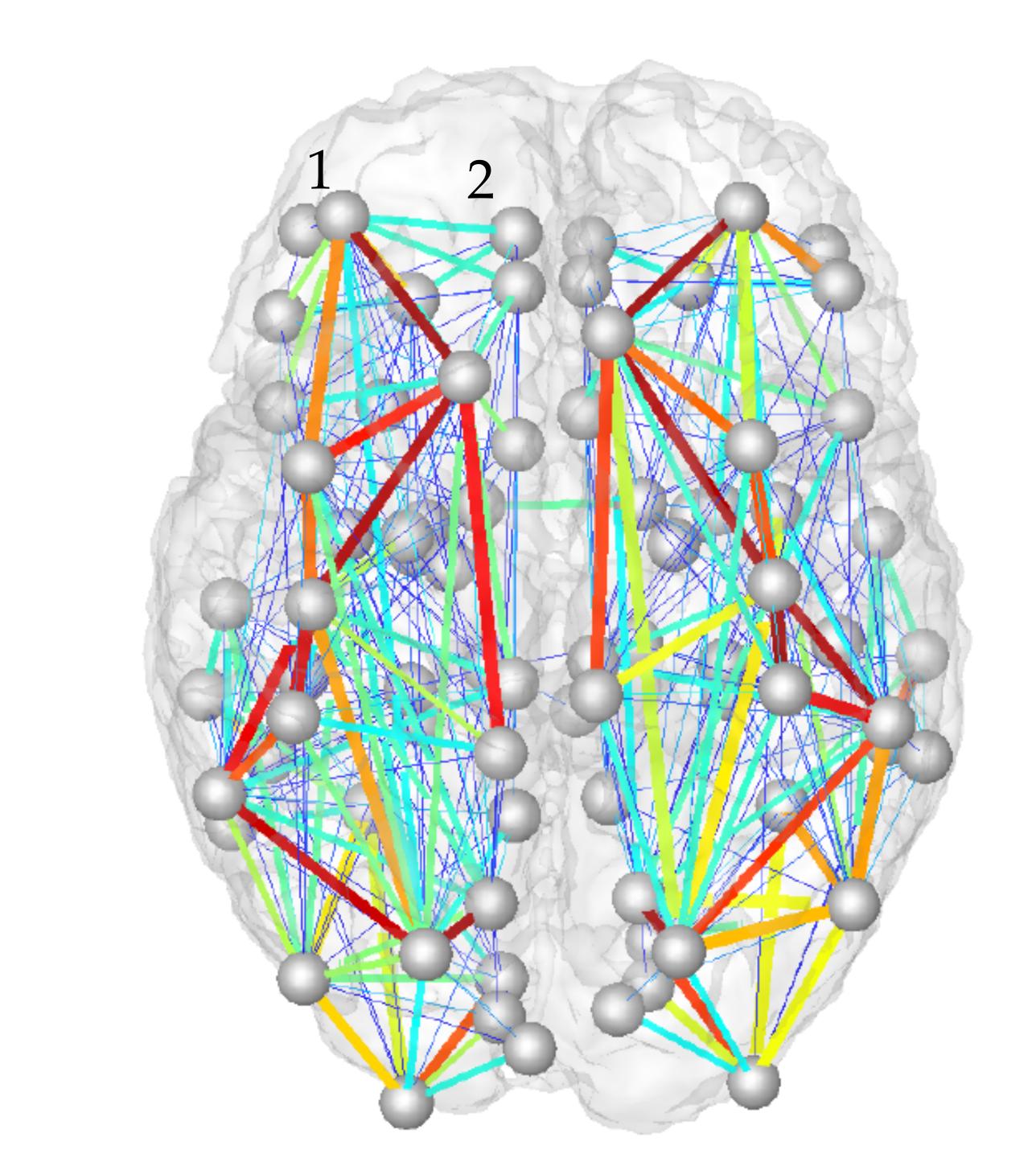
- idea: toxic proteins diffuse along axonal pathways
- model: look at diffusion on the structural network

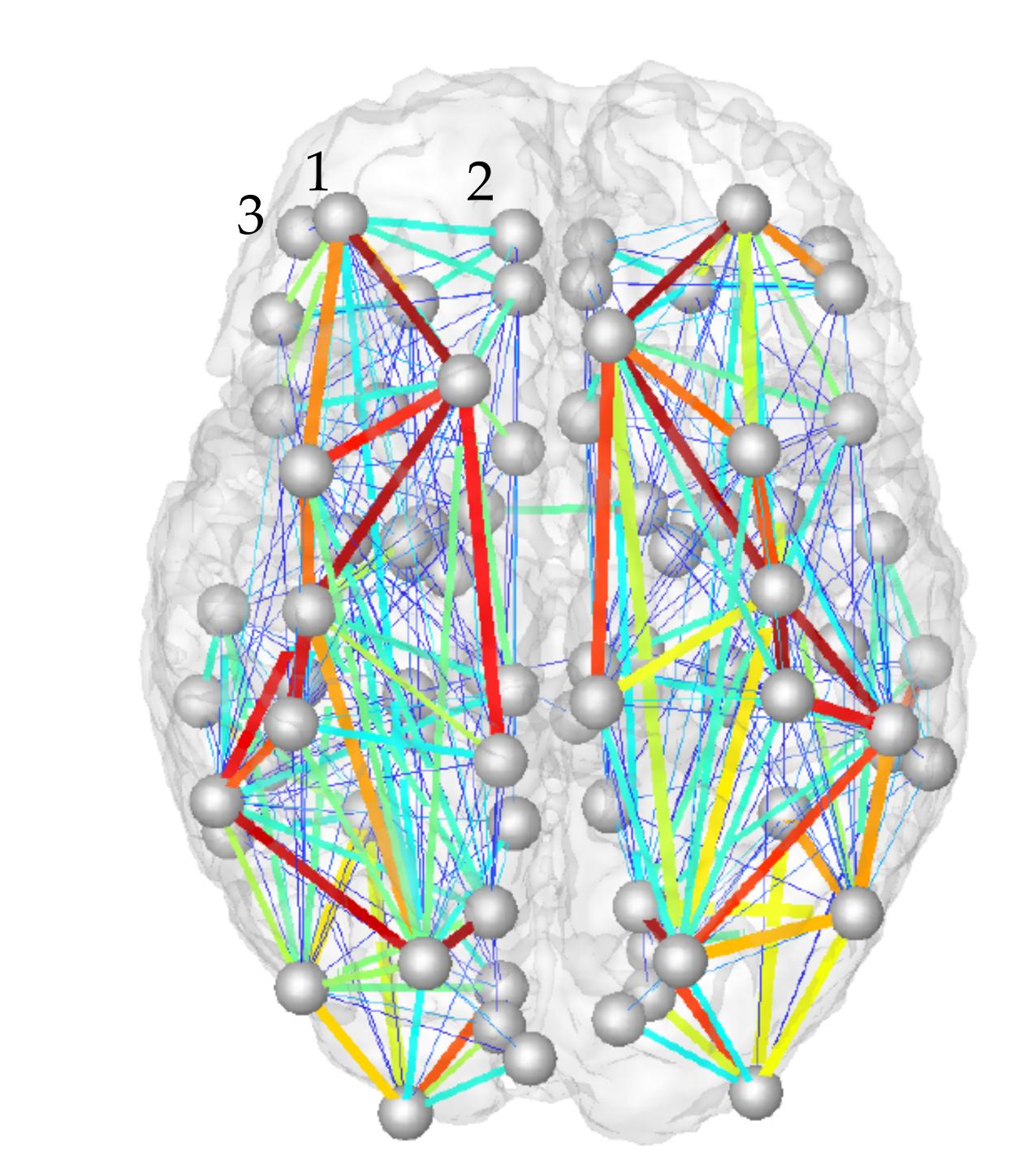


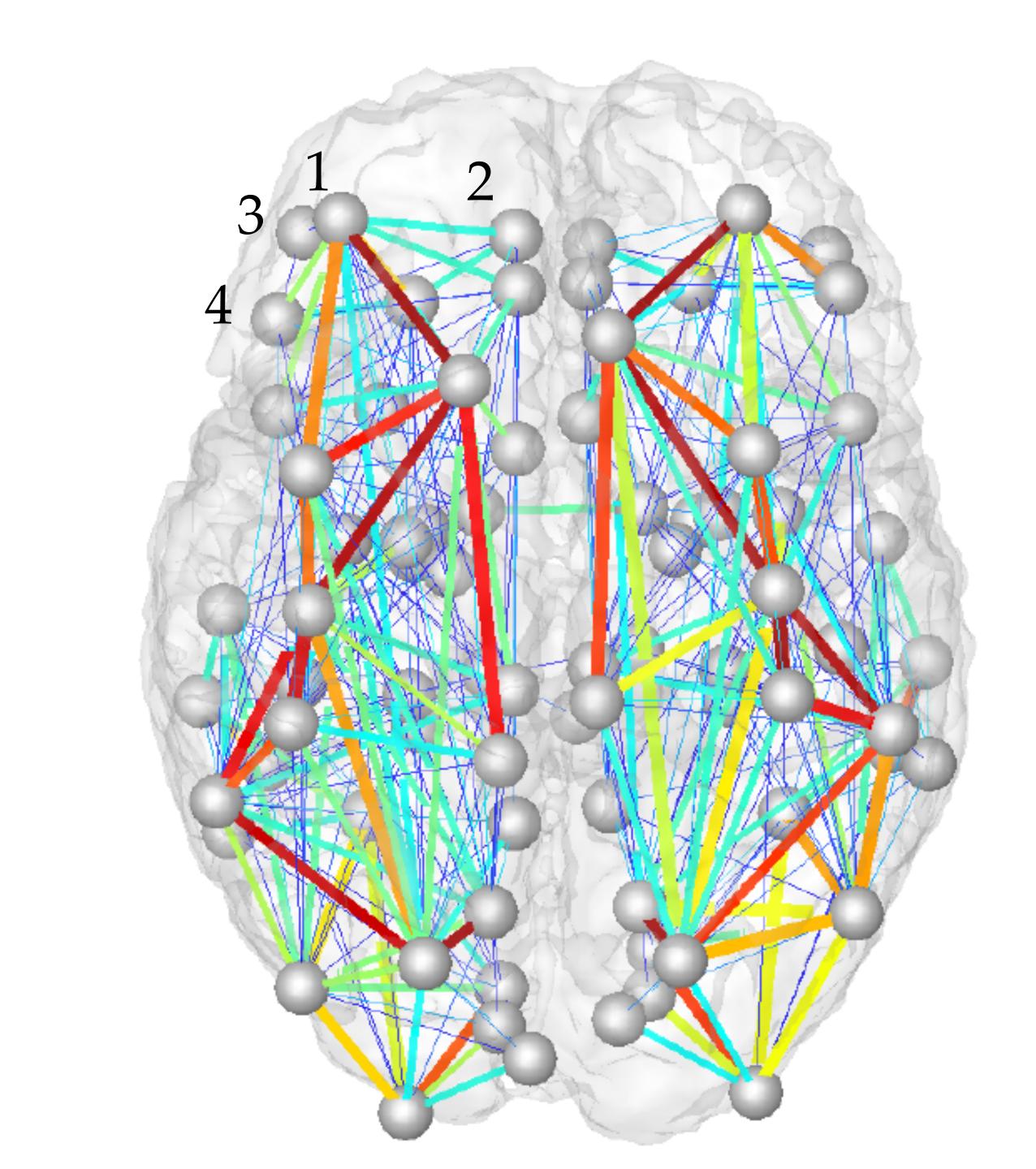


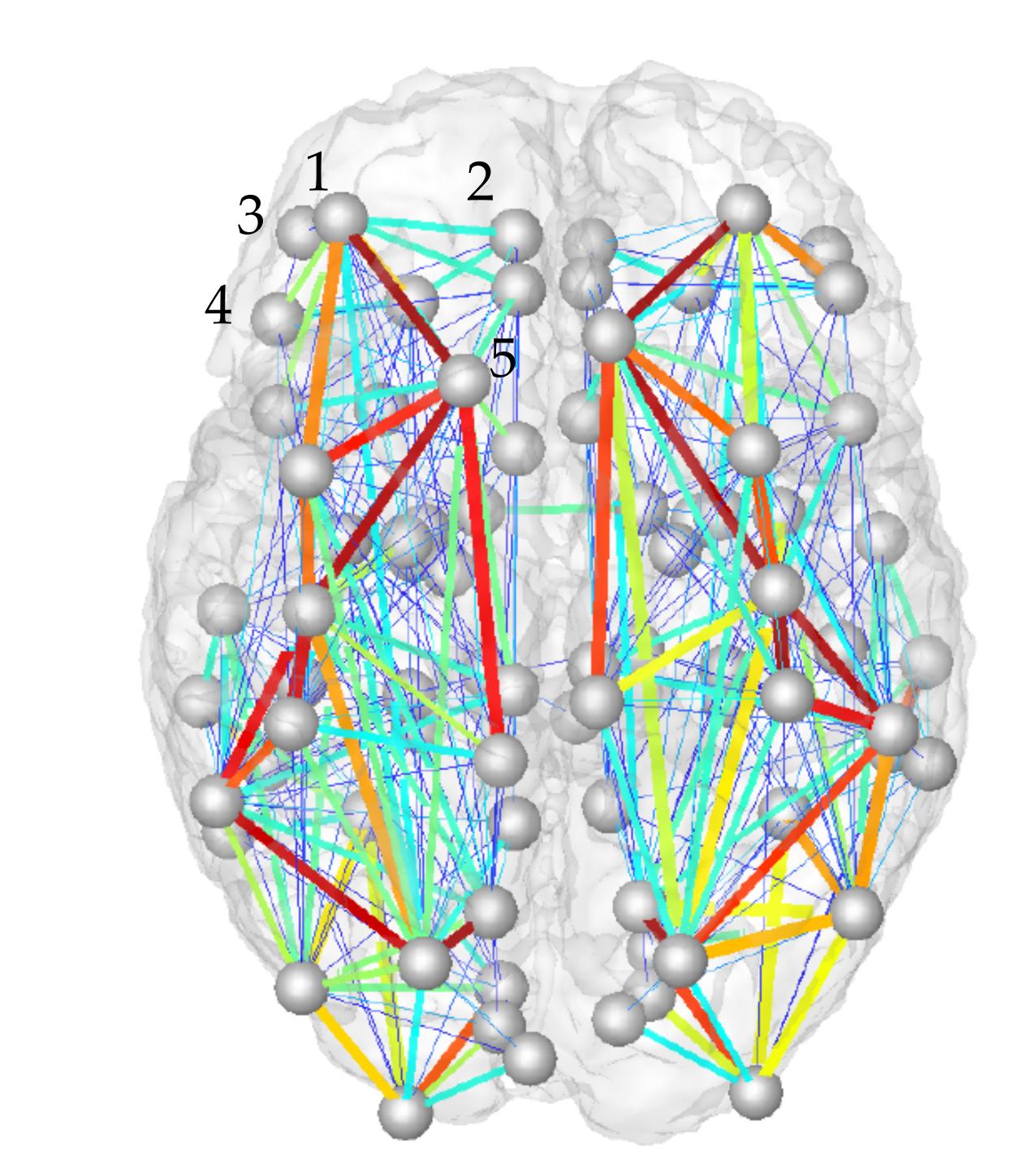


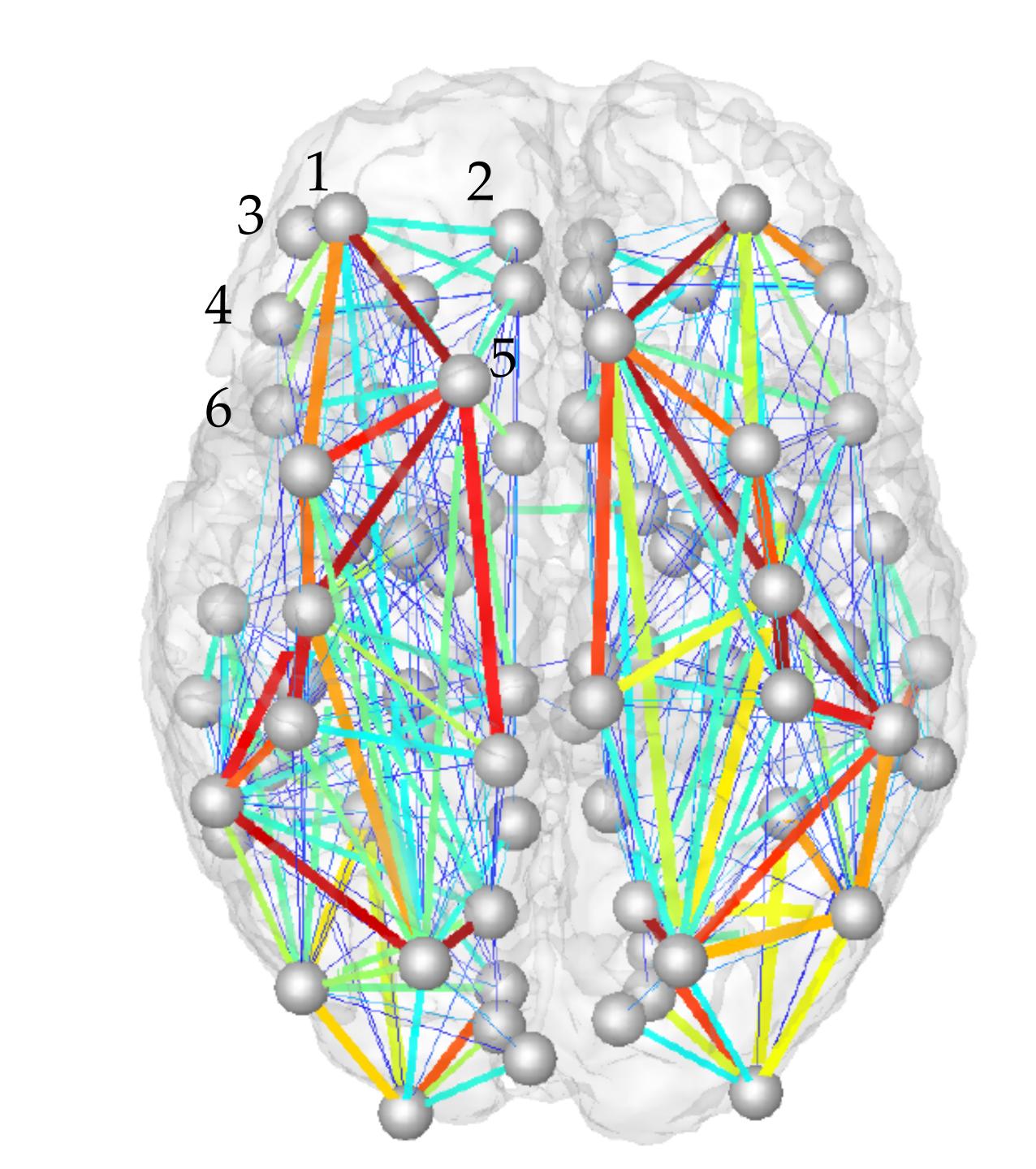


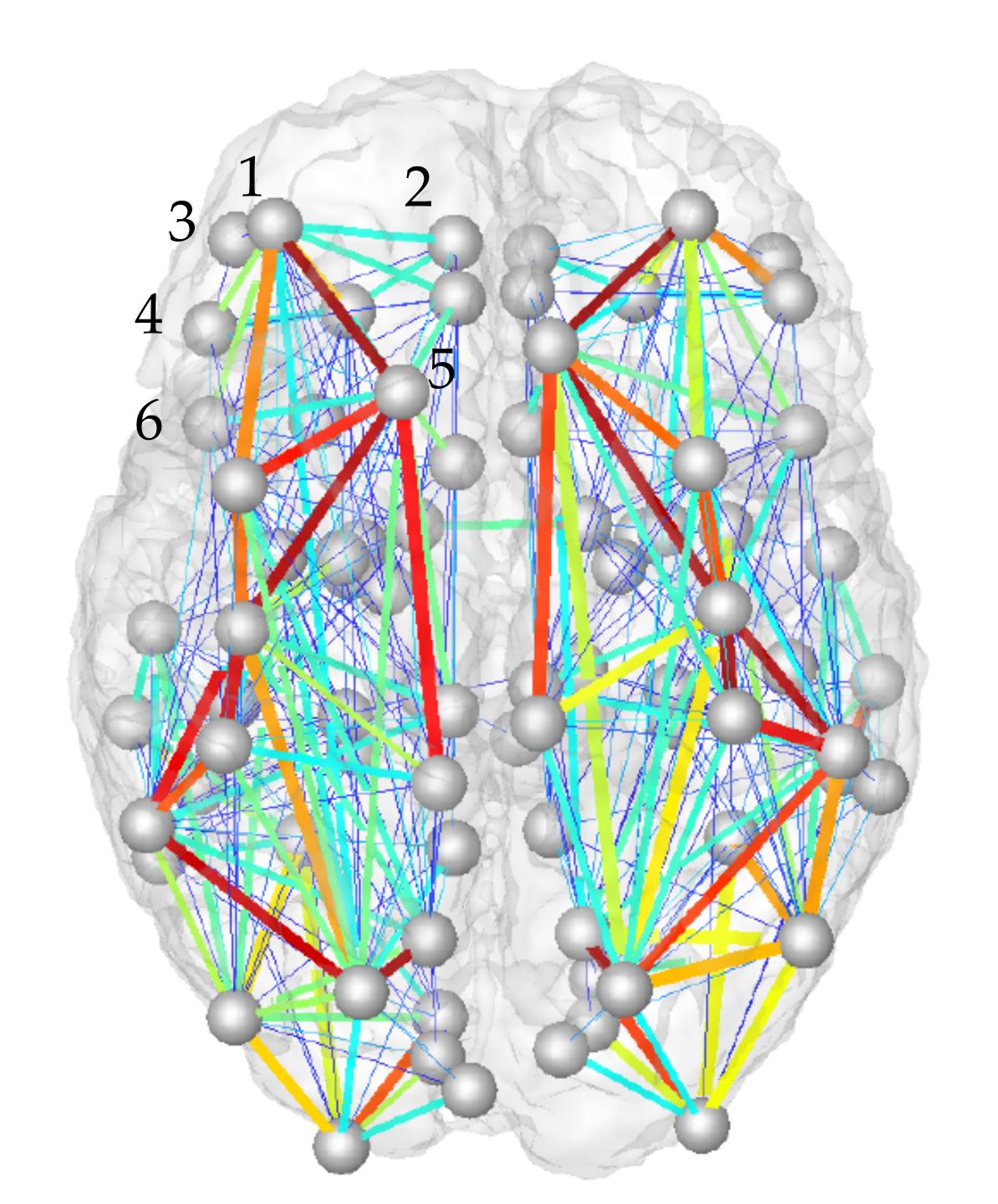




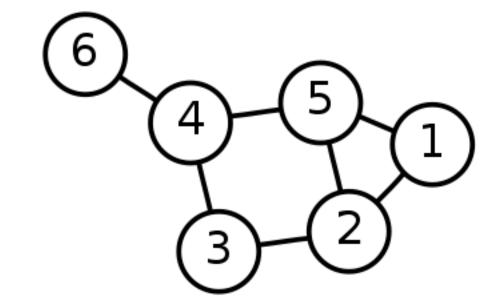


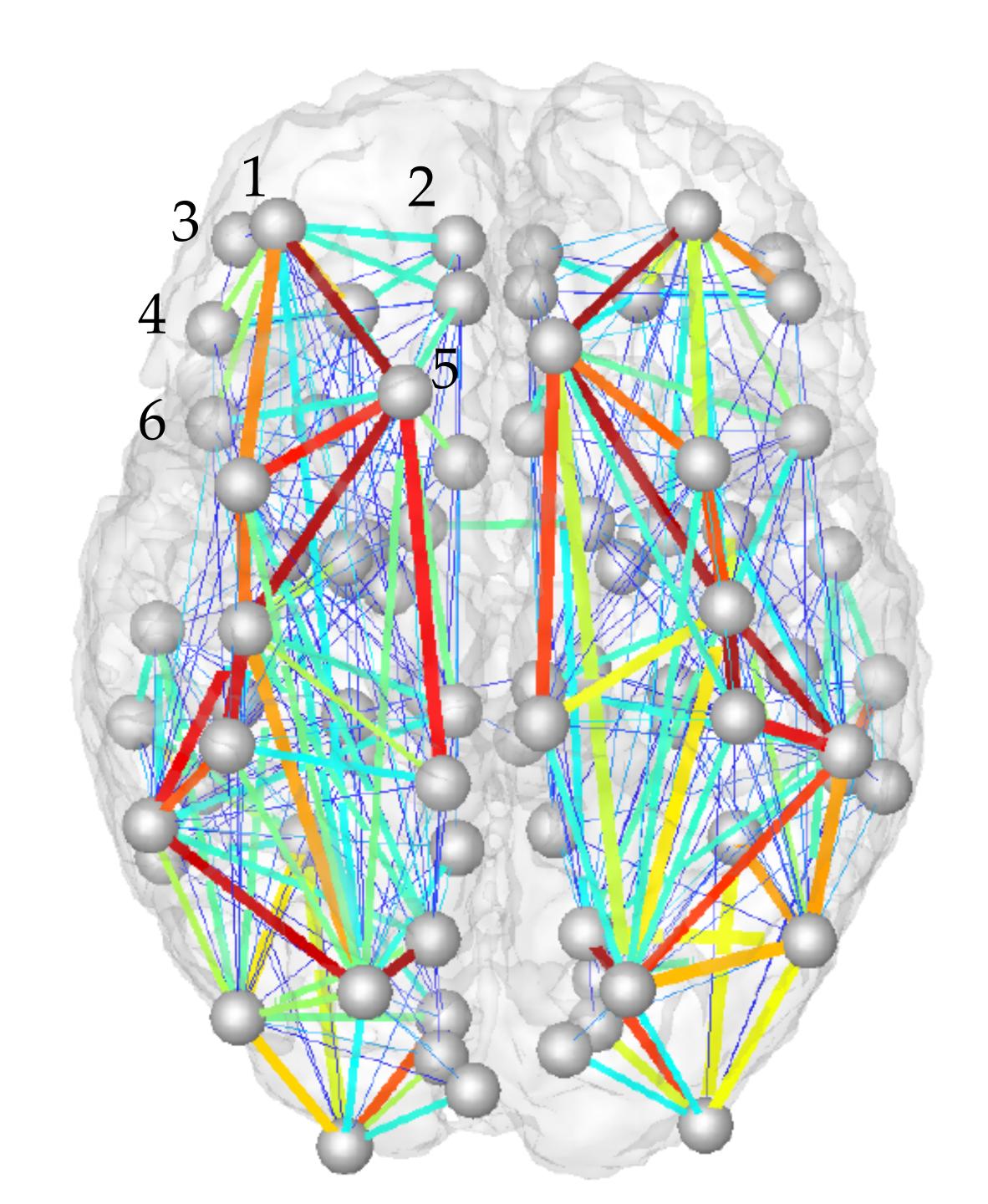






example:





example:

$$6$$
 4
 5
 1
 3
 2

$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

rules: start with node 1

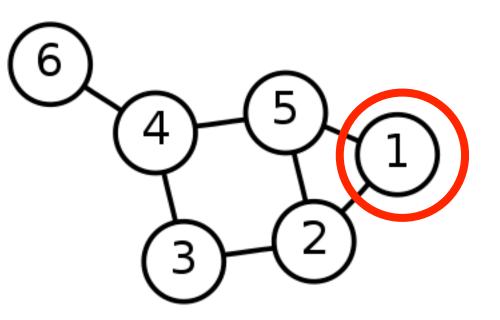
example:

$$6$$
 4
 5
 1
 3
 2

$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

rules: start with node 1

example:

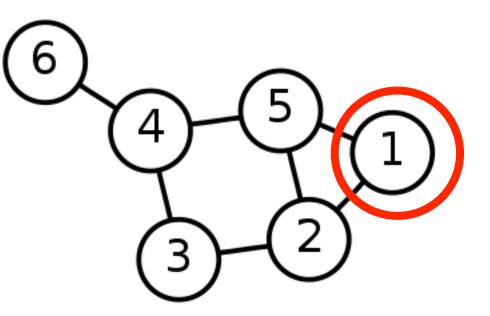


$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

rules: start with node 1

-node 1 connected to 2 nodes. place a 2 in line 1 column 1

example:

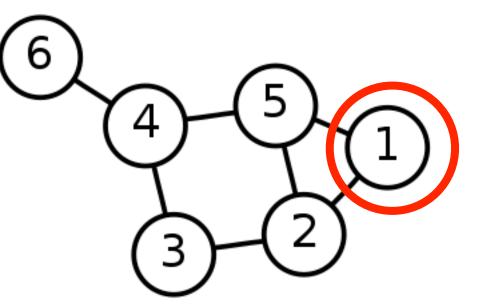


$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

rules: start with node 1

-node 1 connected to 2 nodes. place a 2 in line 1 column 1

example:



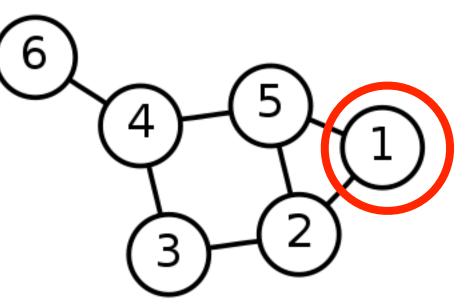
$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

rules: start with node 1

-node 1 connected to 2 nodes. place a 2 in line 1 column 1

-place a -1 in line 1 column 2 and 5

example:



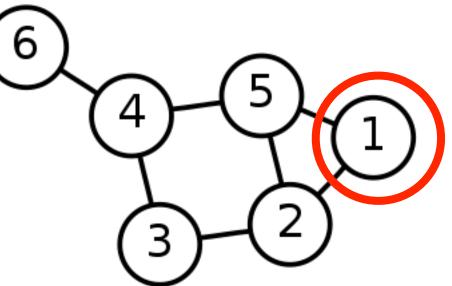
$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

rules: start with node 1

-node 1 connected to 2 nodes. place a 2 in line 1 column 1

-place a -1 in line 1 column 2 and 5

example:



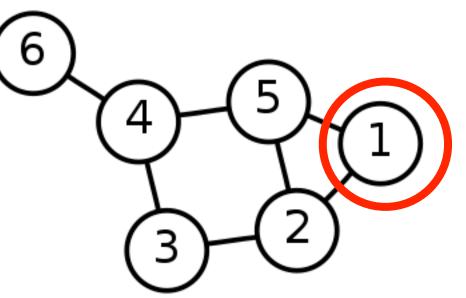
$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

rules: start with node 1

-node 1 connected to 2 nodes. place a 2 in line 1 column 1

-place a -1 in line 1 column 2 and 5

example:



$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

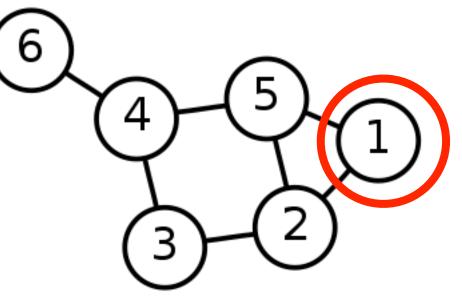
rules: start with node 1

-node 1 connected to 2 nodes. place a 2 in line 1 column 1

-place a -1 in line 1 column 2 and 5

-place a -1 in column 1 line 2 and 5

example:



$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

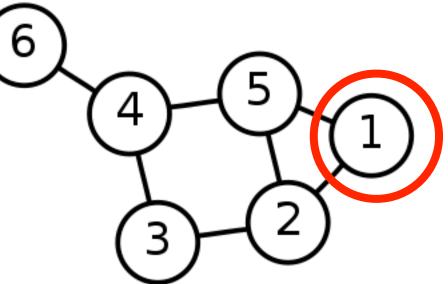
rules: start with node 1

-node 1 connected to 2 nodes. place a 2 in line 1 column 1

-place a -1 in line 1 column 2 and 5

-place a -1 in column 1 line 2 and 5

example:



$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

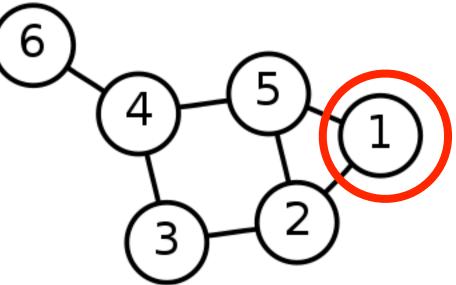
rules: start with node 1

-node 1 connected to 2 nodes. place a 2 in line 1 column 1

-place a -1 in line 1 column 2 and 5

-place a -1 in column 1 line 2 and 5

example:



$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

rules: start with node 1

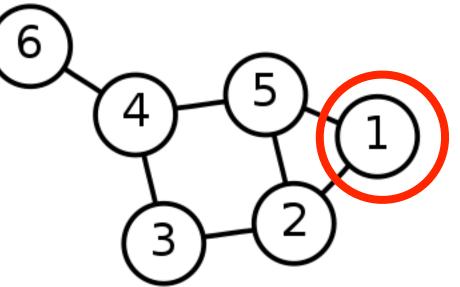
-node 1 connected to 2 nodes. place a 2 in line 1 column 1

-place a -1 in line 1 column 2 and 5

-place a -1 in column 1 line 2 and 5

-repeat with nodes 2,...,6

example:



$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

rules: start with node 1

-node 1 connected to 2 nodes. place a 2 in line 1 column 1

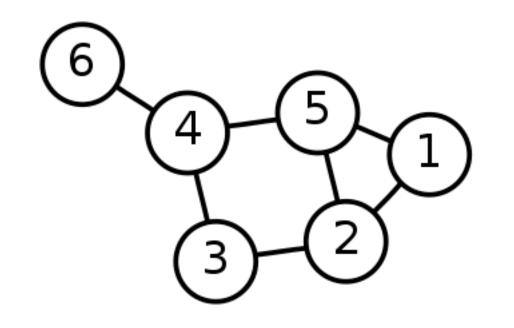
-place a -1 in line 1 column 2 and 5

-place a -1 in column 1 line 2 and 5

-repeat with nodes 2,...,6

graph laplacian

example

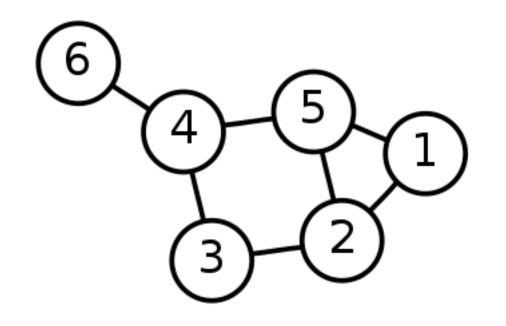


$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

next find the eigenmodes

$$Lv = \lambda v$$

graph laplacian



$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix} \quad \lambda = 0.7 \quad \text{and}$$

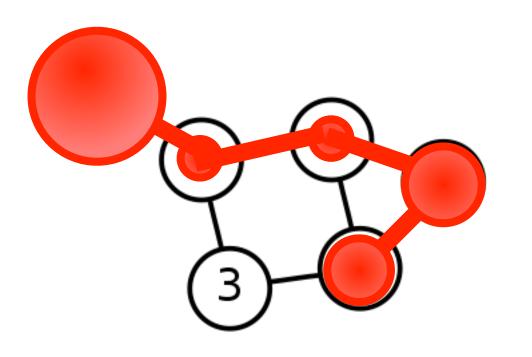
graph laplacian

next find the eigenmodes

$$Lv = \lambda v$$

solution with second smallest λ :

$$\lambda = 0.7$$
 and $\mathbf{v} = \begin{bmatrix} -3.8 \\ 0.9 \\ 2.7 \\ -2.7 \\ 10 \end{bmatrix}$



$$L = \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix} \quad \lambda = 0.7 \quad \text{and}$$

graph laplacian

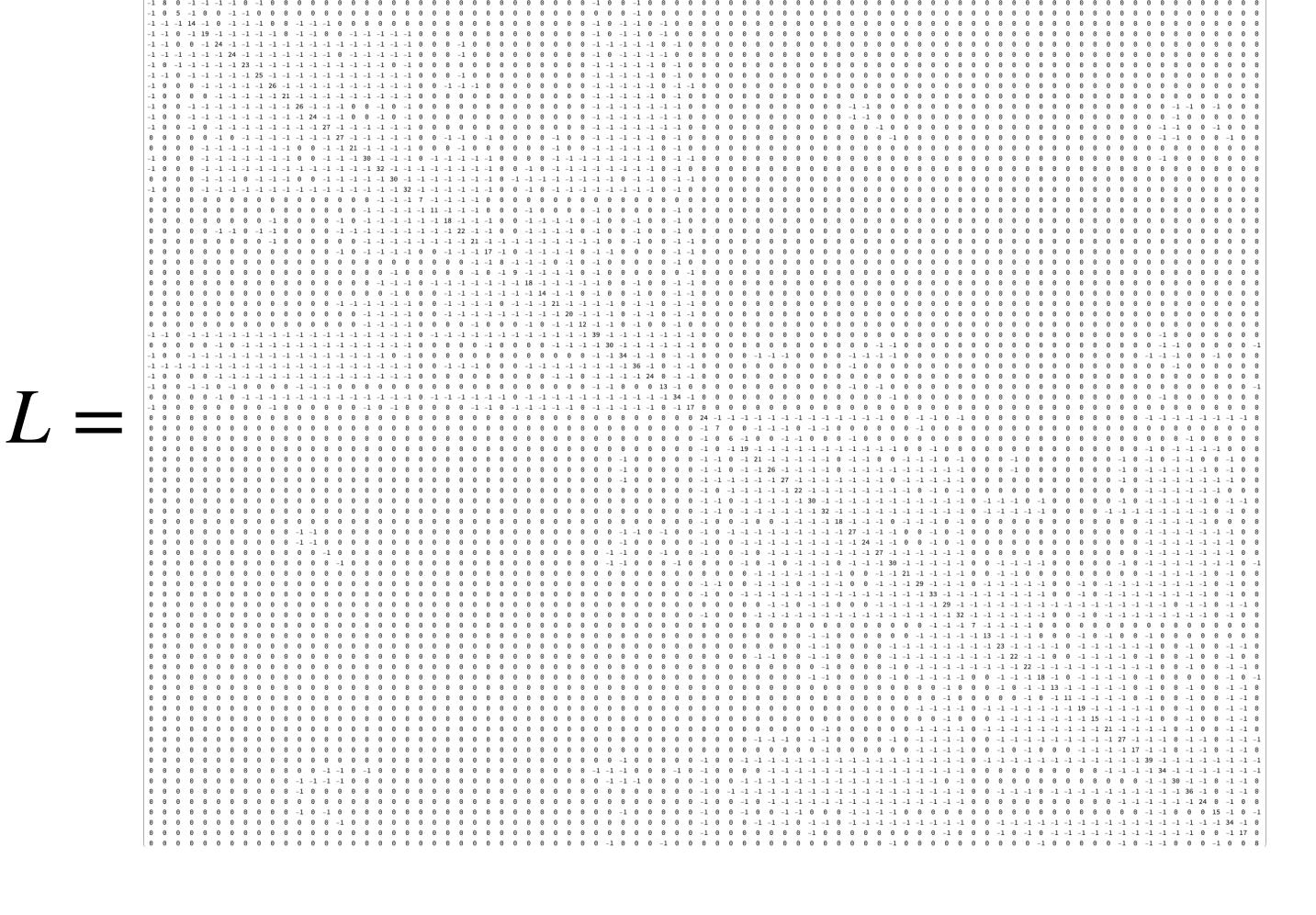
next find the eigenmodes

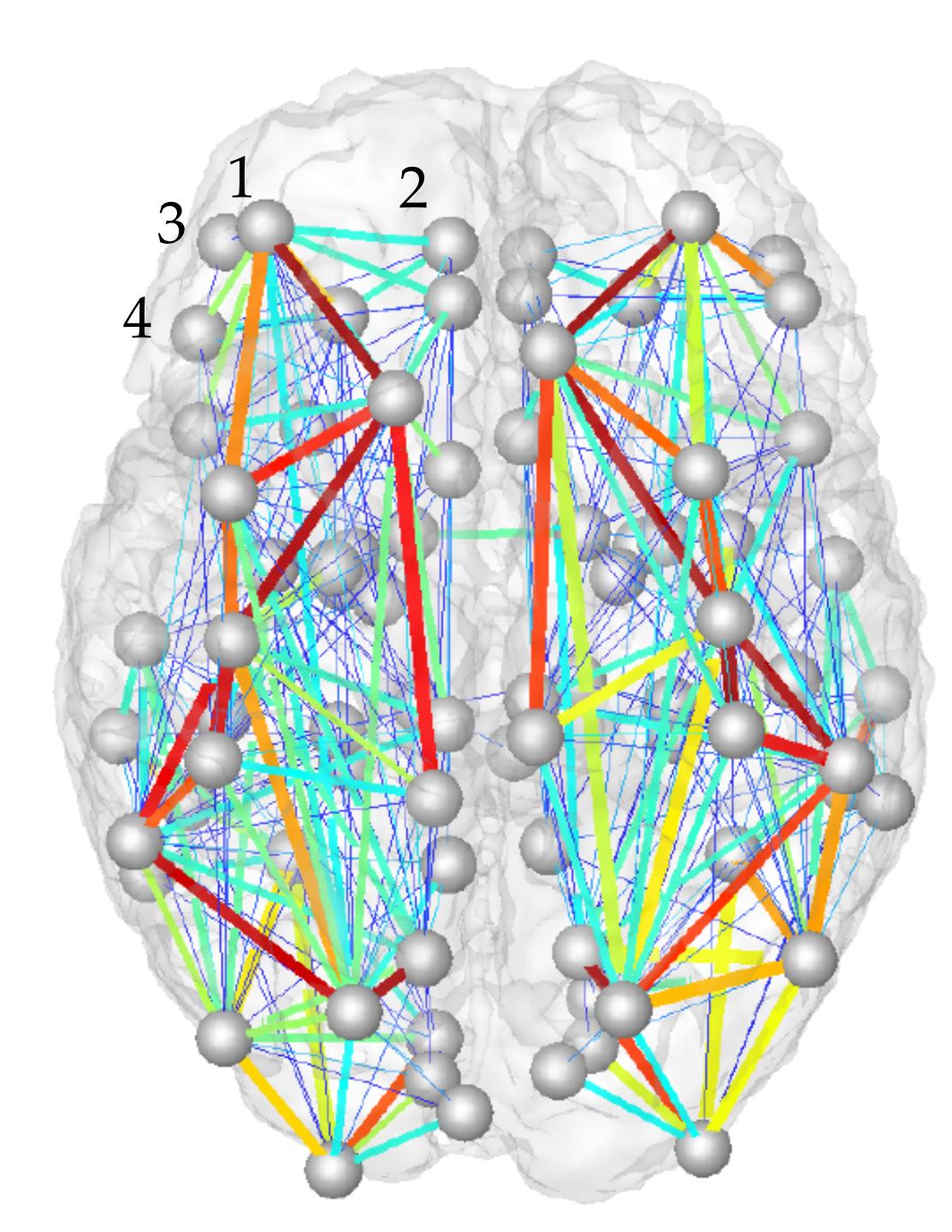
$$L_{\mathbf{V}} = \lambda \mathbf{v}$$

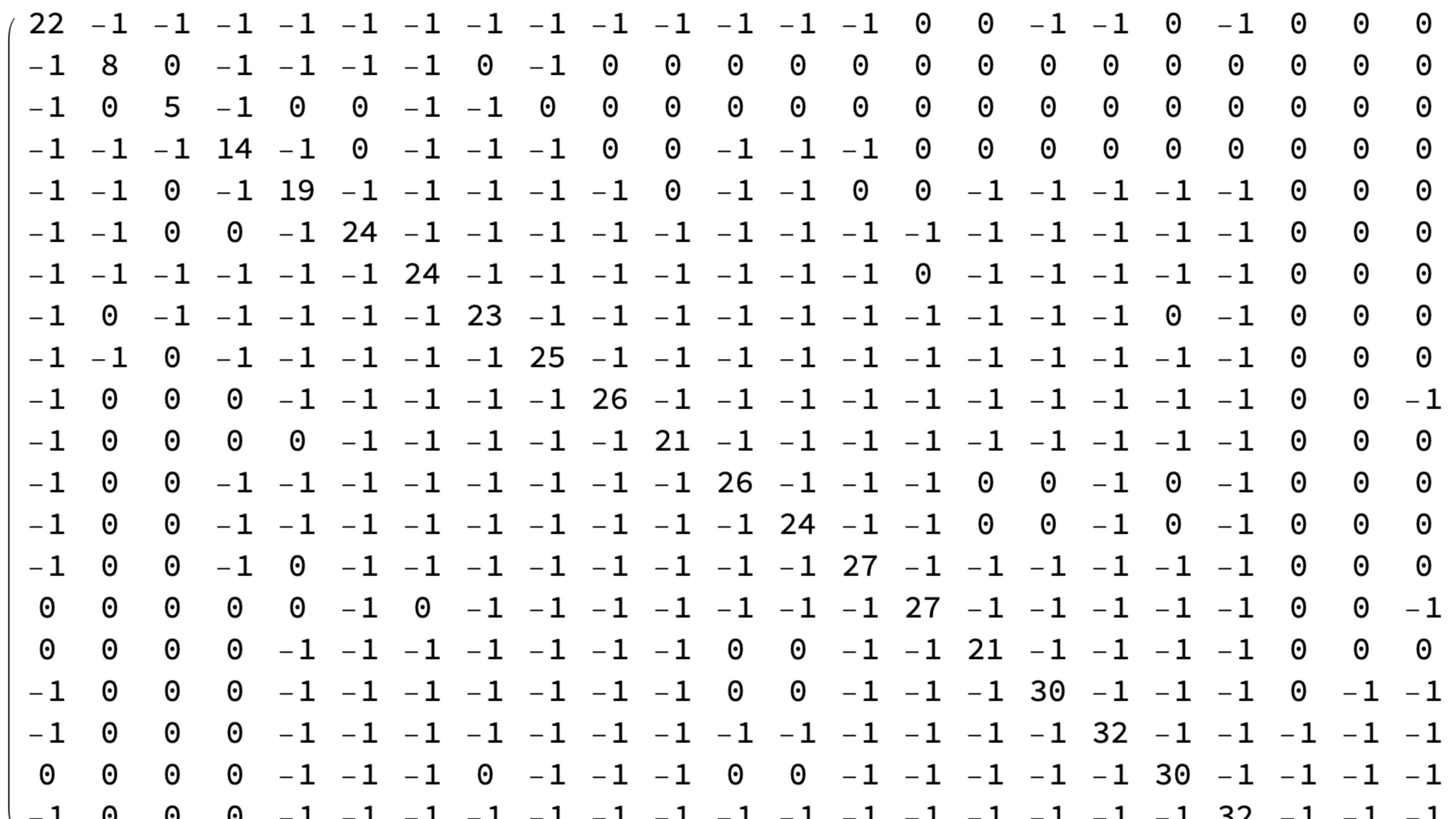
solution with second smallest λ :

$$\lambda = 0.7$$
 and $\mathbf{v} = \begin{bmatrix} -3.8 \\ 0.9 \\ 2.7 \\ -2.7 \\ 10 \end{bmatrix}$

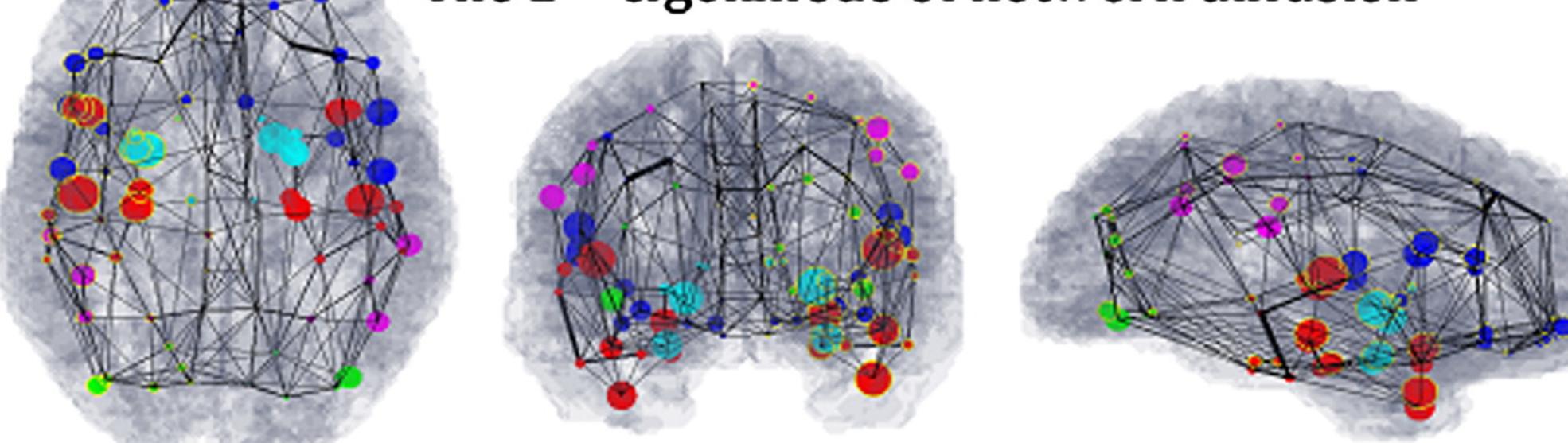
back to the brain

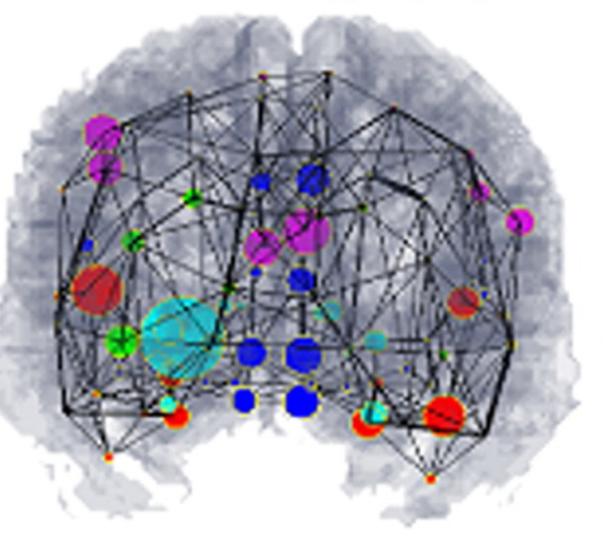


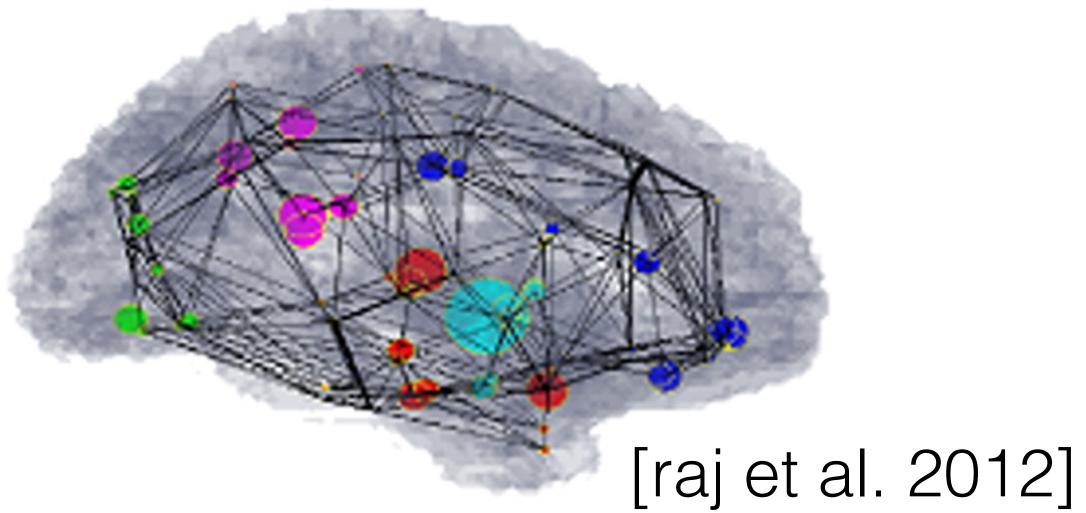




The 2nd eigenmode of network diffusion







3.

"they violate most of biology's sacred rules" jonah lehrer proust

healthy

misfolding

healthy

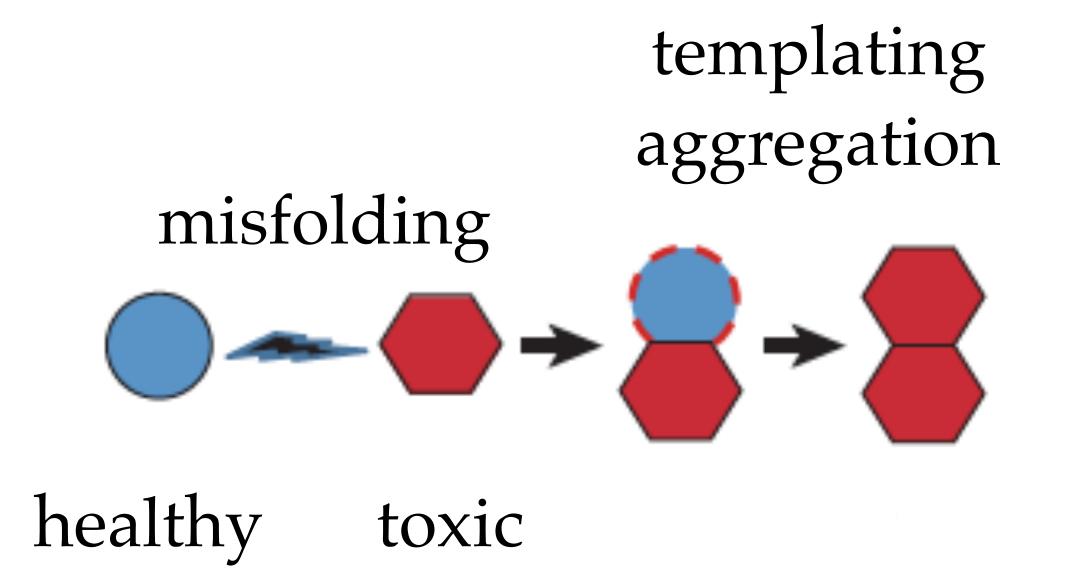
misfolding

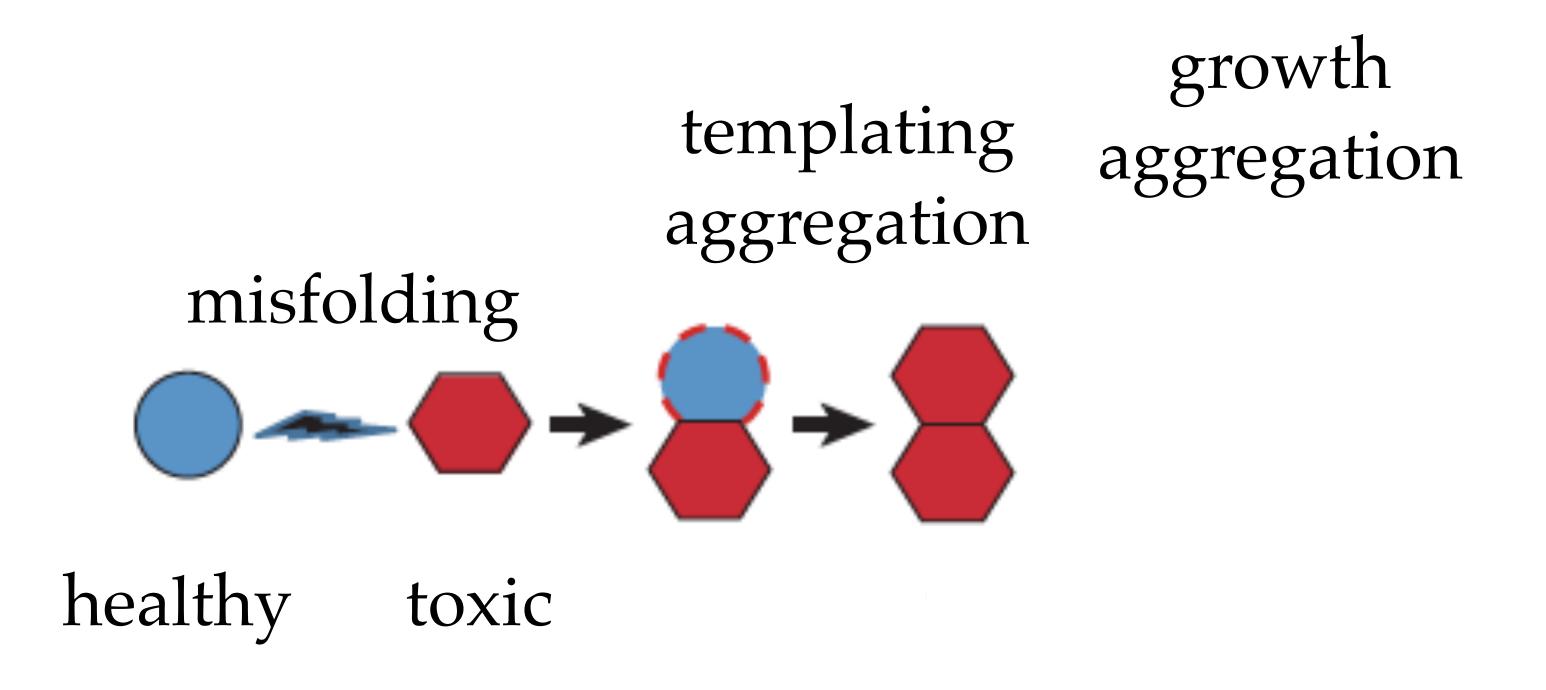
healthy toxic

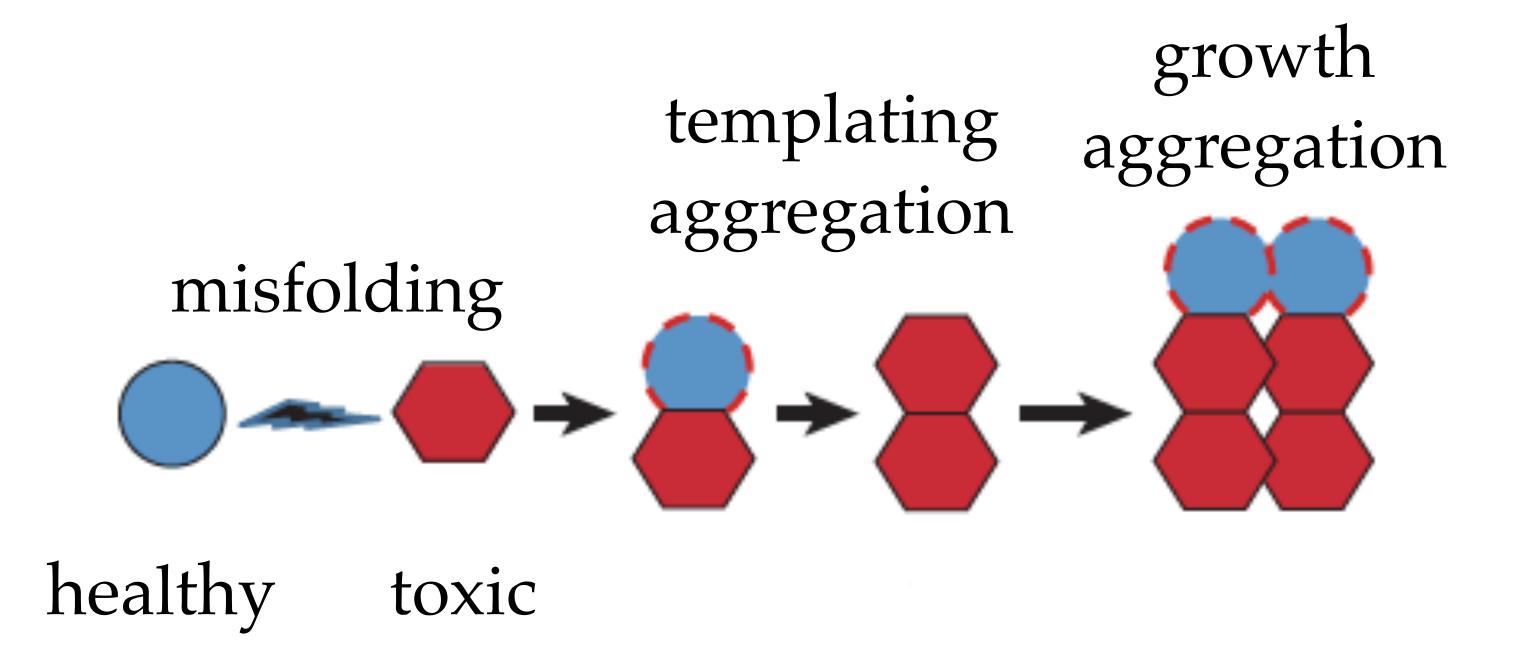
templating aggregation

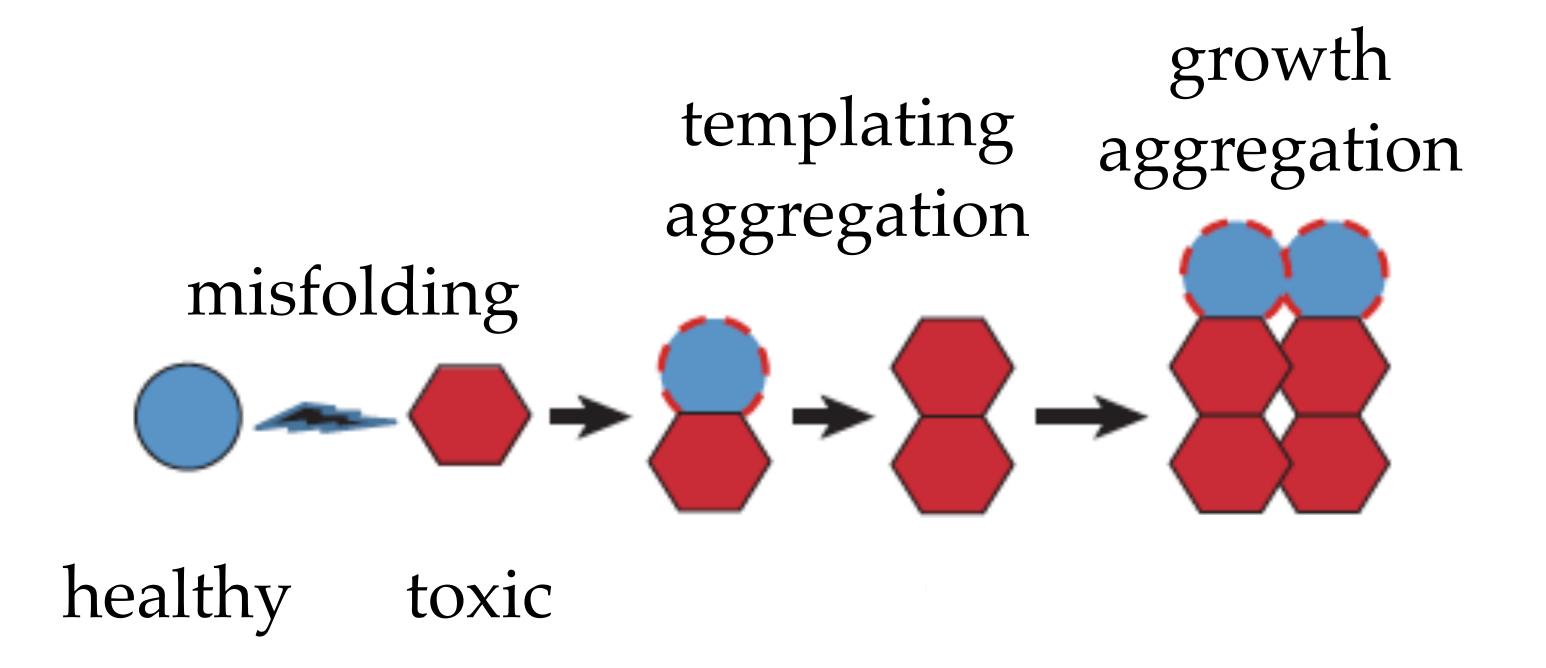
misfolding

healthy toxic

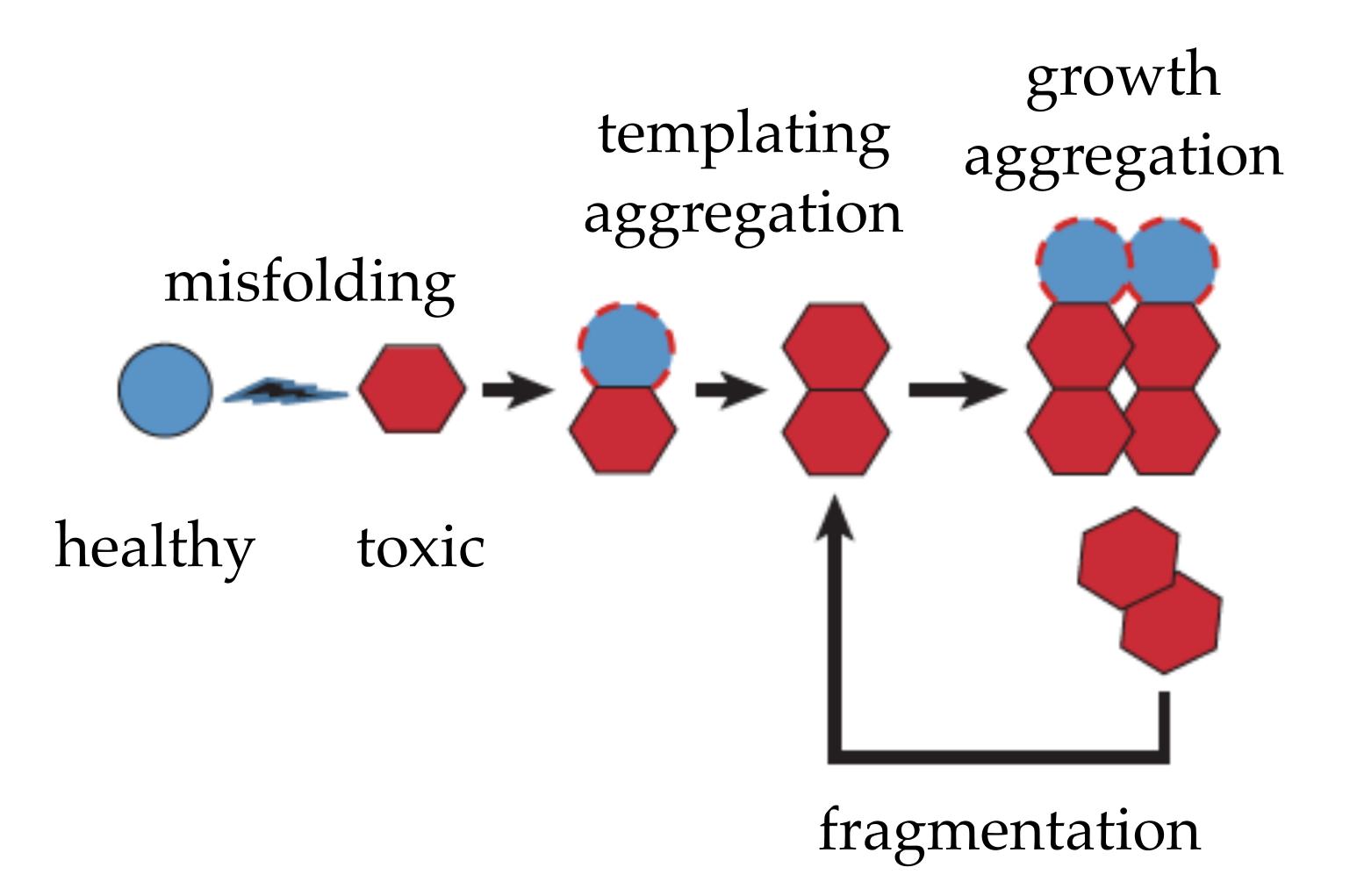




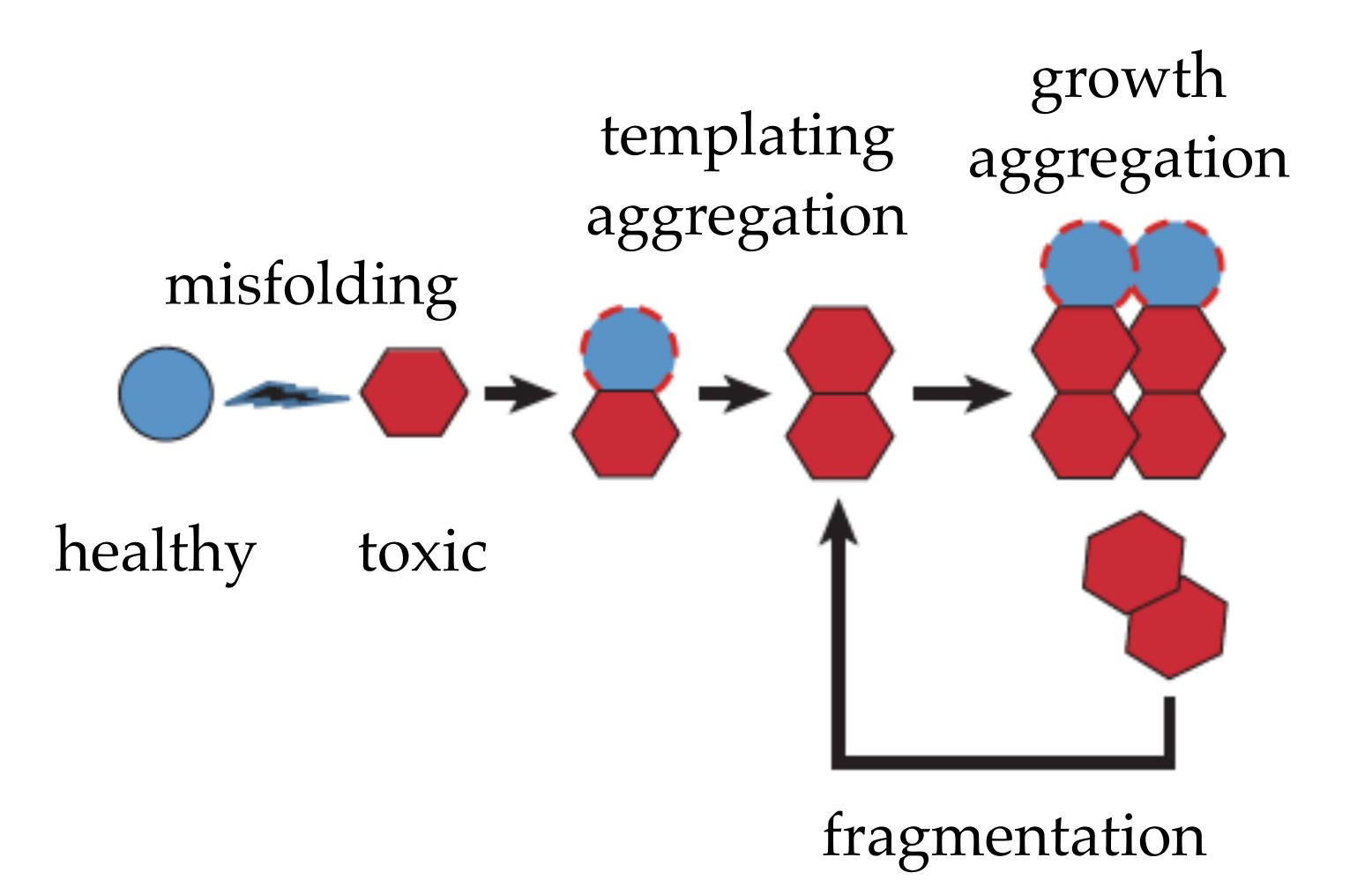




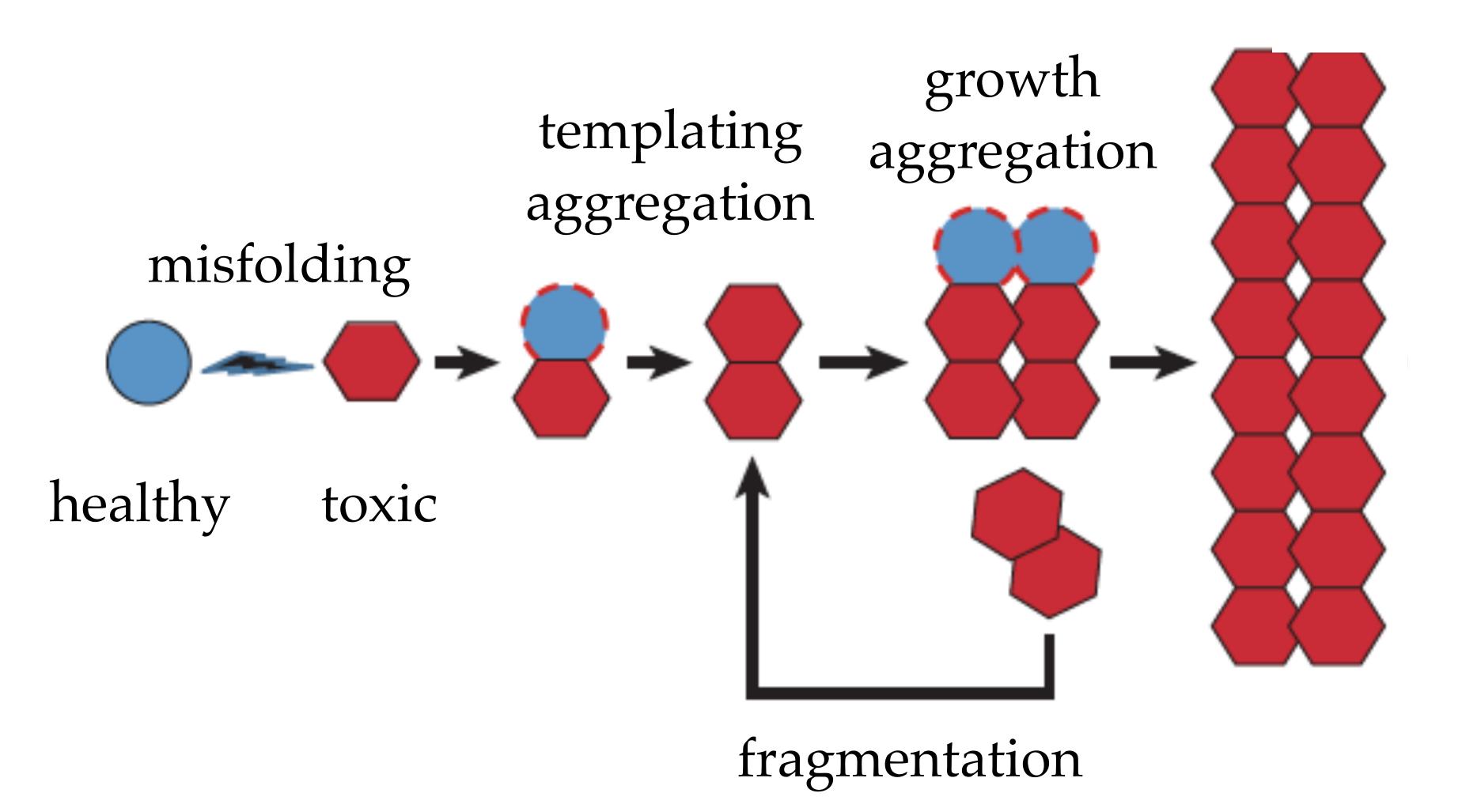
fragmentation



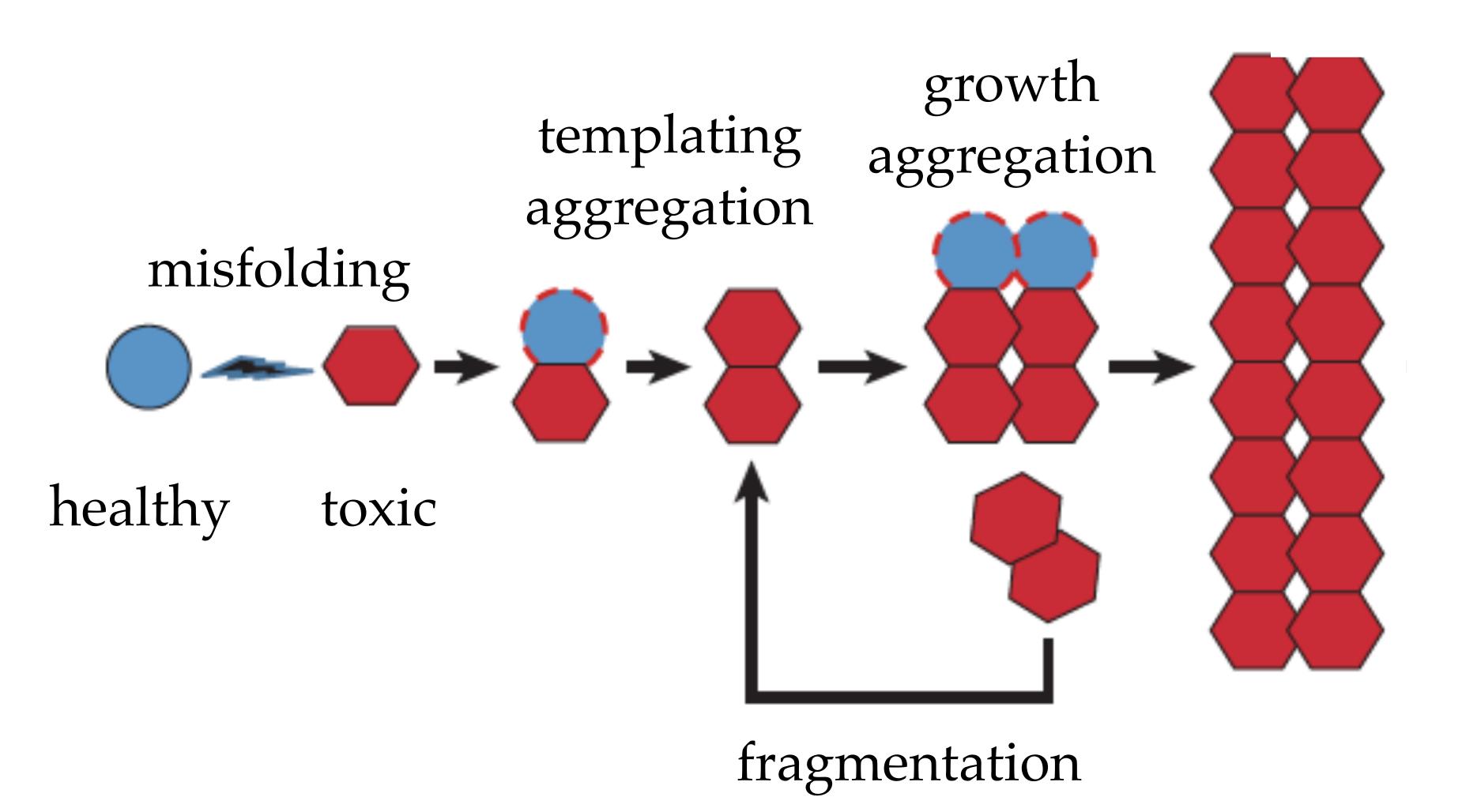
protofibrils



protofibrils



protofibrils fibrils

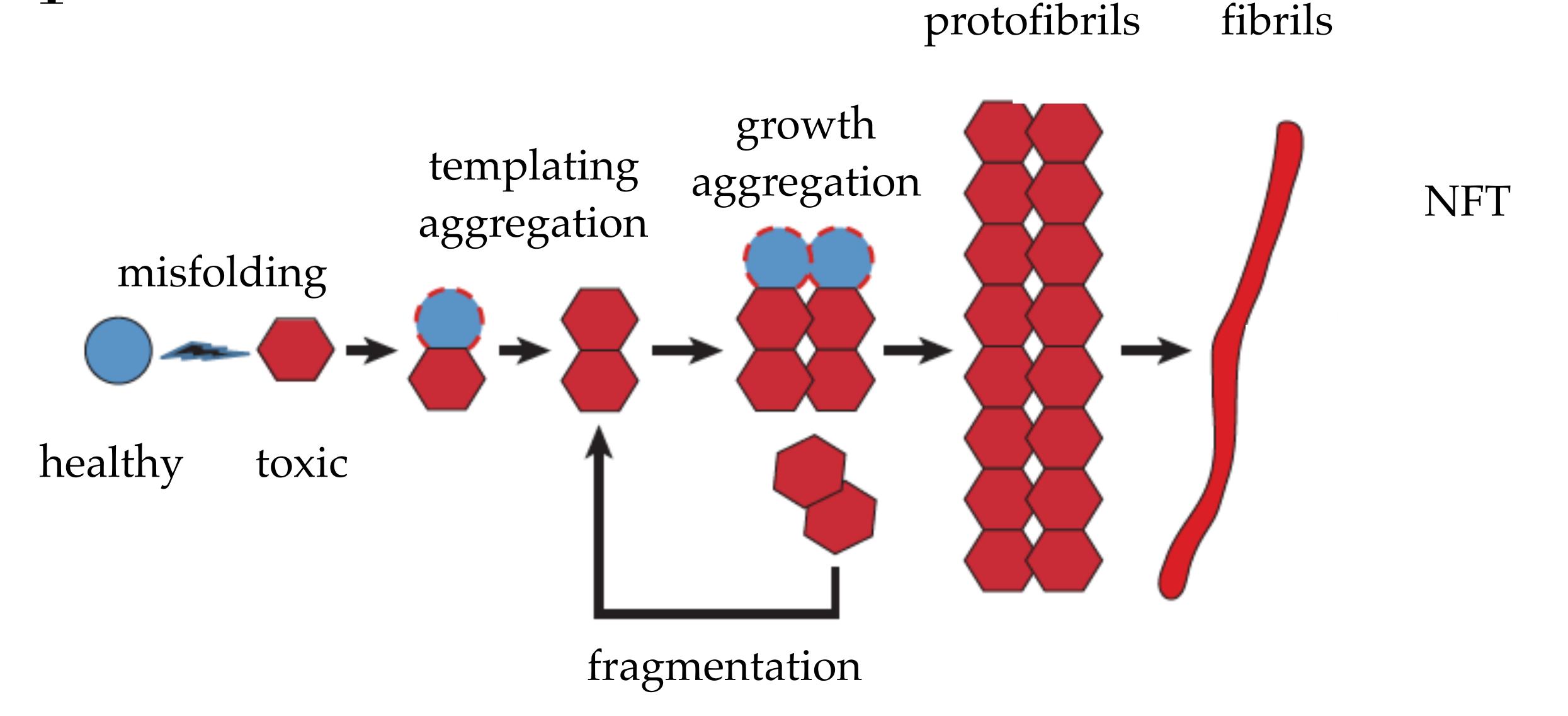


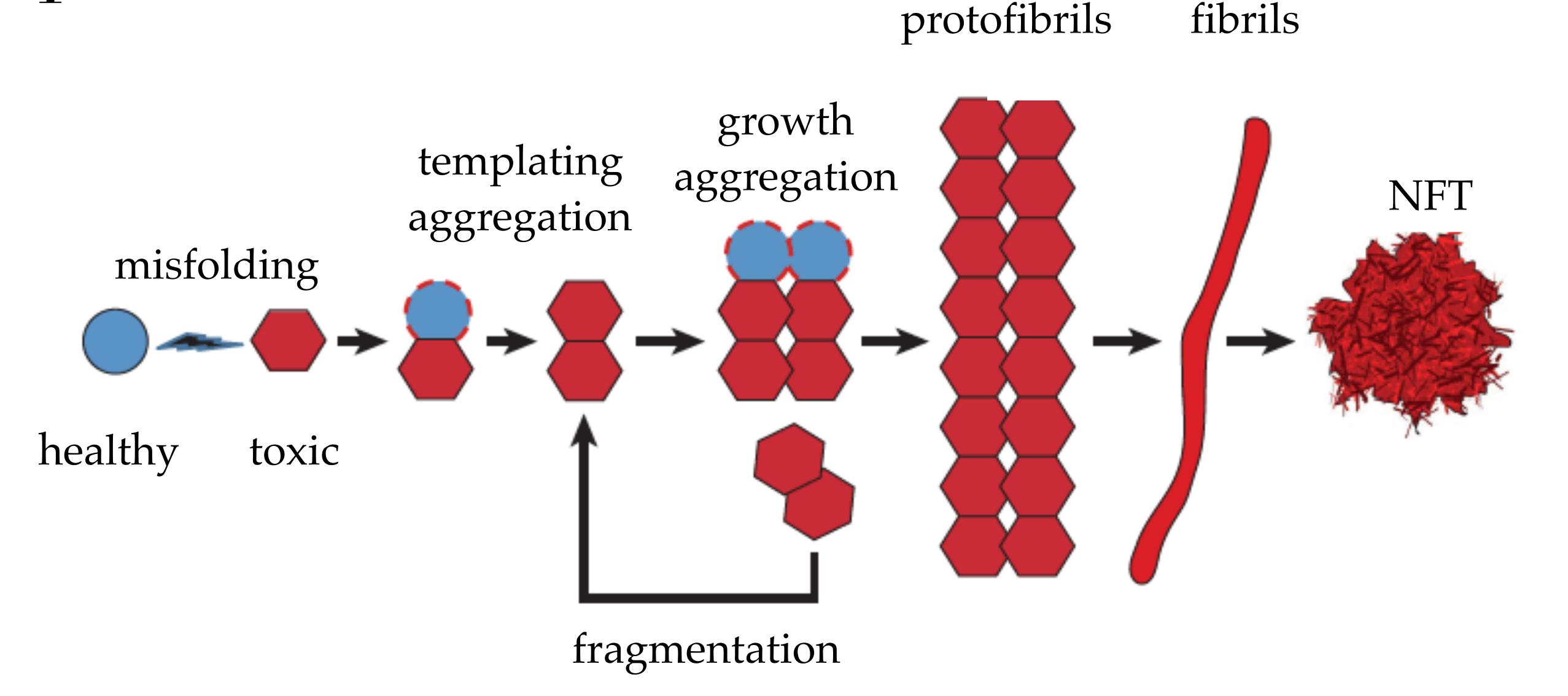
templating aggregation aggregation misfolding healthy toxic fragmentation

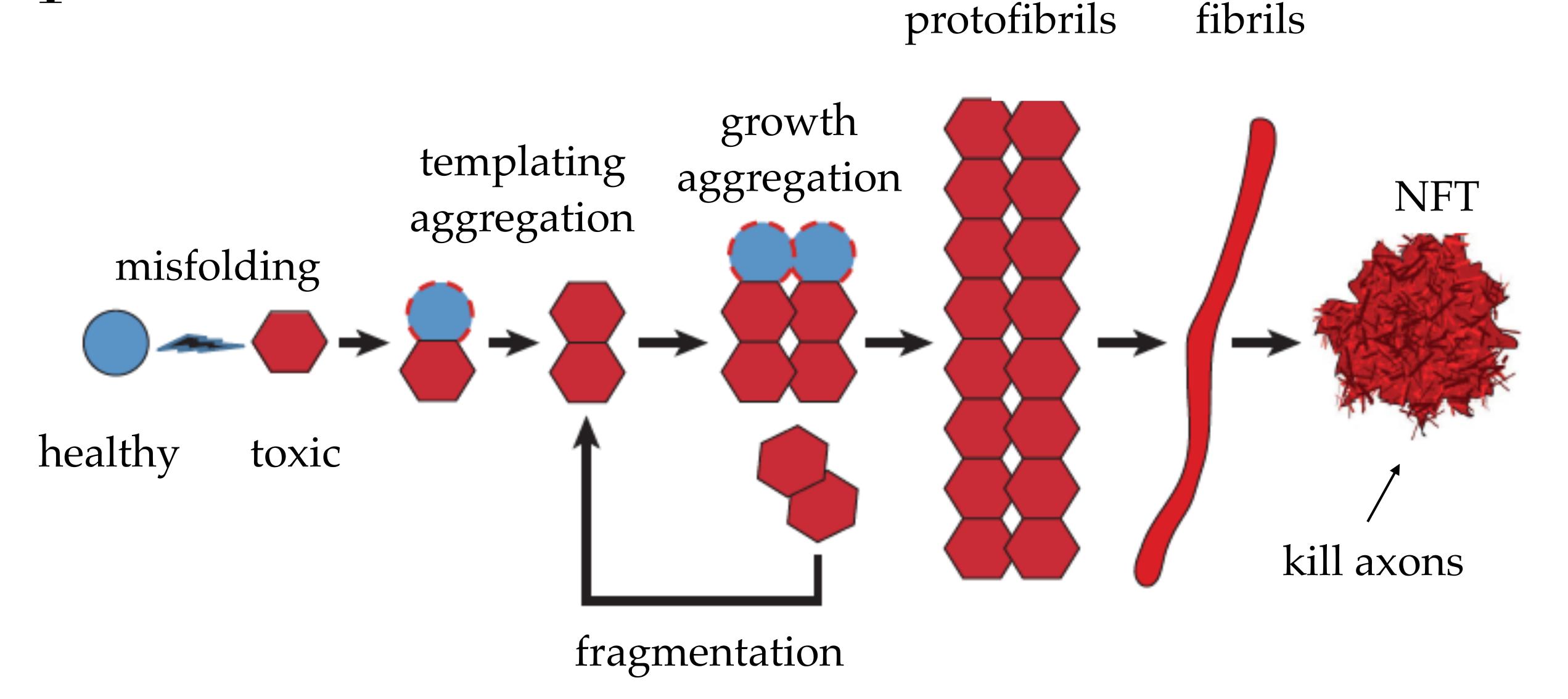
[from walker and jucker 2015]

fibrils

protofibrils

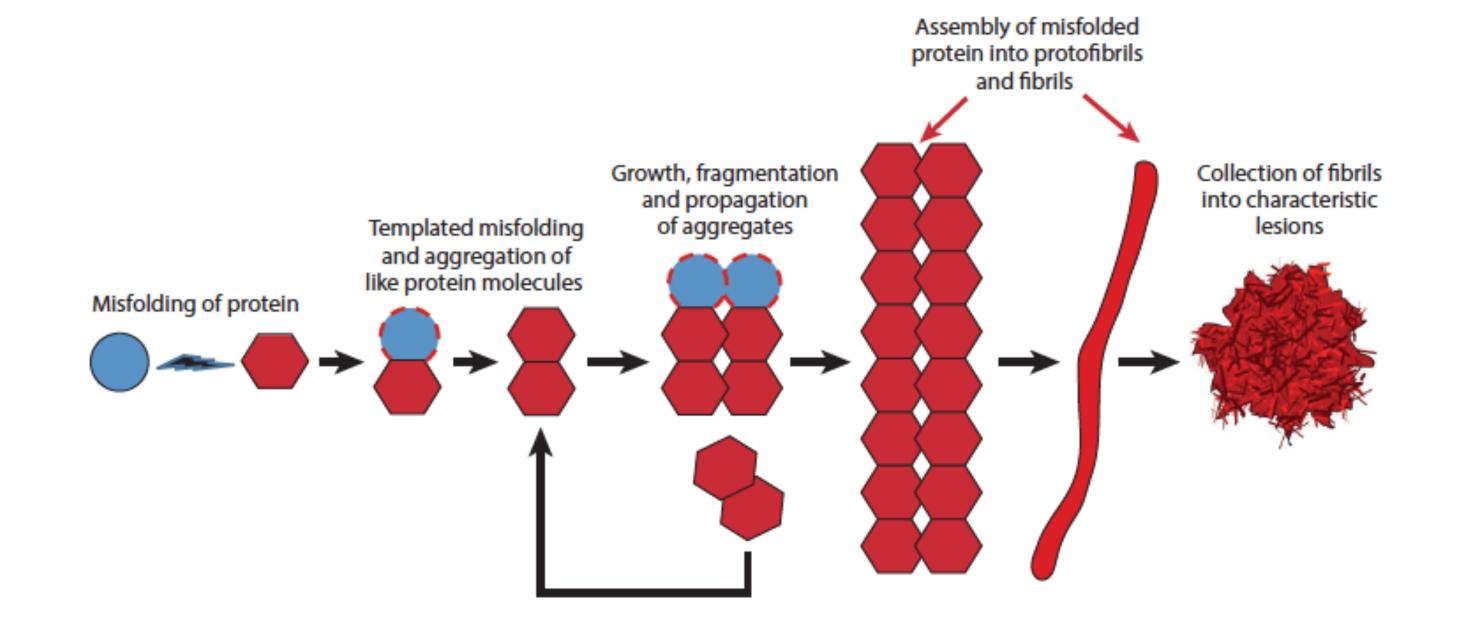






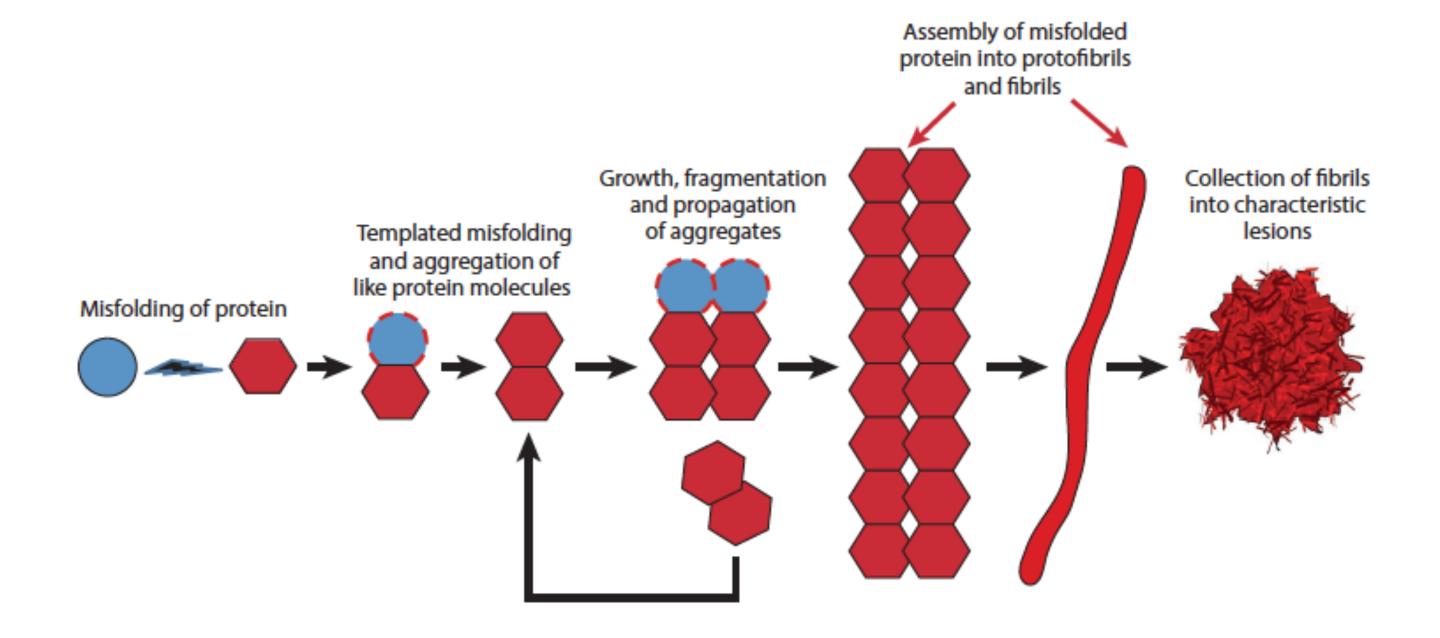
a model Assembly of misfolded protein into protofibrils and fibrils Growth, fragmentation Collection of fibrils into characteristic and propagation of aggregates lesions Templated misfolding and aggregation of like protein molecules Misfolding of protein kills axons toxic protein

a model

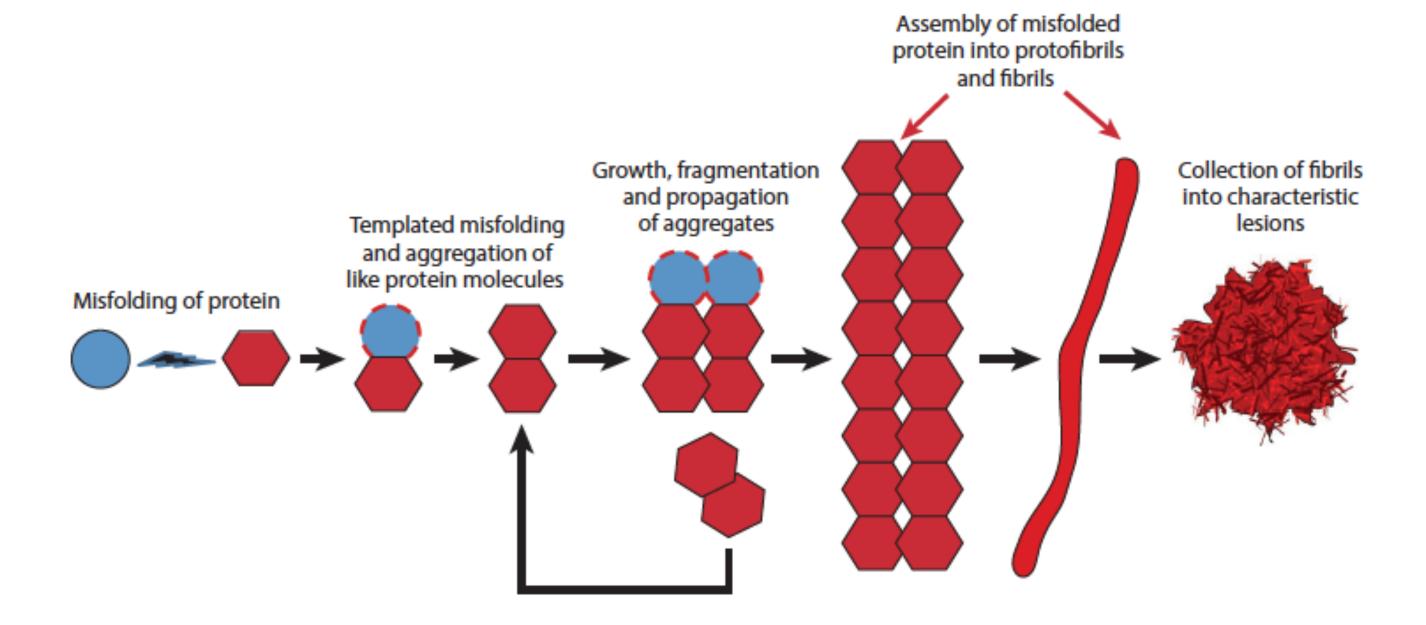


a model

follow concentrations of good and toxic proteins in space and time

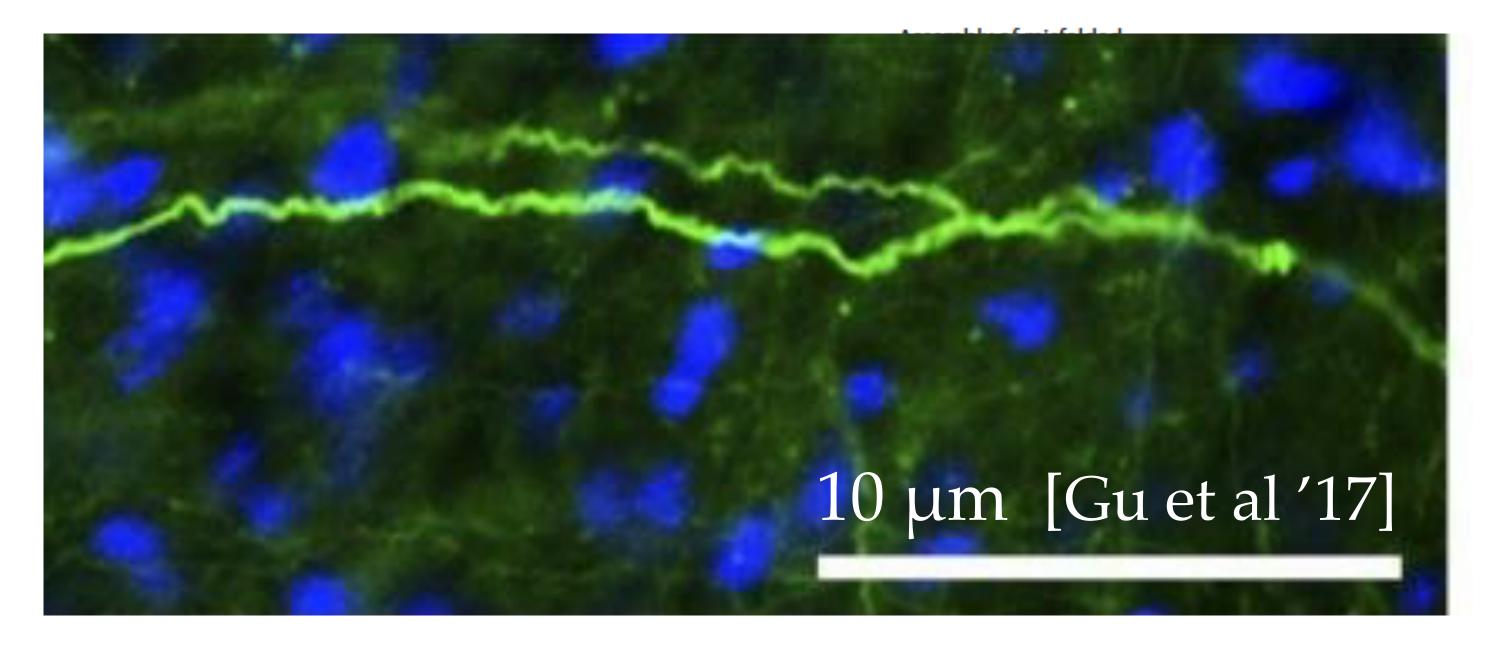


follow concentrations of good and toxic proteins in space and time



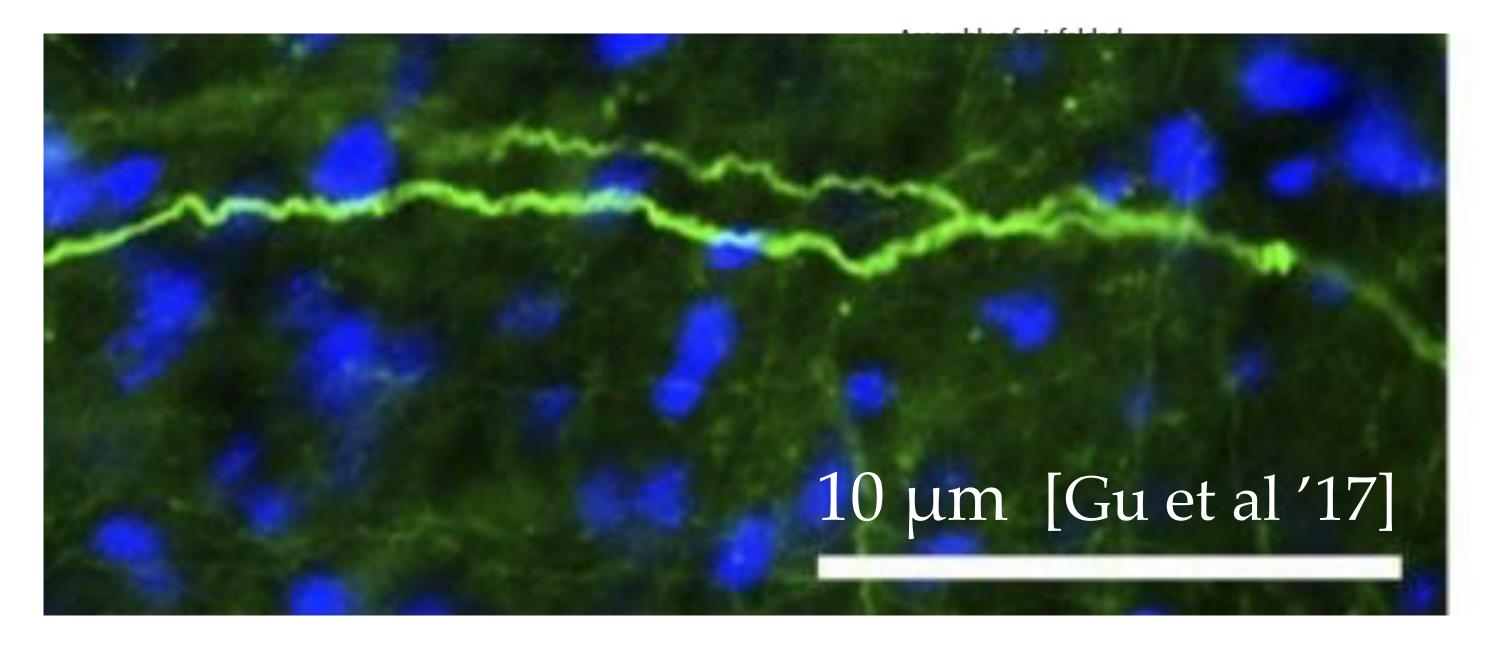
rate equations for possible aggregation and fragmentation

follow concentrations of good and toxic proteins in space and time



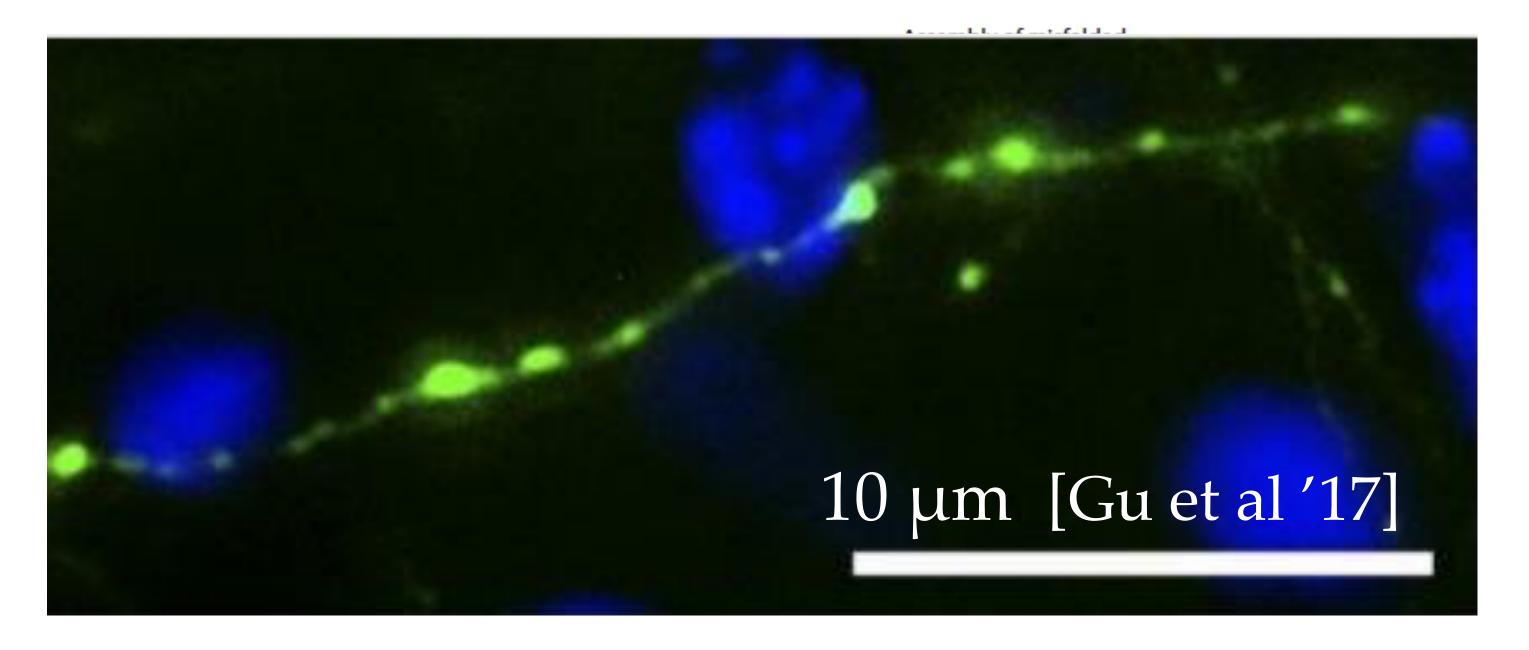
- rate equations for possible aggregation and fragmentation
- fast transport along axons, slow transport in the tissue

follow concentrations of good and toxic proteins in space and time

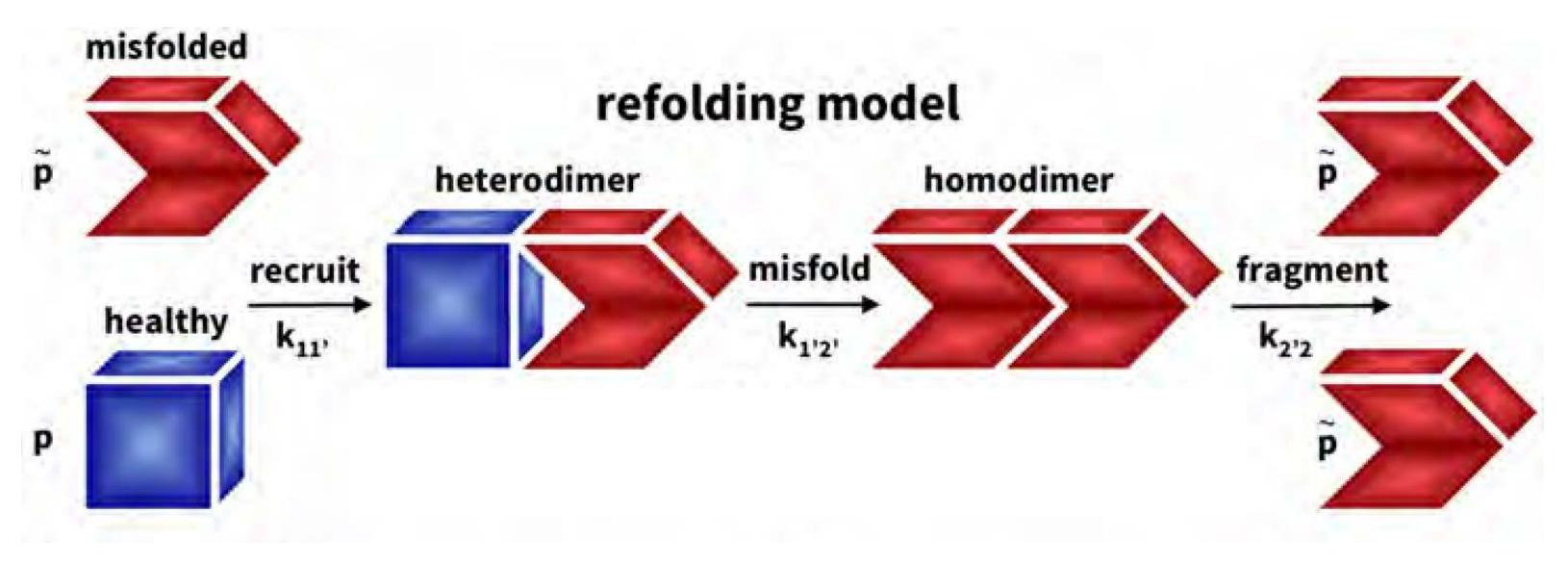


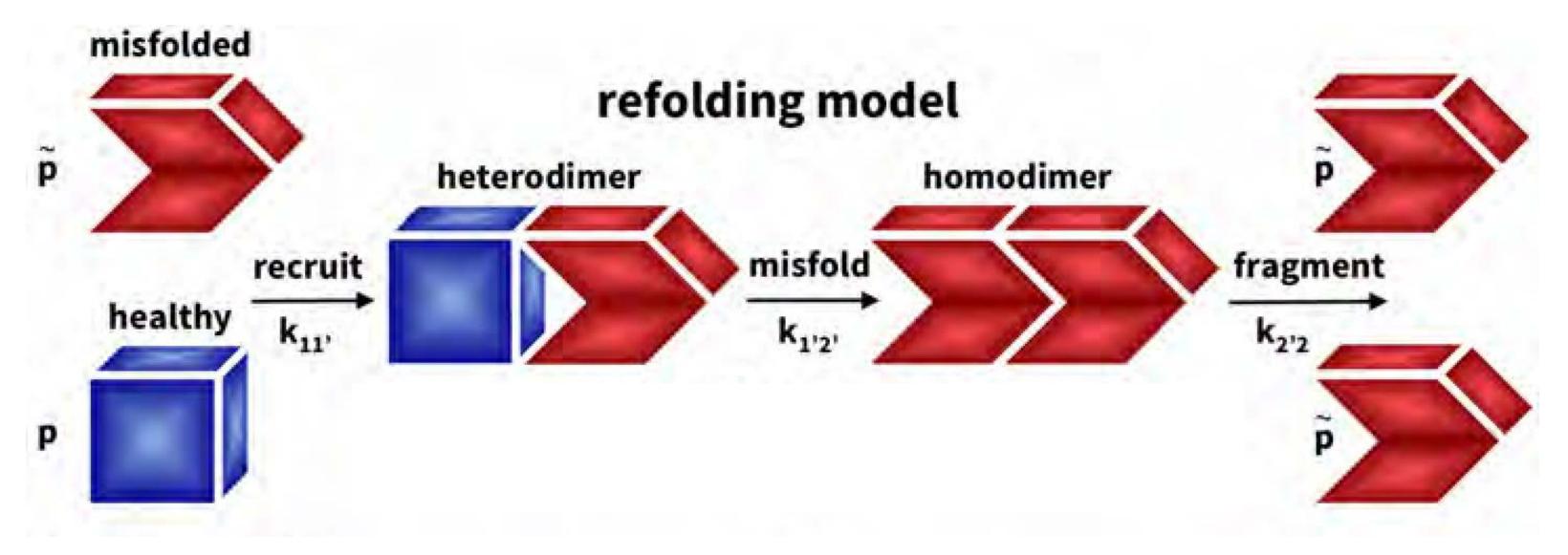
- rate equations for possible aggregation and fragmentation
- fast transport along axons, slow transport in the tissue

follow concentrations of good and toxic proteins in space and time

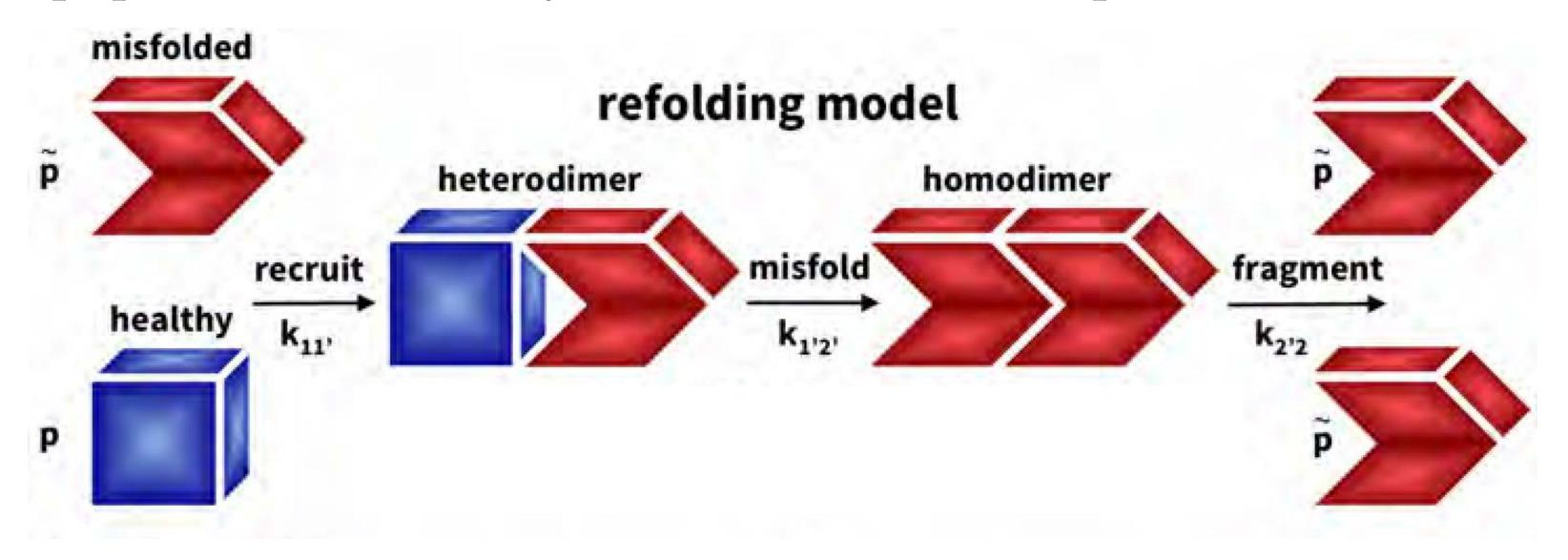


- rate equations for possible aggregation and fragmentation
- fast transport along axons, slow transport in the tissue



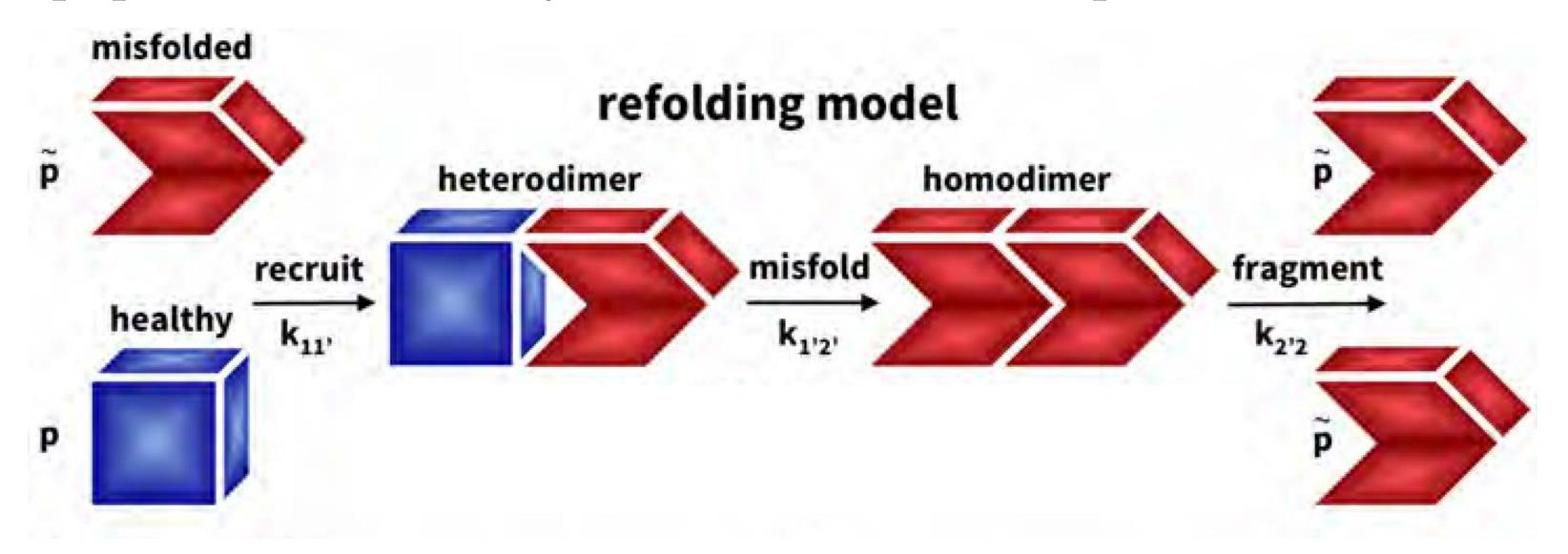


$$p + \widetilde{p} \xrightarrow{k_{11'}} p\widetilde{p}$$



$$p + \widetilde{p} \xrightarrow{k_{11'}} p\widetilde{p}$$
 $p - p$

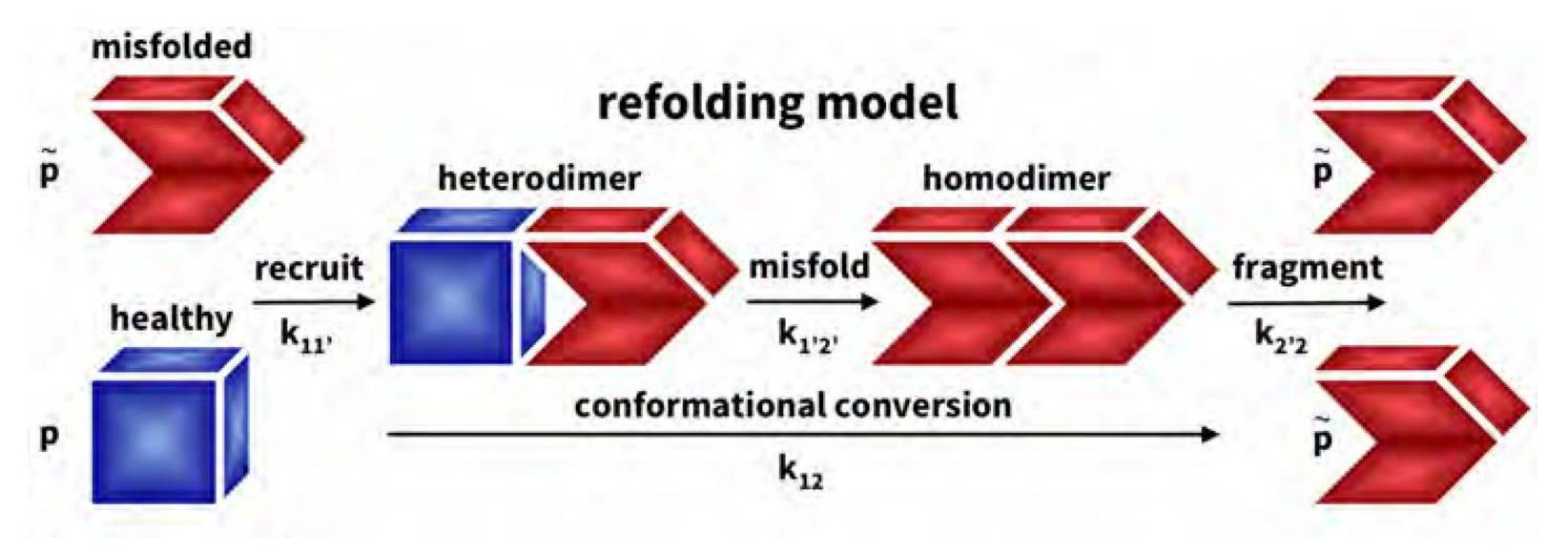
$$p + \widetilde{p} \xrightarrow{k_{1'2'}} \widetilde{p}\widetilde{p}$$



$$p + \widetilde{p} \xrightarrow{k_{11'}} p\widetilde{p}$$

$$p + \widetilde{p} \xrightarrow{k_{1'2'}} \widetilde{p} \widetilde{p} \qquad \qquad \widetilde{p} \widetilde{p} \xrightarrow{k_{2'2'}} \widetilde{p} + \widetilde{p}$$

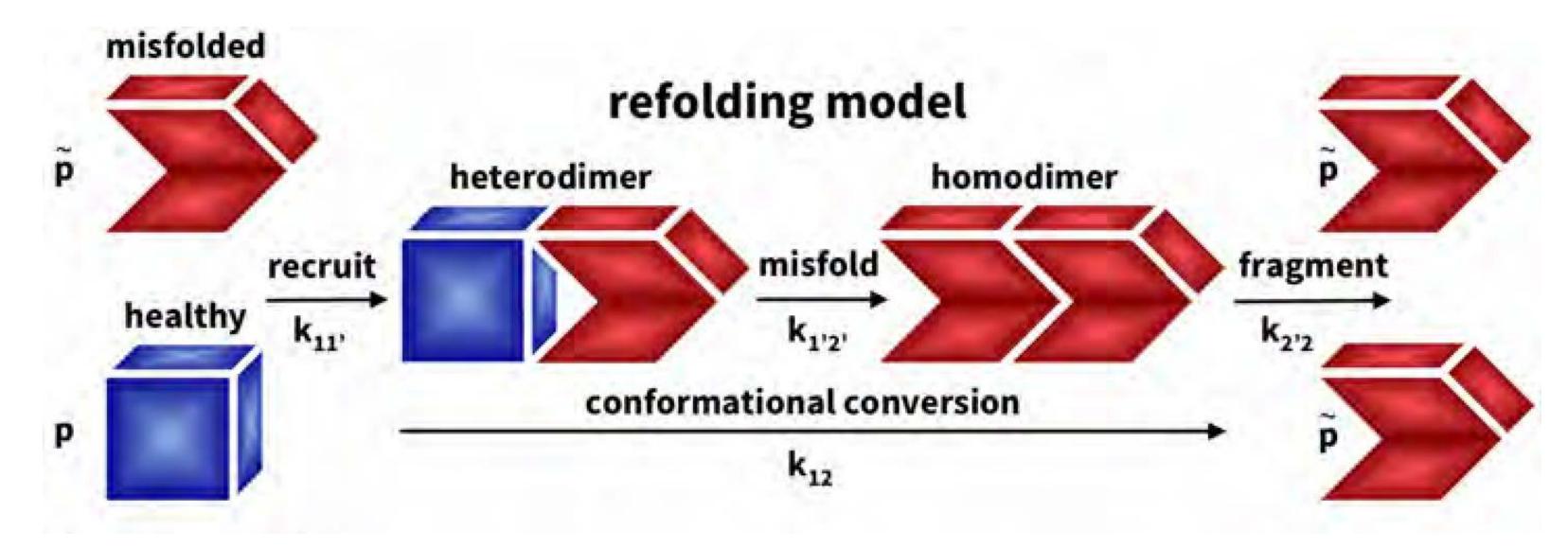
$$\widetilde{p}\widetilde{p} \xrightarrow{\kappa_{2'2'}} \widetilde{p} + \widetilde{p}$$



$$p + \widetilde{p} \xrightarrow{k_{11'}} p\widetilde{p}$$

$$p + \widetilde{p} \xrightarrow{k_{1'2'}} \widetilde{p} \widetilde{p} \qquad \qquad \widetilde{p} \widetilde{p} \xrightarrow{k_{2'2'}} \widetilde{p} + \widetilde{p}$$

$$\widetilde{p}\widetilde{p} \stackrel{k_{2'2'}}{\longrightarrow} \widetilde{p} + \widetilde{p}$$



$$p + \widetilde{p} \xrightarrow{k_{11'}} p\widetilde{p}$$

$$p + \widetilde{p} \xrightarrow{k_{1'2'}} \widetilde{p} \widetilde{p} \qquad \qquad \widetilde{p} \widetilde{p} \xrightarrow{k_{2'2'}} \widetilde{p} + \widetilde{p}$$

$$\widetilde{p}\widetilde{p} \stackrel{\kappa_{2'2'}}{\longrightarrow} \widetilde{p} + \widetilde{p}$$

$$p + \widetilde{p} \xrightarrow{k_{12}} \widetilde{p} + \widetilde{p}$$

$$p + \widetilde{p} \xrightarrow{k_{12}} \widetilde{p} + \widetilde{p}$$

$$p + \widetilde{p} \xrightarrow{k_{12}} \widetilde{p} + \widetilde{p}$$

$$\frac{\partial p}{\partial t} = \text{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p}$$

$$\frac{\partial \widetilde{p}}{\partial t} = \text{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) - \widetilde{k}_{1}\widetilde{p} + k_{12}p\widetilde{p}$$

$$p + \widetilde{p} \xrightarrow{k_{12}} \widetilde{p} + \widetilde{p}$$

$$\frac{\partial p}{\partial t} = \text{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p}$$

$$\frac{\partial \widetilde{p}}{\partial t} = \text{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) - \widetilde{k}_{1}\widetilde{p} + k_{12}p\widetilde{p}$$

$$p + \widetilde{p} \xrightarrow{k_{12}} \widetilde{p} + \widetilde{p}$$

$$\frac{\partial p}{\partial t} = \text{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p}$$

$$\frac{\partial \widetilde{p}}{\partial t} = \text{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) - \widetilde{k}_{1}\widetilde{p} + k_{12}p\widetilde{p}$$

$$p + \widetilde{p} \xrightarrow{k_{12}} \widetilde{p} + \widetilde{p}$$

$$\frac{\partial p}{\partial t} = \text{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p}$$

$$\frac{\partial \widetilde{p}}{\partial t} = \text{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) - (\widetilde{k}_{1}\widetilde{p}) + k_{12}p\widetilde{p}$$
clearance

$$p + \widetilde{p} \xrightarrow{k_{12}} \widetilde{p} + \widetilde{p}$$

$$\frac{\partial p}{\partial t} = \text{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p}$$

$$\frac{\partial \widetilde{p}}{\partial t} = \text{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) - k_{1}p + k_{12}p\widetilde{p}$$
clearance

$$p + \widetilde{p} \xrightarrow{k_{12}} \widetilde{p} + \widetilde{p}$$

$$\frac{\partial p}{\partial t} = \text{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p}$$

$$\frac{\partial \widetilde{p}}{\partial t} = \text{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) - k_{1}p + k_{12}p\widetilde{p}$$
clearance conversion

$$p + \widetilde{p} \xrightarrow{k_{12}} \widetilde{p} + \widetilde{p}$$

$$\frac{\partial p}{\partial t} = \text{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p}$$

$$\frac{\partial \widetilde{p}}{\partial t} = \text{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) - k_{1}p + k_{12}p\widetilde{p}$$

$$\frac{\partial \widetilde{p}}{\partial t} = \text{Clearance conversion}$$

for $p \gg \tilde{p}$ and p at equilibrium we have

$$p + \widetilde{p} \xrightarrow{k_{12}} \widetilde{p} + \widetilde{p}$$

$$\frac{\partial p}{\partial t} = \text{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p}$$

$$\frac{\partial \widetilde{p}}{\partial t} = \text{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) - k_{1}p + k_{12}p\widetilde{p}$$

$$\frac{\partial \widetilde{p}}{\partial t} = \text{conversion}$$

for $p \gg \tilde{p}$ and p at equilibrium we have

$$\frac{\partial c}{\partial t} = \text{Div}(\mathbf{D} \cdot \nabla c) + \alpha c(1 - c)$$

$$p + \widetilde{p} \xrightarrow{k_{12}} \widetilde{p} + \widetilde{p}$$

$$\frac{\partial p}{\partial t} = \text{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p}$$

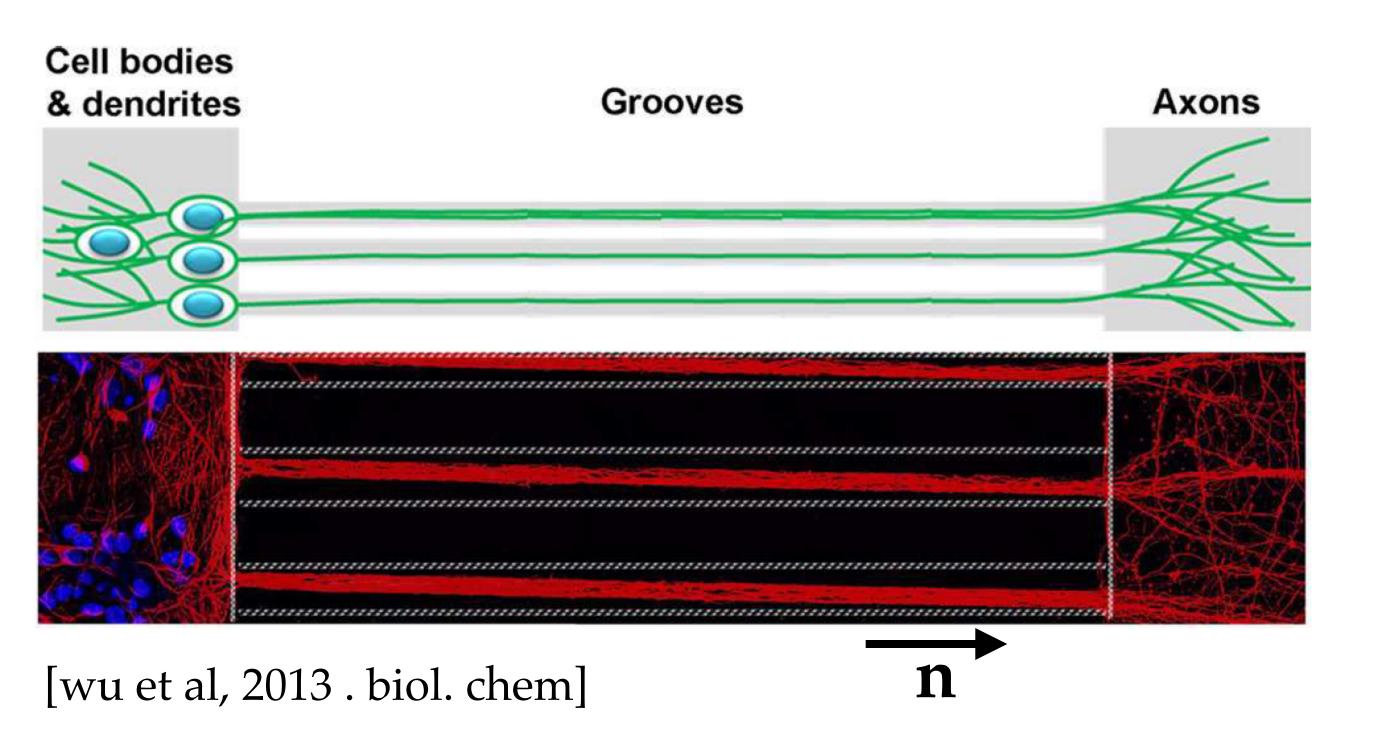
$$\frac{\partial \widetilde{p}}{\partial t} = \text{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) - k_{1}p + k_{12}p\widetilde{p}$$

for $p \gg \tilde{p}$ and p at equilibrium we have

$$\frac{\partial c}{\partial t} = \text{Div}(\mathbf{D} \cdot \nabla c) + \alpha c (1 - c)$$

anisotropic fisher equation (1937)

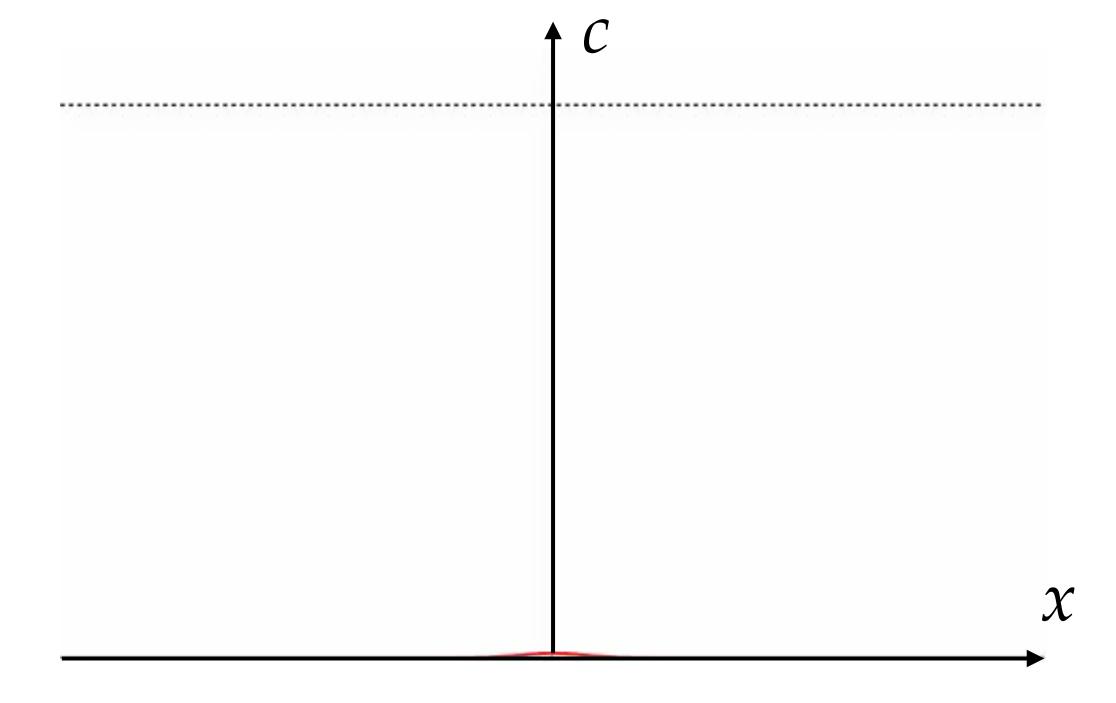
$$\frac{\partial c}{\partial t} = \text{Div}(\mathbf{D} \cdot \nabla c) + \alpha c (1 - c)$$



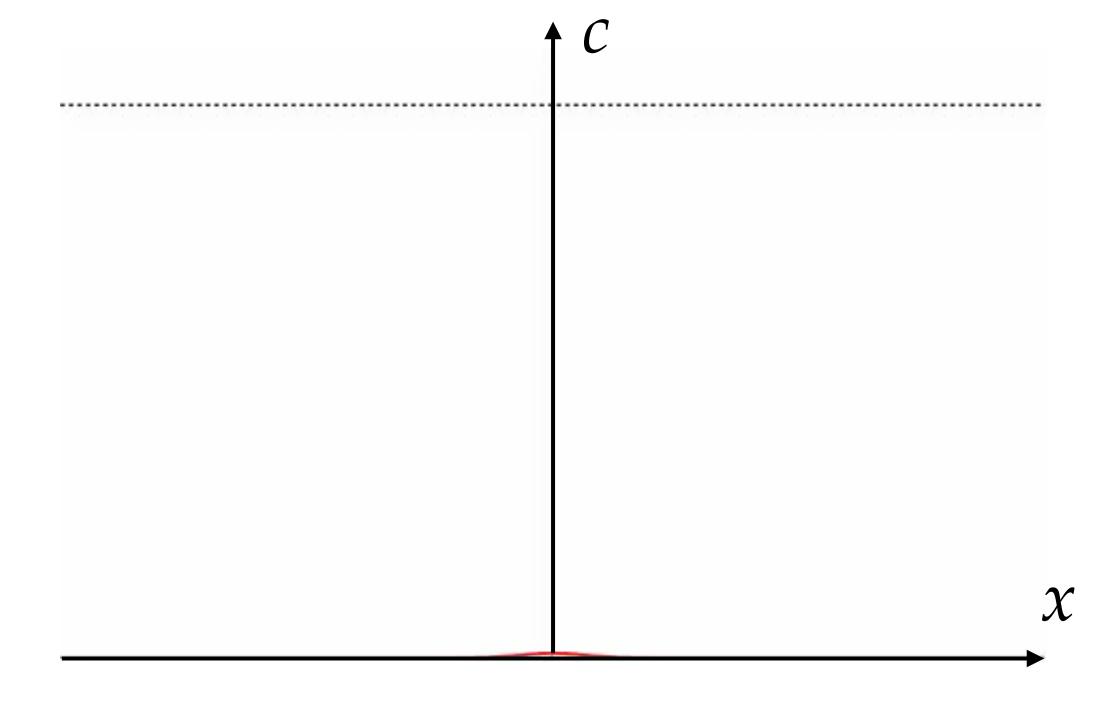
fast axonal transport d along \mathbf{n}

slow extracellular diffusion δ perpendicular to \mathbf{n}

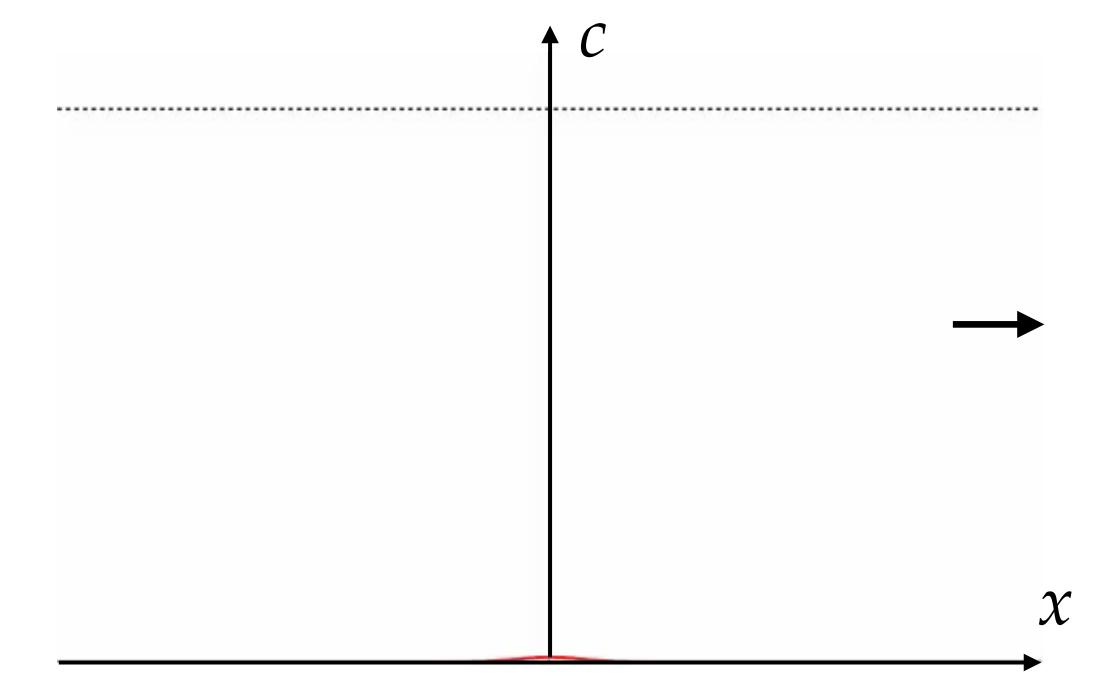
$$\frac{\partial c}{\partial t} = \text{Div}(\mathbf{D} \cdot \nabla c) + \alpha c (1 - c)$$



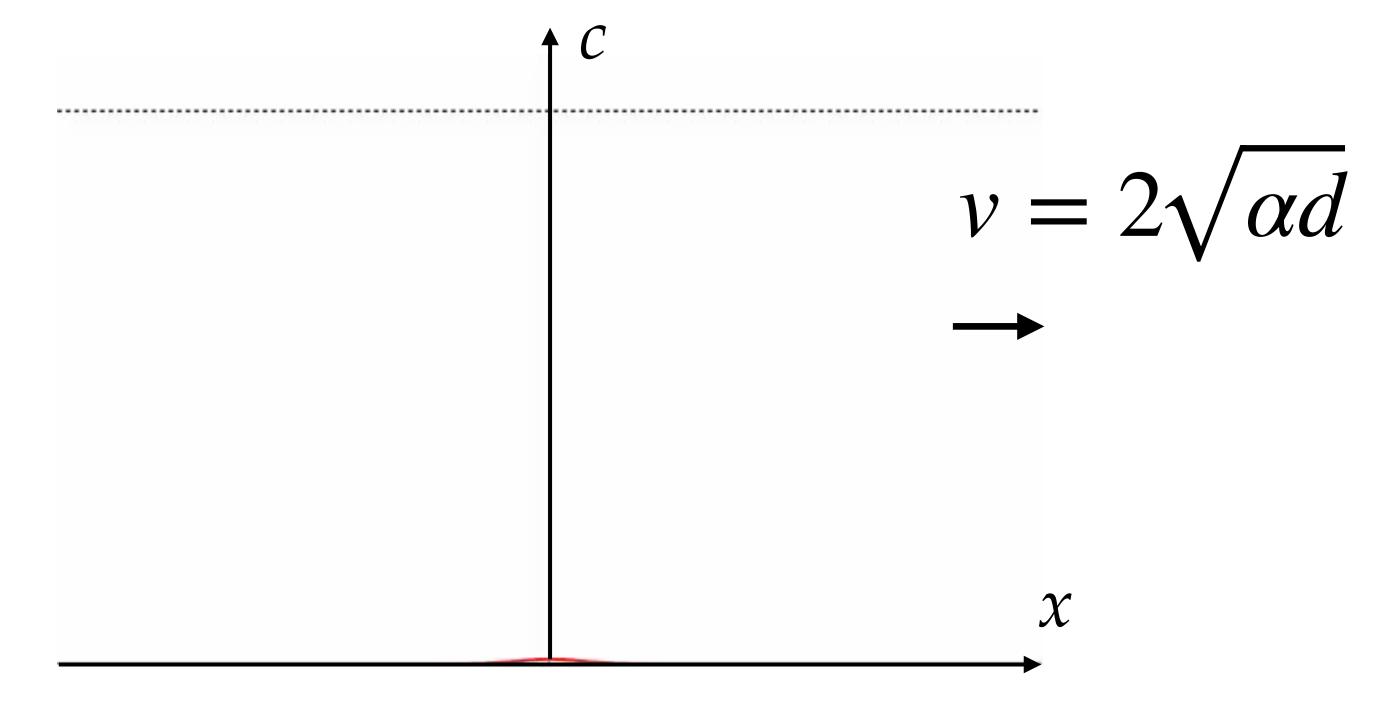
$$\frac{\partial c}{\partial t} = \text{Div}(\mathbf{D} \cdot \nabla c) + \alpha c (1 - c)$$



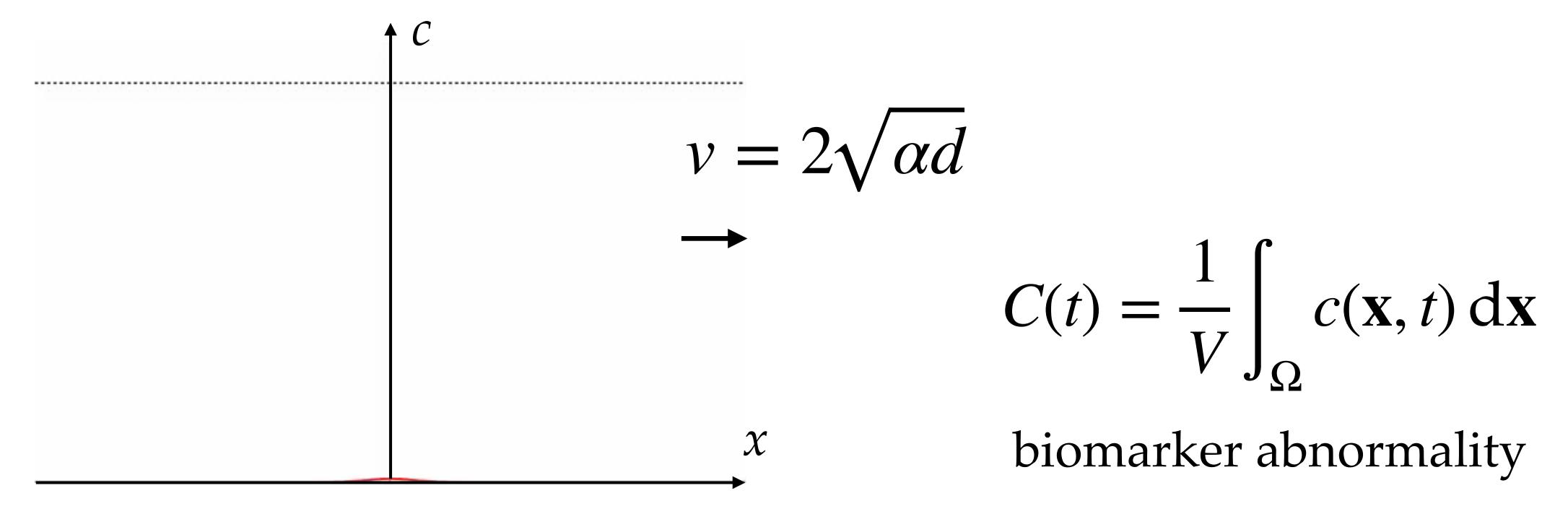
$$\frac{\partial c}{\partial t} = \text{Div}(\mathbf{D} \cdot \nabla c) + \alpha c (1 - c)$$

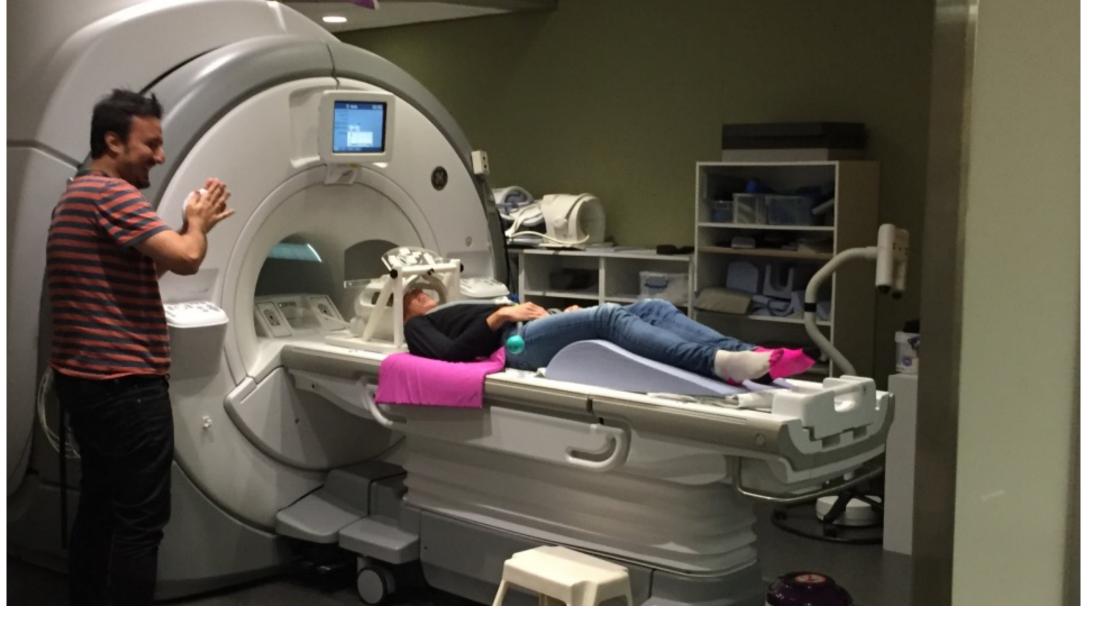


$$\frac{\partial c}{\partial t} = \text{Div}(\mathbf{D} \cdot \nabla c) + \alpha c (1 - c)$$



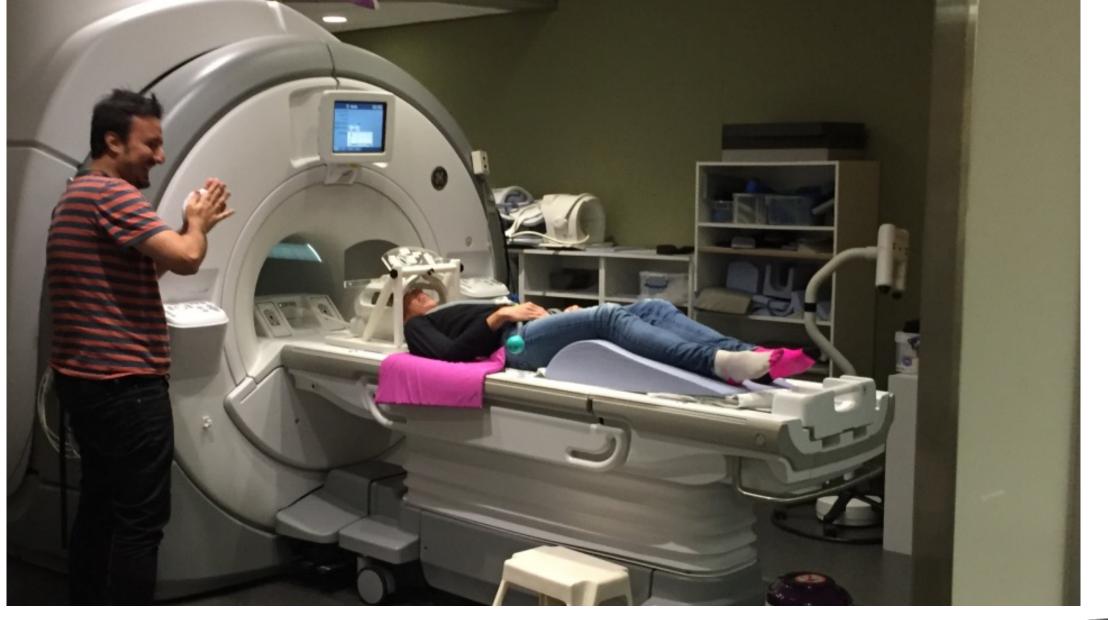
$$\frac{\partial c}{\partial t} = \text{Div}(\mathbf{D} \cdot \nabla c) + \alpha c (1 - c)$$



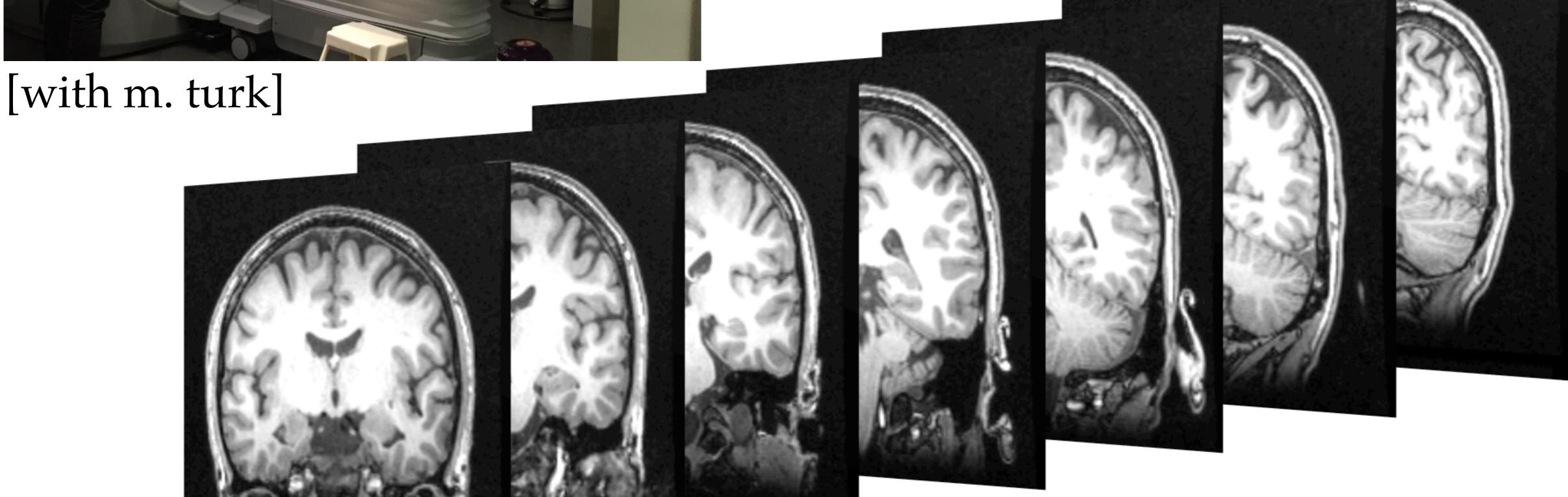


[with m. turk]

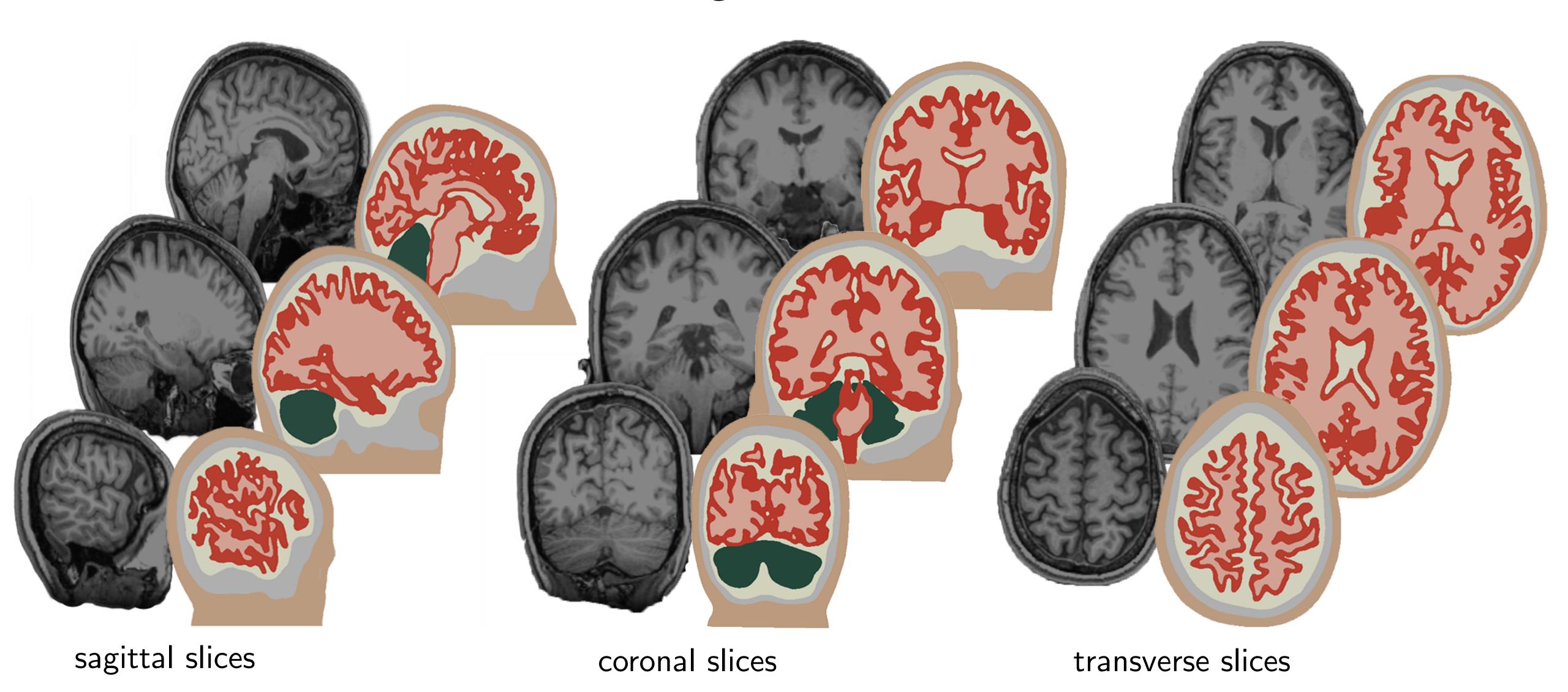
1. data acquisition



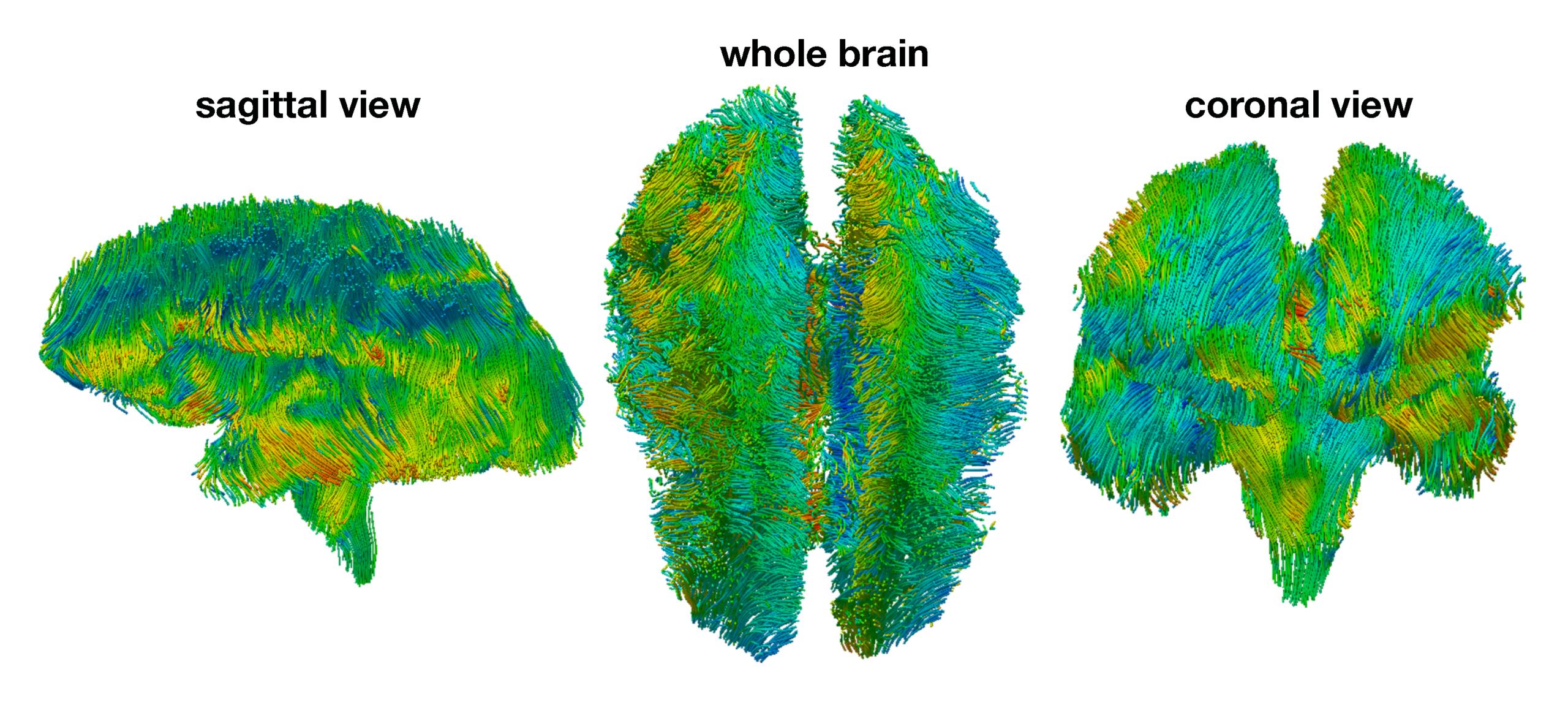
1. data acquisition



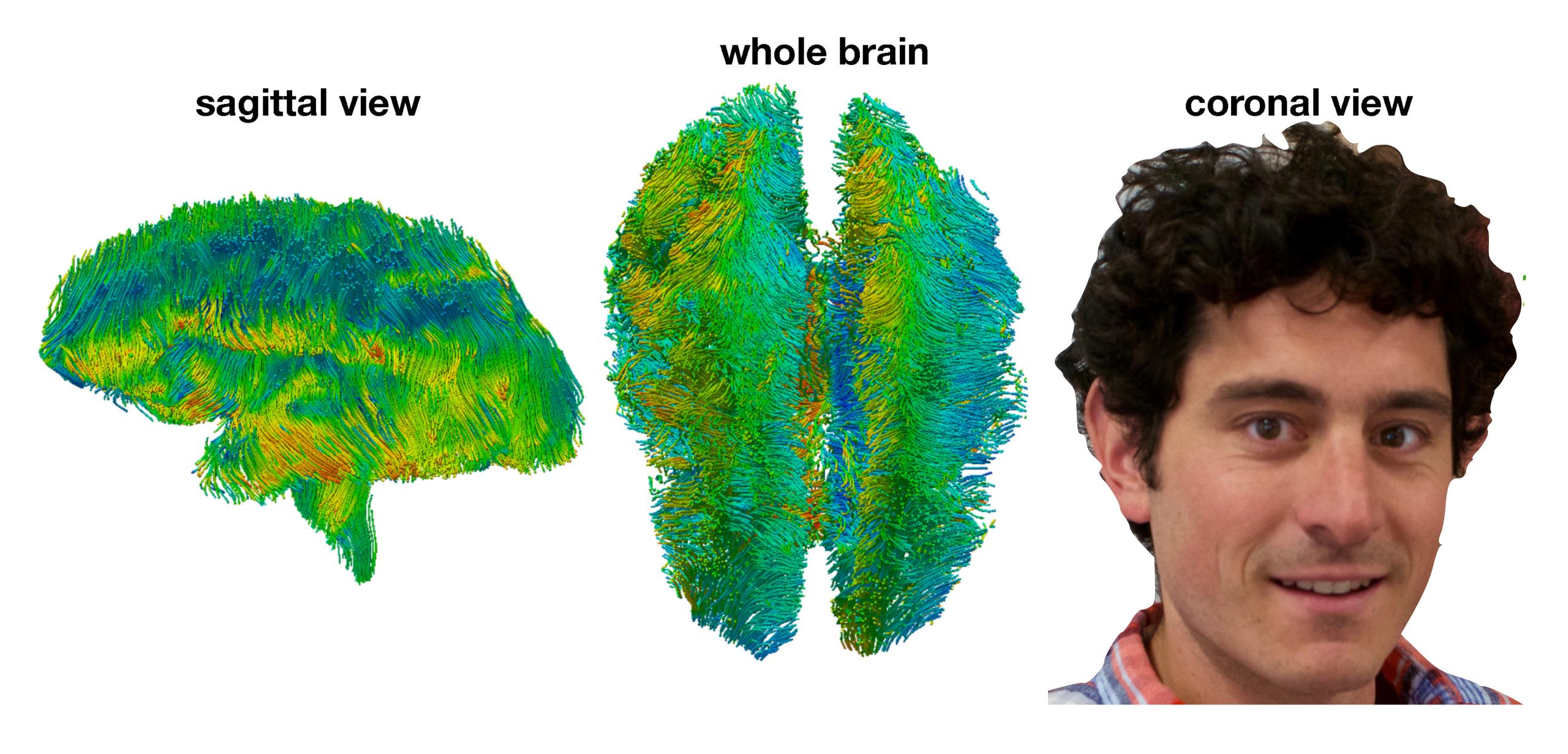
2. segmentation



3. information on axonal direction

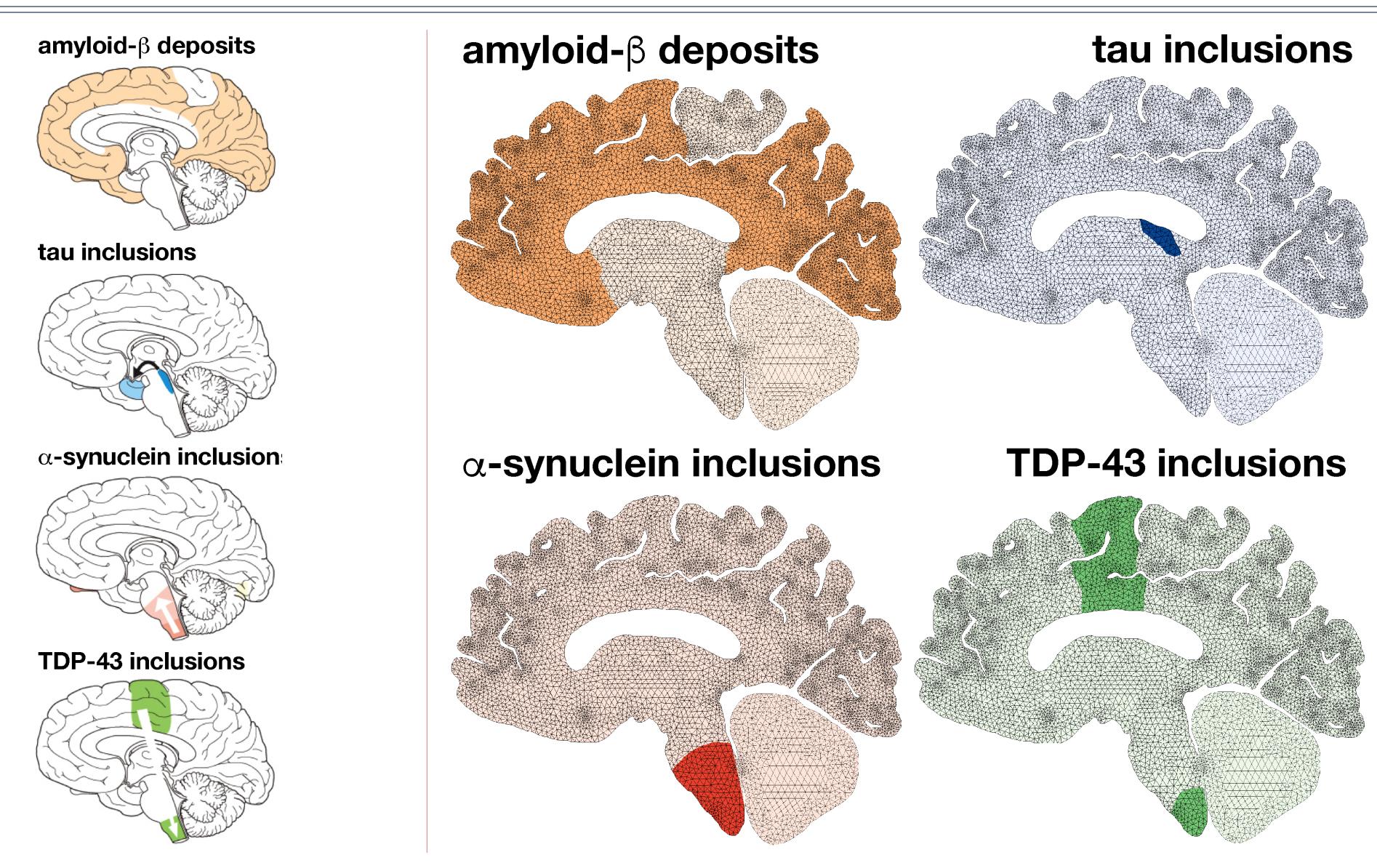


3. information on axonal direction



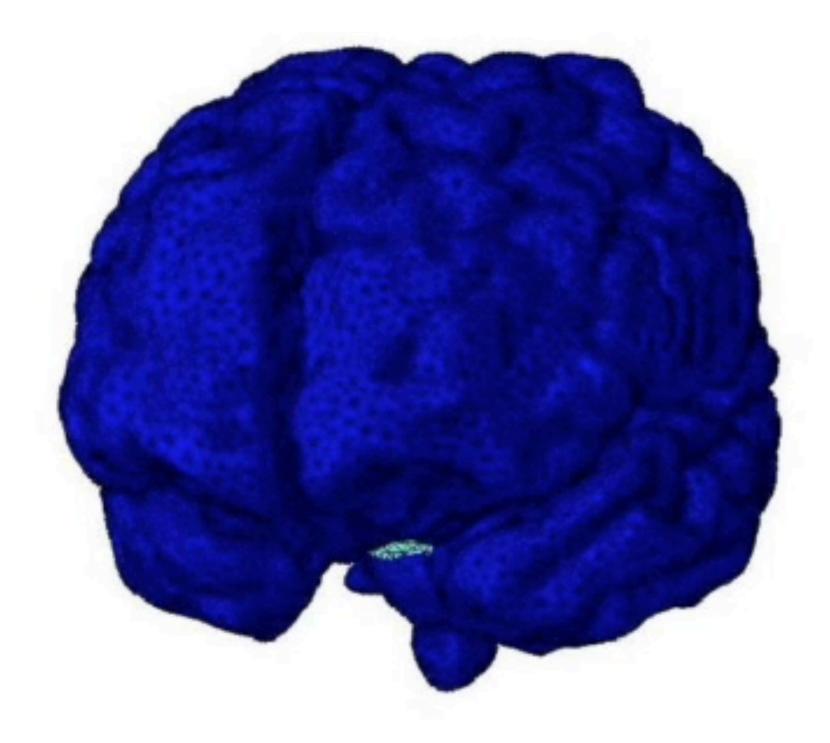
4. 3d model

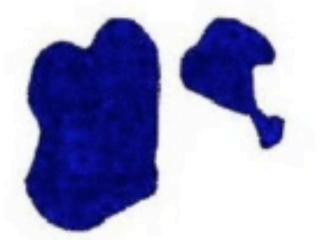
seeding of toxic proteins



[jucker, walker, 2013],

[weickenmeier, jucker, ag, kuhl 2018]

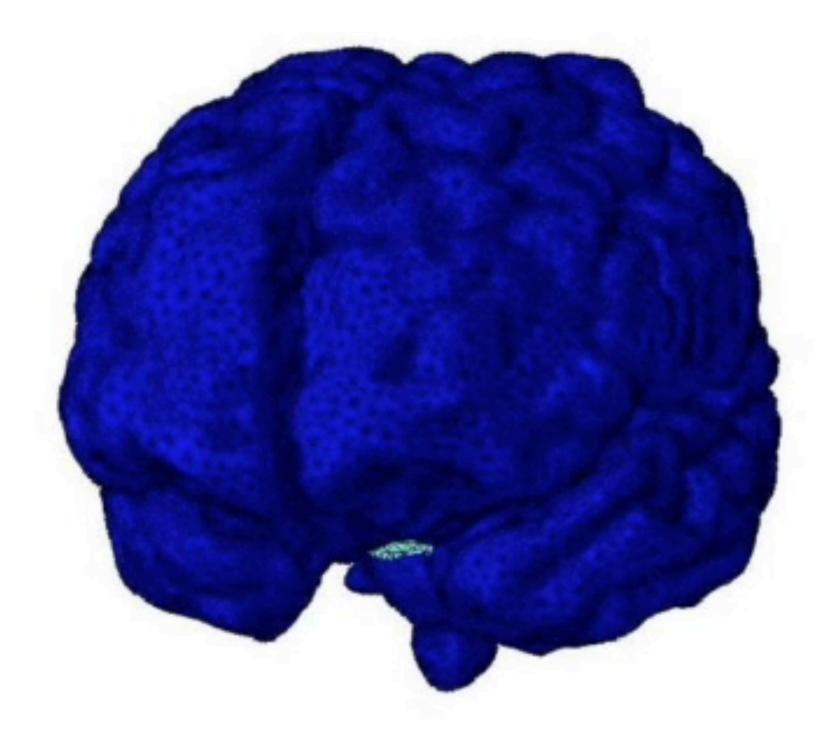


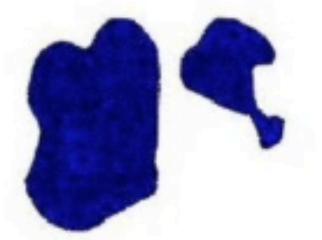


tau propagation in Alzheimer's disease onset

late-stage

tau infestation mid-stage

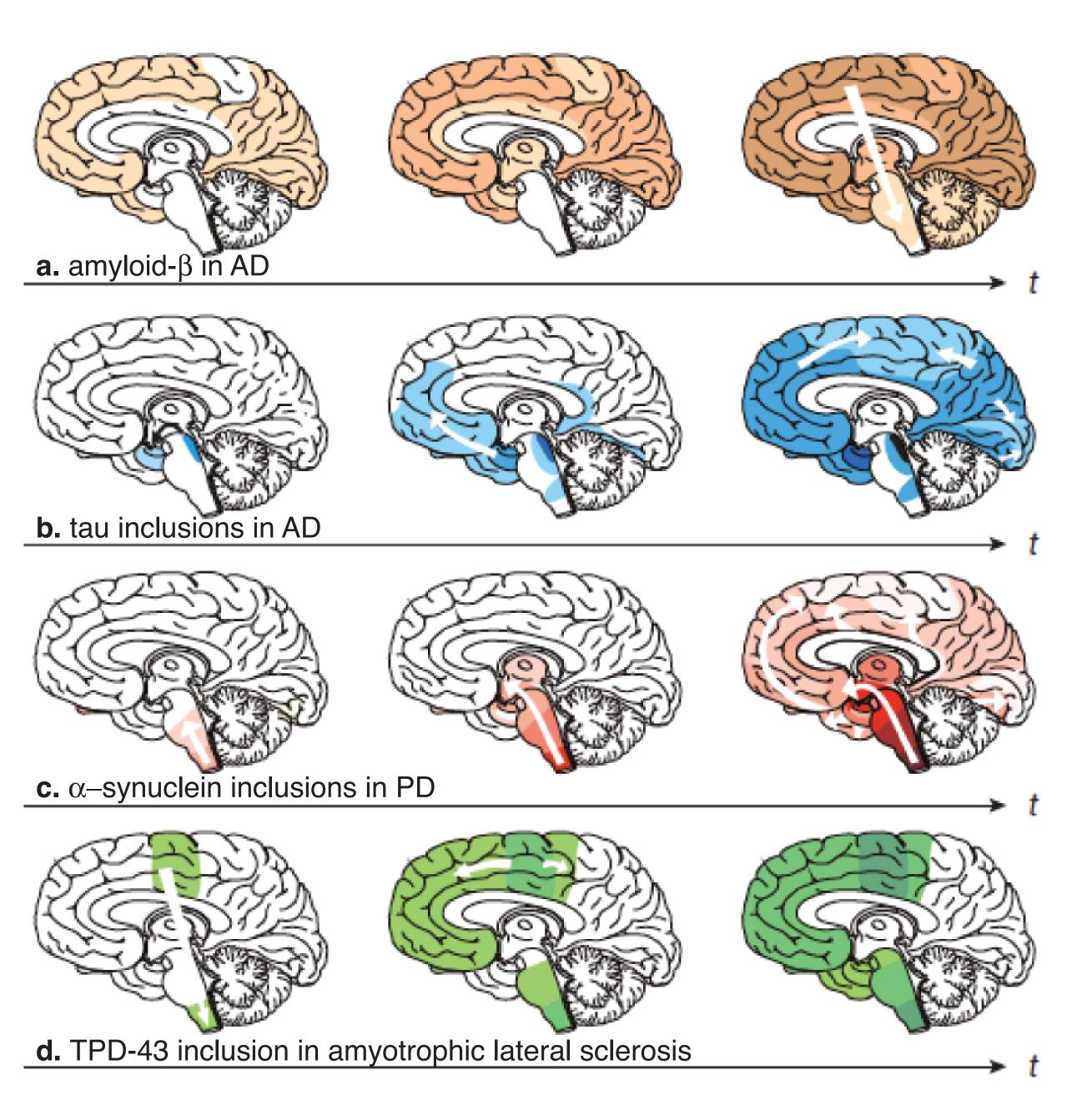


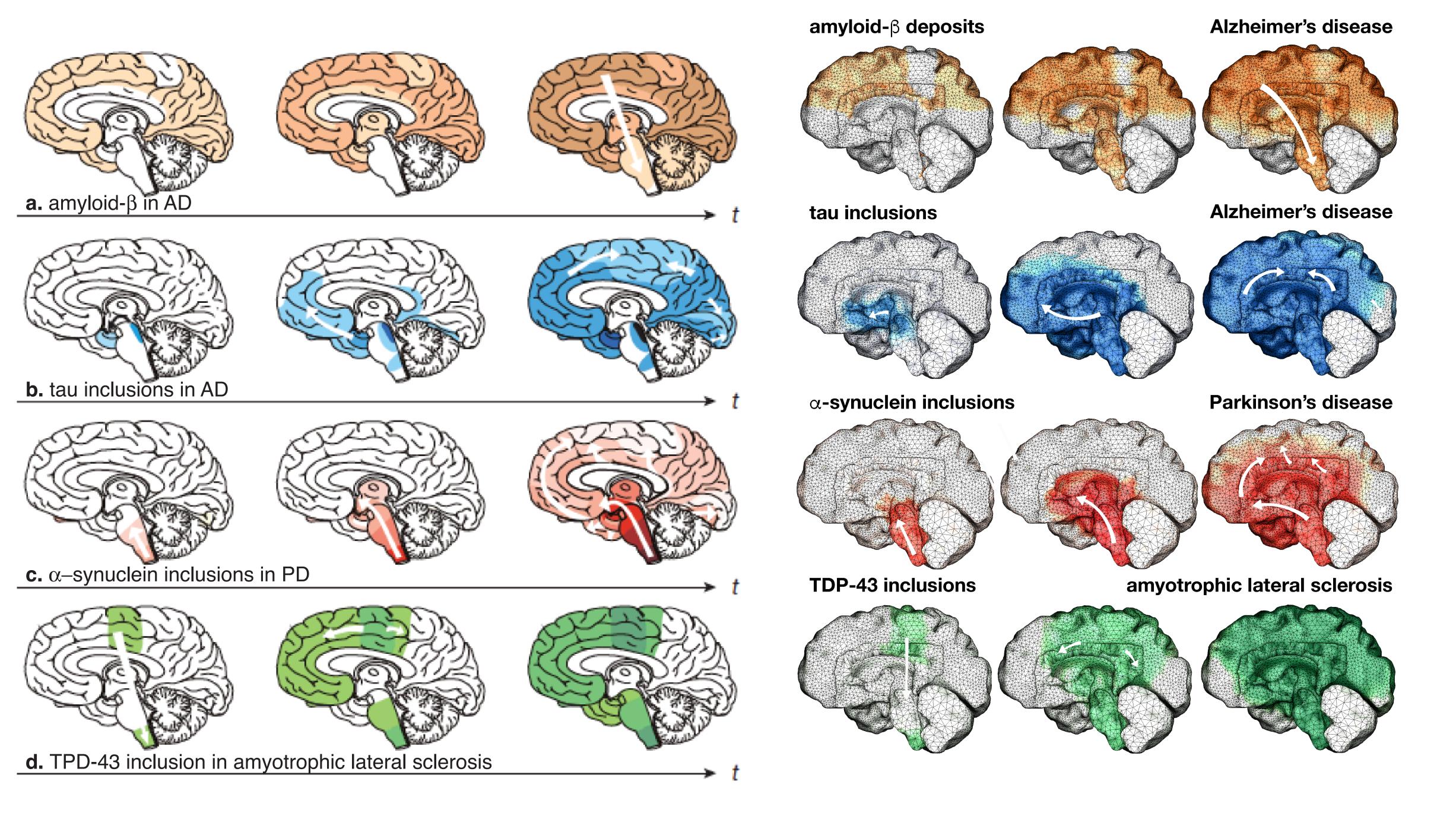


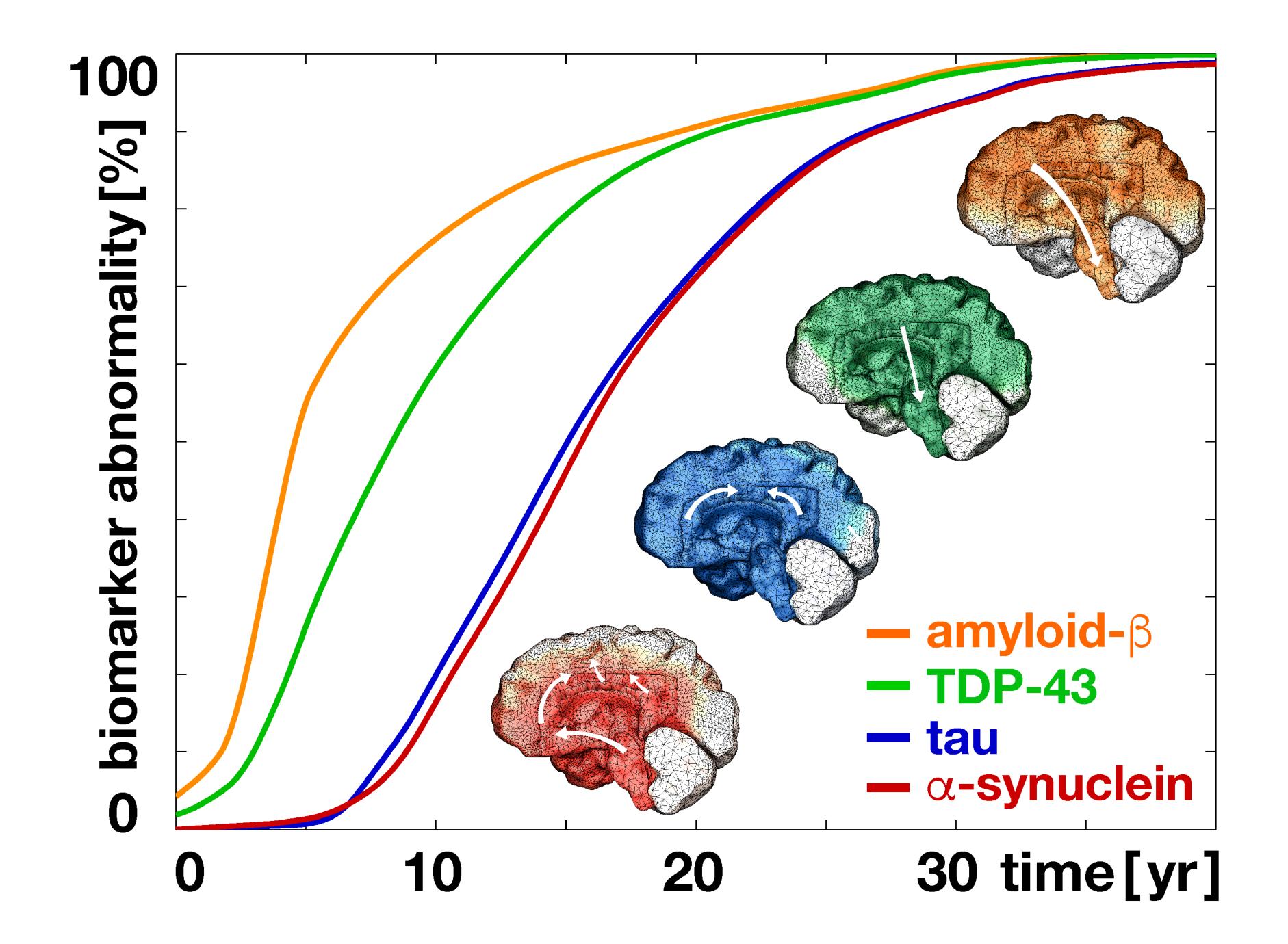
tau propagation in Alzheimer's disease onset

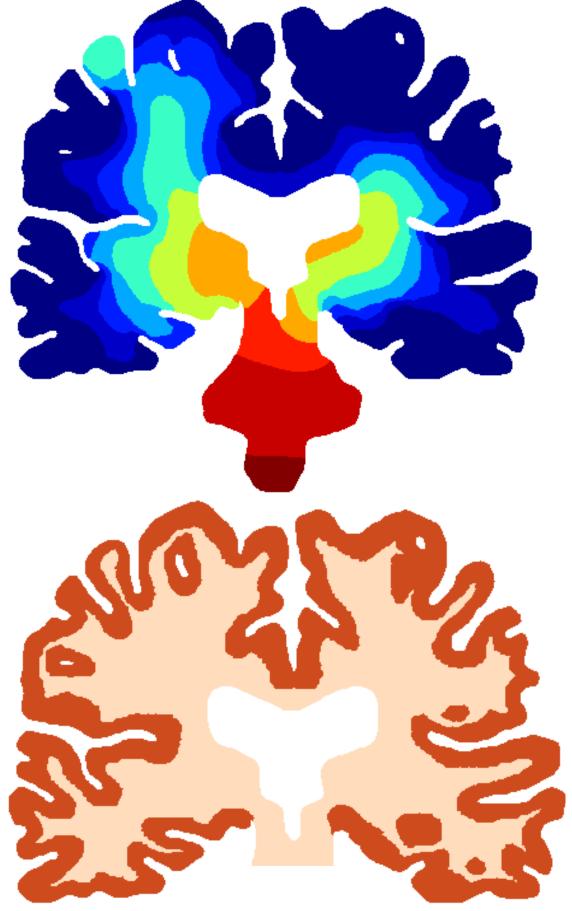
late-stage

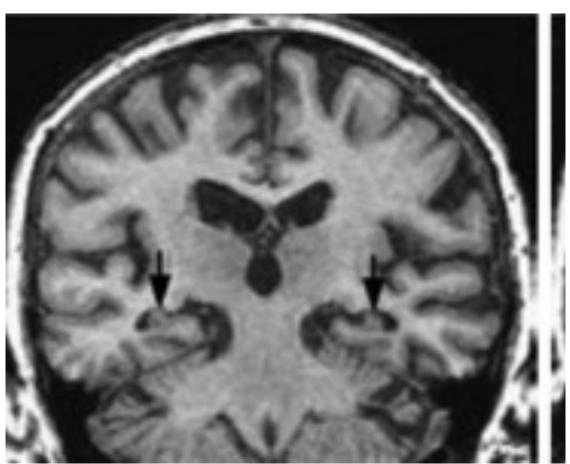
tau infestation mid-stage

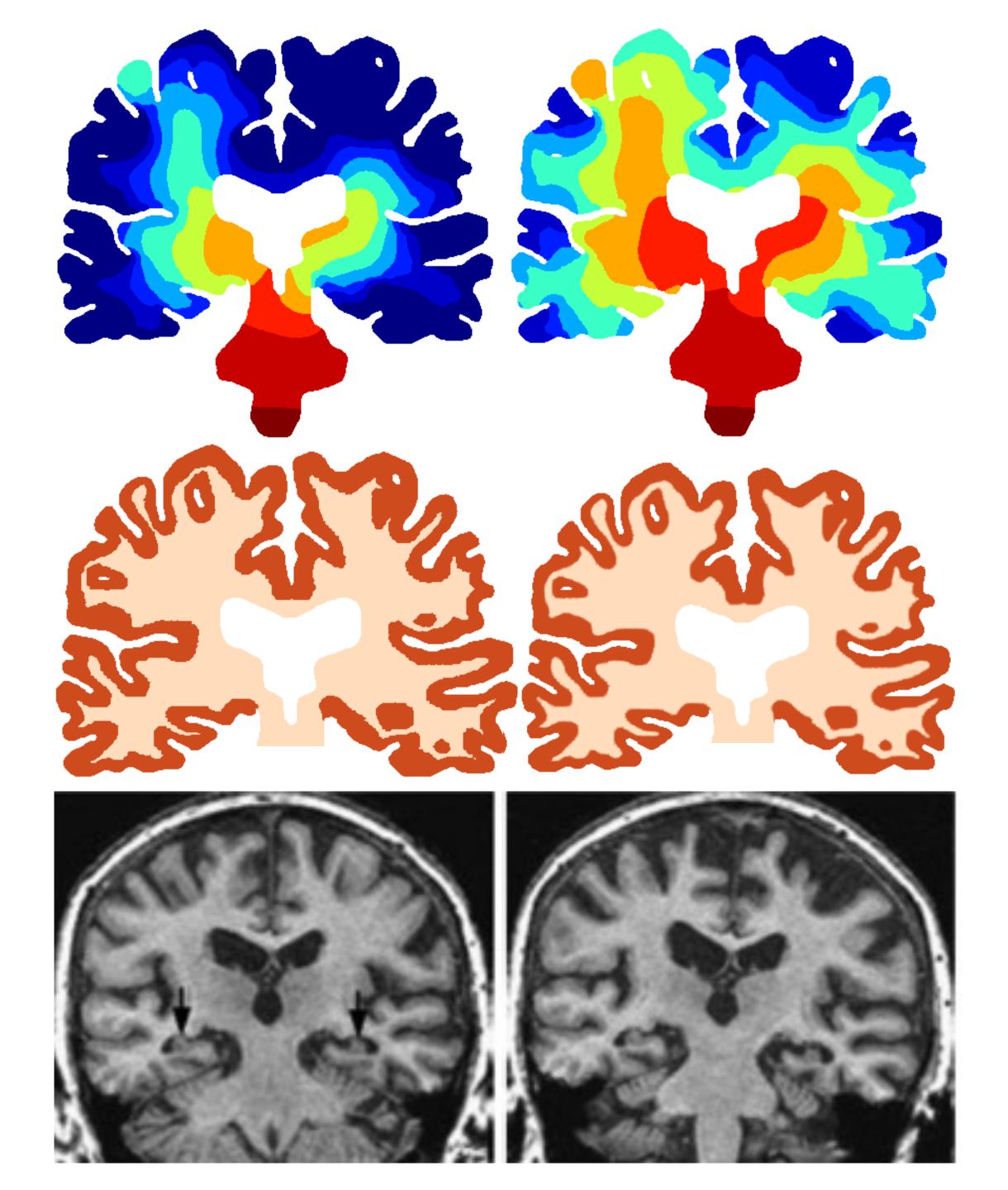


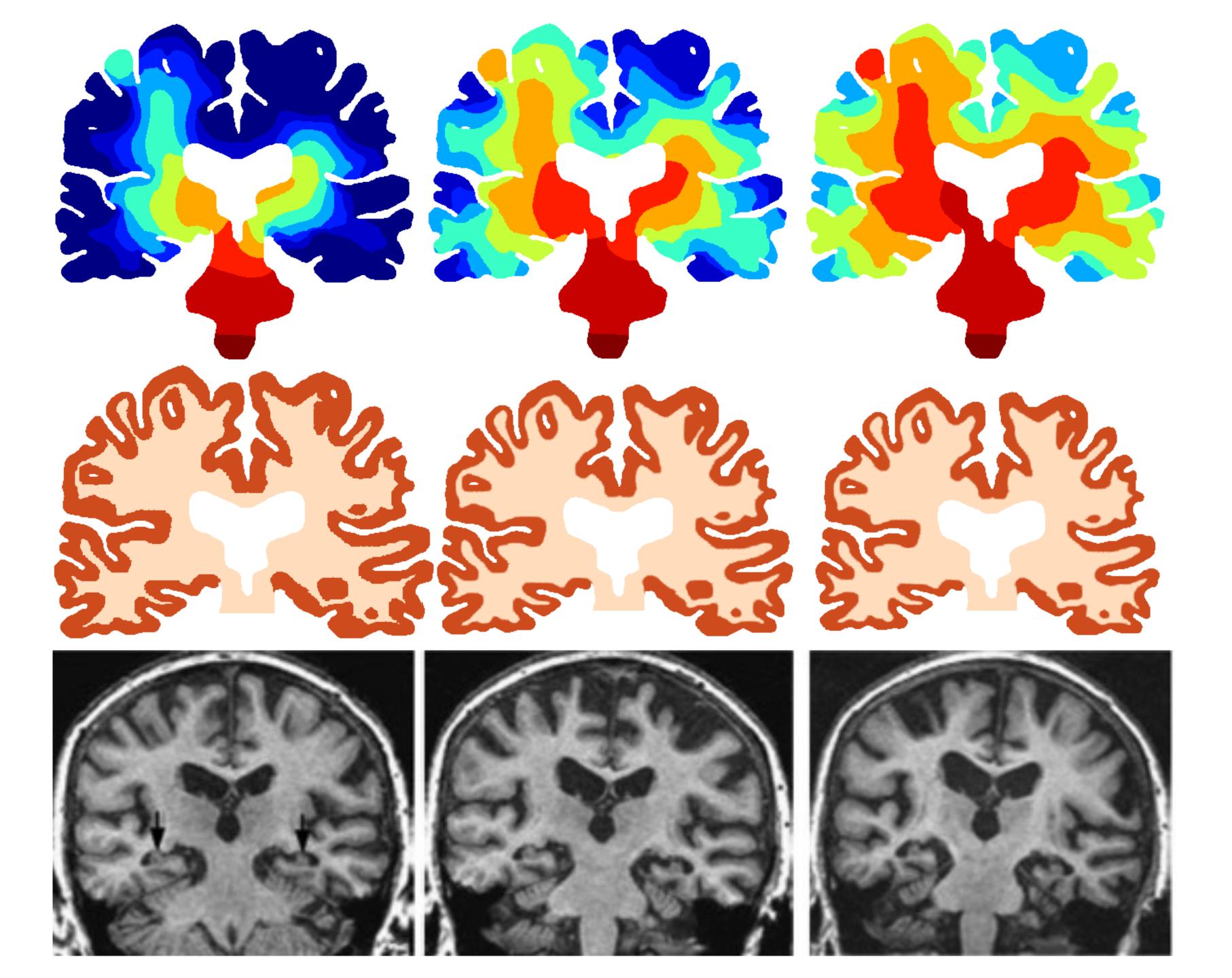


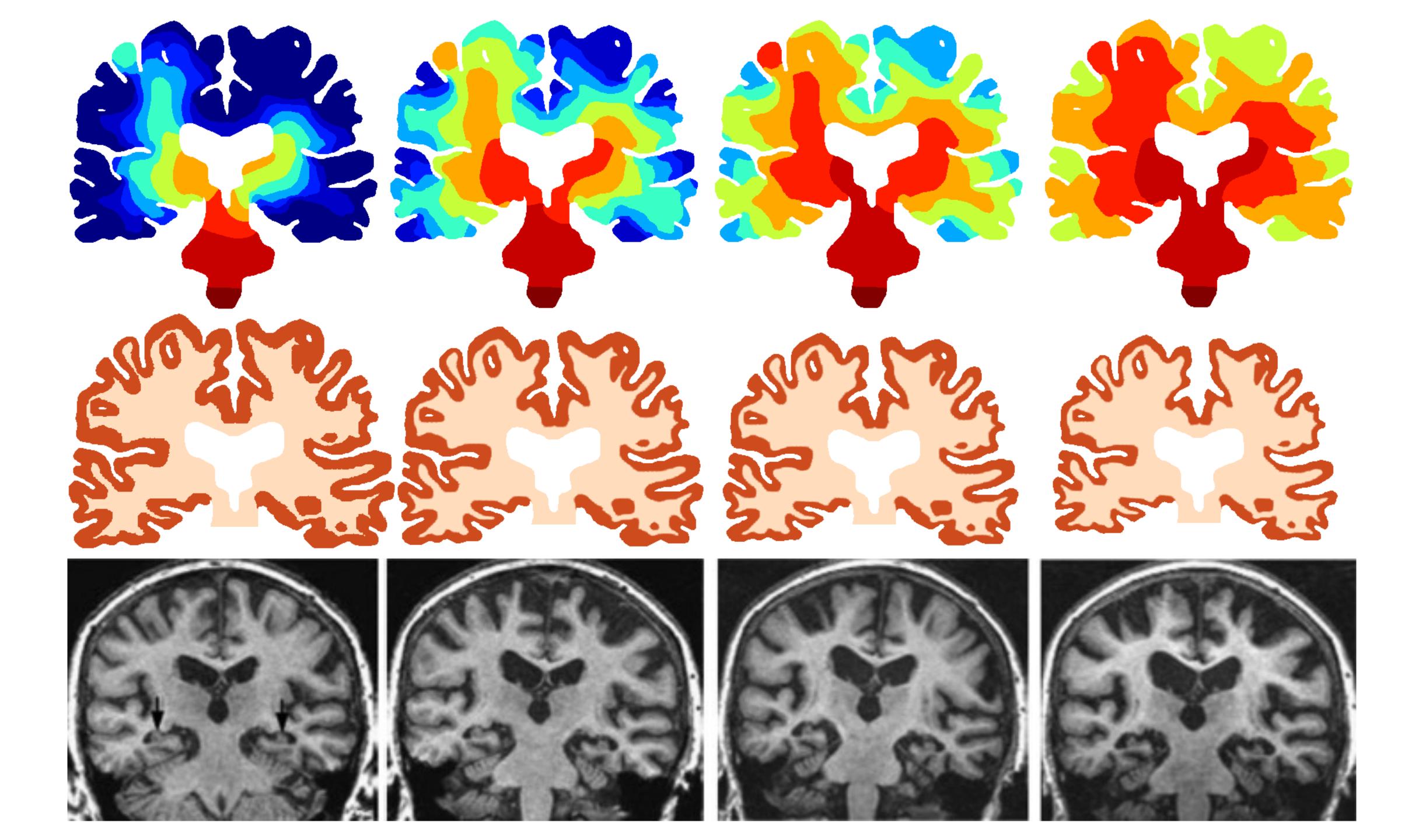


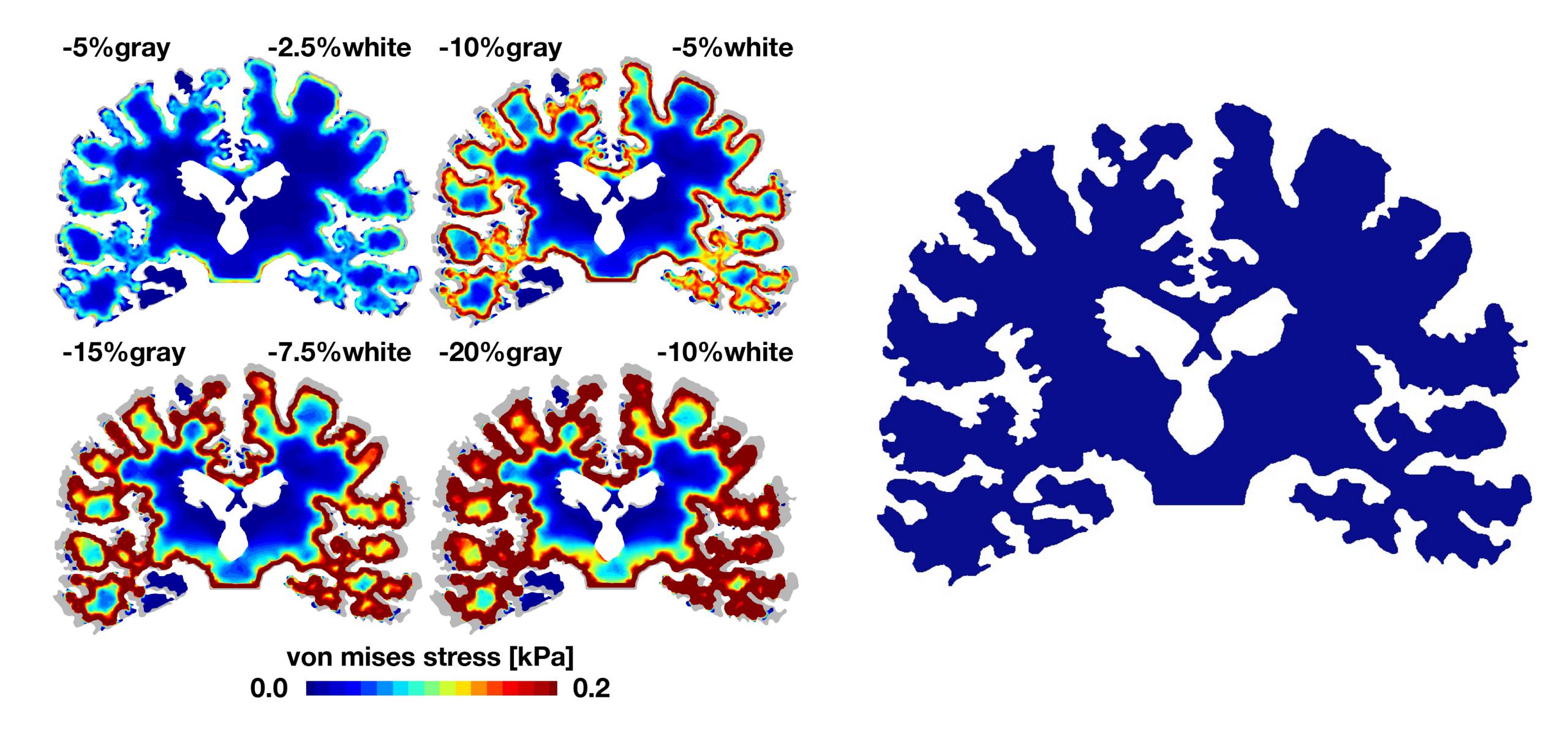


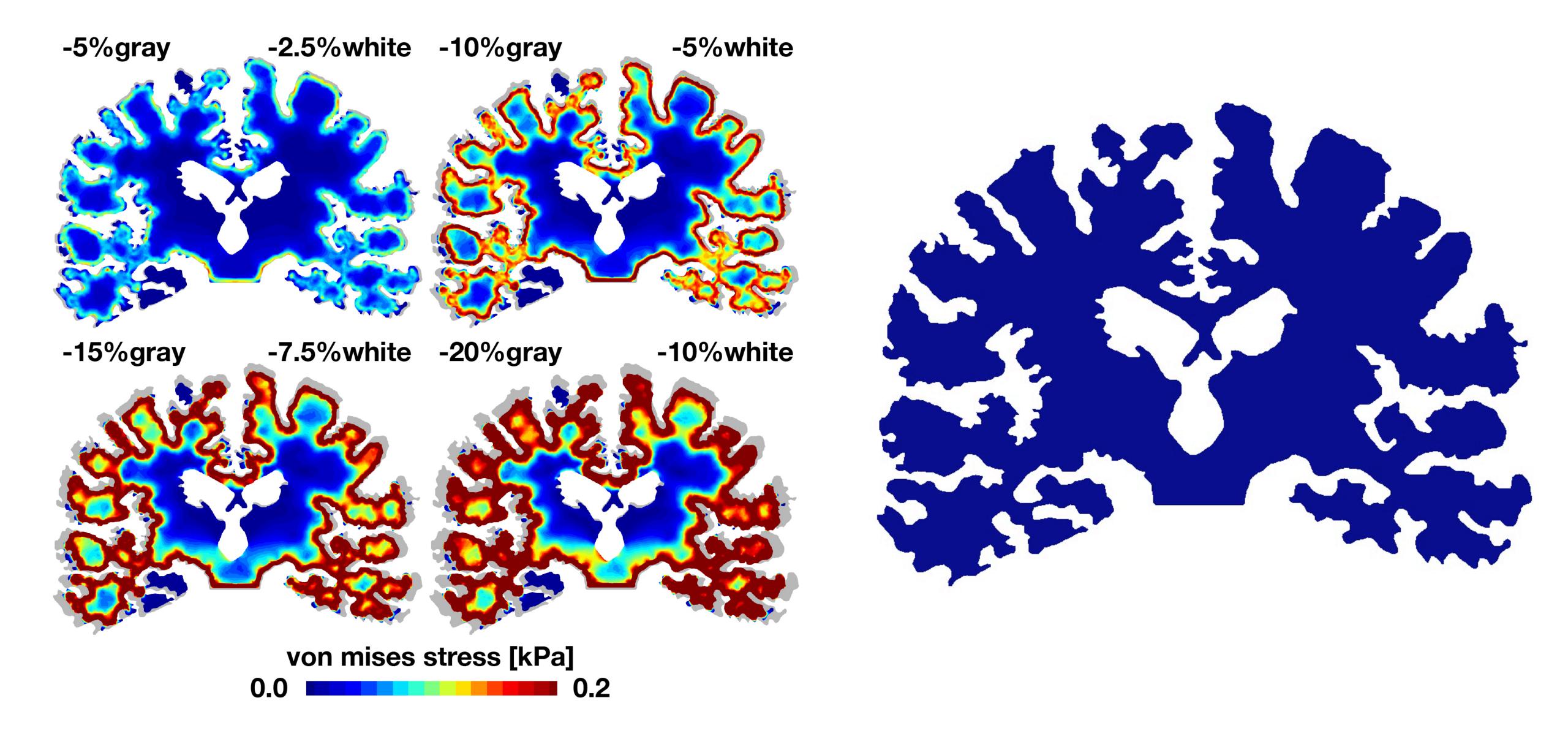










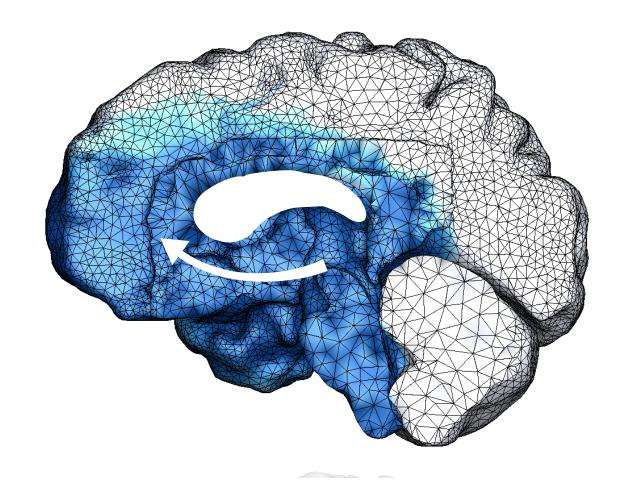


4.

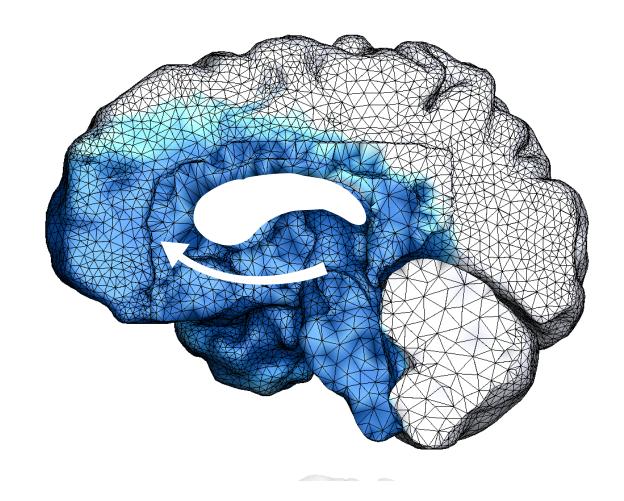
"the struggle of whether we connect more"

4.

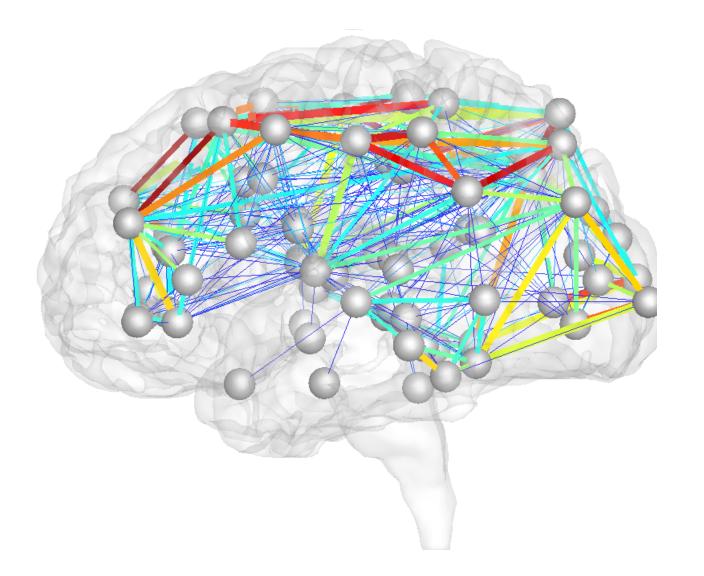
"the struggle of whether we connect more" marck zuckerberg



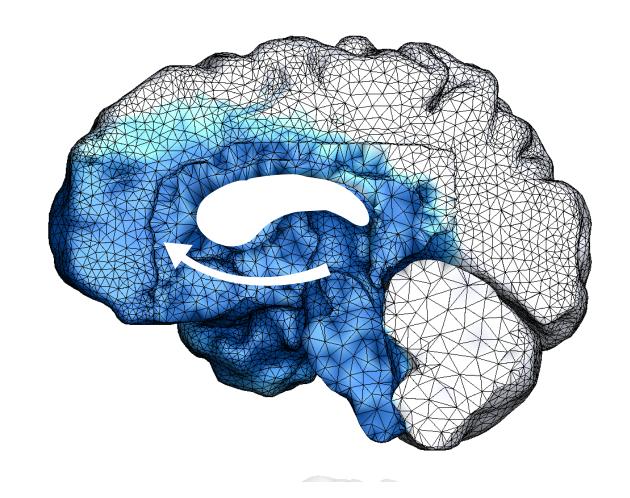
define p and \widetilde{p} at all points



define p and \widetilde{p} at all points



define p_i and \tilde{p}_i at each node i

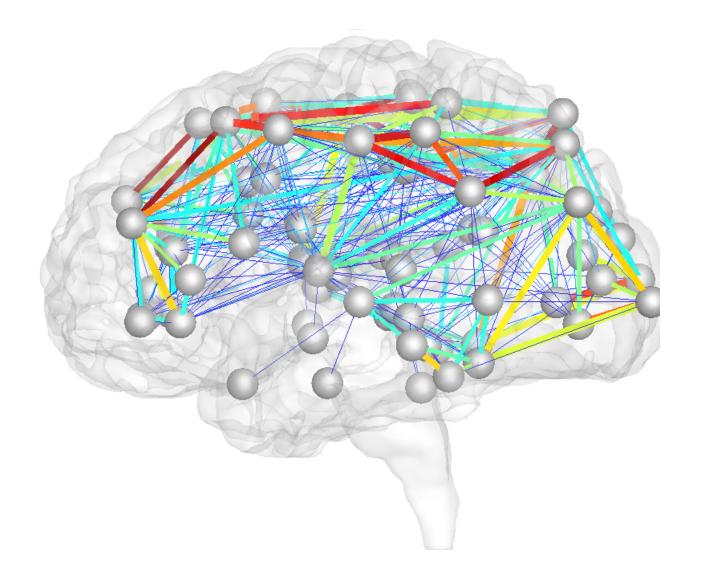


define p and \tilde{p} at all points

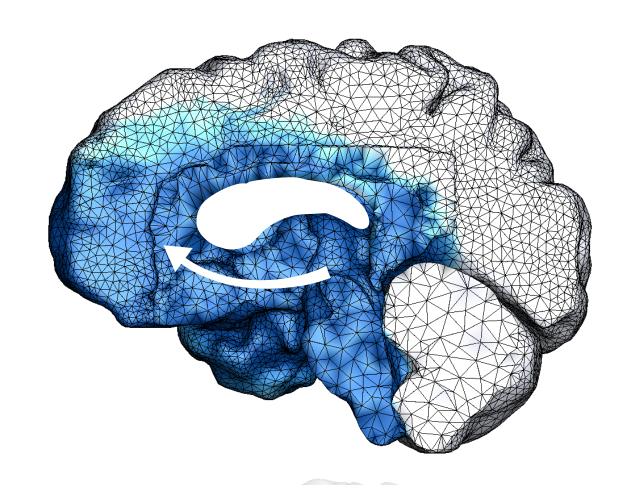
$$\frac{\partial p}{\partial t} = \text{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p}$$

$$\frac{\partial \widetilde{p}}{\partial t} = \text{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) - \widetilde{k}_{1}\widetilde{p} + k_{12}p\widetilde{p}$$

discrete model



define p_i and \tilde{p}_i at each node i

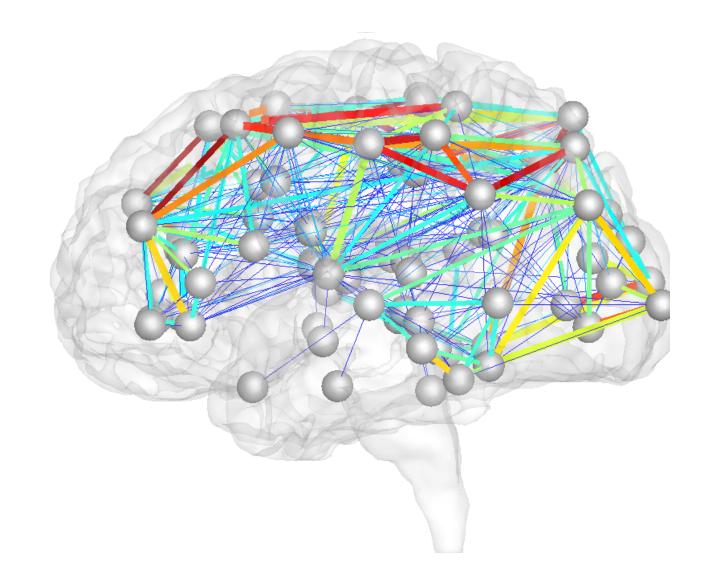


define p and \tilde{p} at all points

$$\frac{\partial p}{\partial t} = \text{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p}$$

$$\frac{\partial \widetilde{p}}{\partial t} = \text{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) - \widetilde{k}_{1}\widetilde{p} + k_{12}p\widetilde{p}$$

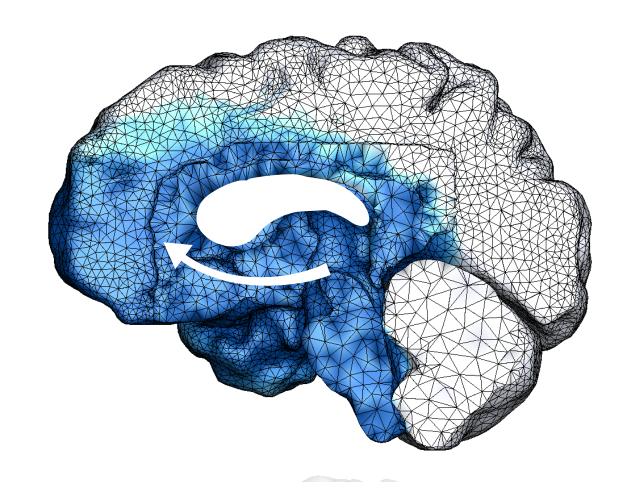
discrete model



define p_i and \tilde{p}_i at each node i

$$\frac{dp_i}{dt} = -\sum_{j=1}^n L_{ij}p_j + k_0 - k_1p_i - k_{12}p_i\widetilde{p}_i$$

$$\frac{d\widetilde{p}_i}{dt} = -\sum_{j=1}^n L_{ij}\widetilde{p}_j - \widetilde{k}_1p_i - k_{12}p_i\widetilde{p}_i$$

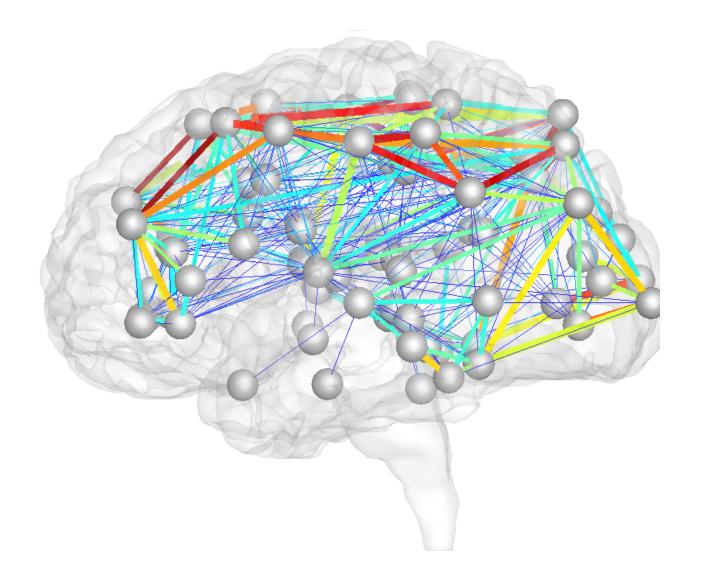


define p and \widetilde{p} at all points

$$\begin{split} \frac{\partial p}{\partial t} &= \mathrm{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p} \\ \frac{\partial \widetilde{p}}{\partial t} &= \mathrm{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) \qquad - \widetilde{k}_{1}\widetilde{p} + k_{12}p\widetilde{p} \end{split}$$

partial differential equations

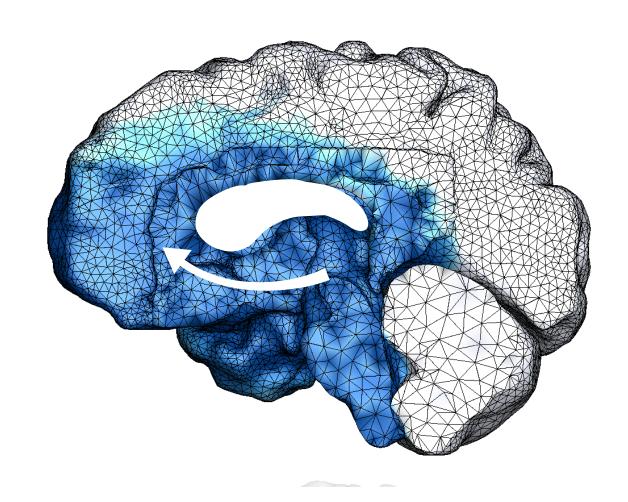
discrete model



define p_i and \tilde{p}_i at each node i

$$\frac{dp_i}{dt} = -\sum_{j=1}^n L_{ij}p_j + k_0 - k_1p_i - k_{12}p_i\widetilde{p}_i$$

$$\frac{d\widetilde{p}_i}{dt} = -\sum_{j=1}^n L_{ij}\widetilde{p}_j \qquad -\widetilde{k}_1p_i - k_{12}p_i\widetilde{p}_i$$

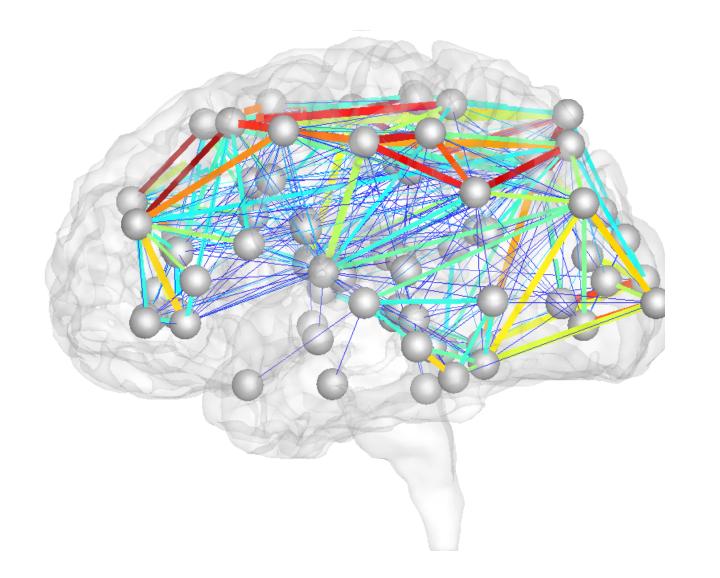


define p and \tilde{p} at all points

$$\begin{split} \frac{\partial p}{\partial t} &= \mathrm{Div}(\mathbf{D}_{p} \cdot \nabla p) + k_{0} - k_{1}p - k_{12}p\widetilde{p} \\ \frac{\partial \widetilde{p}}{\partial t} &= \mathrm{Div}(\mathbf{D}_{\widetilde{p}} \cdot \nabla \widetilde{p}) \qquad - \widetilde{k}_{1}\widetilde{p} + k_{12}p\widetilde{p} \end{split}$$

partial differential equations

discrete model

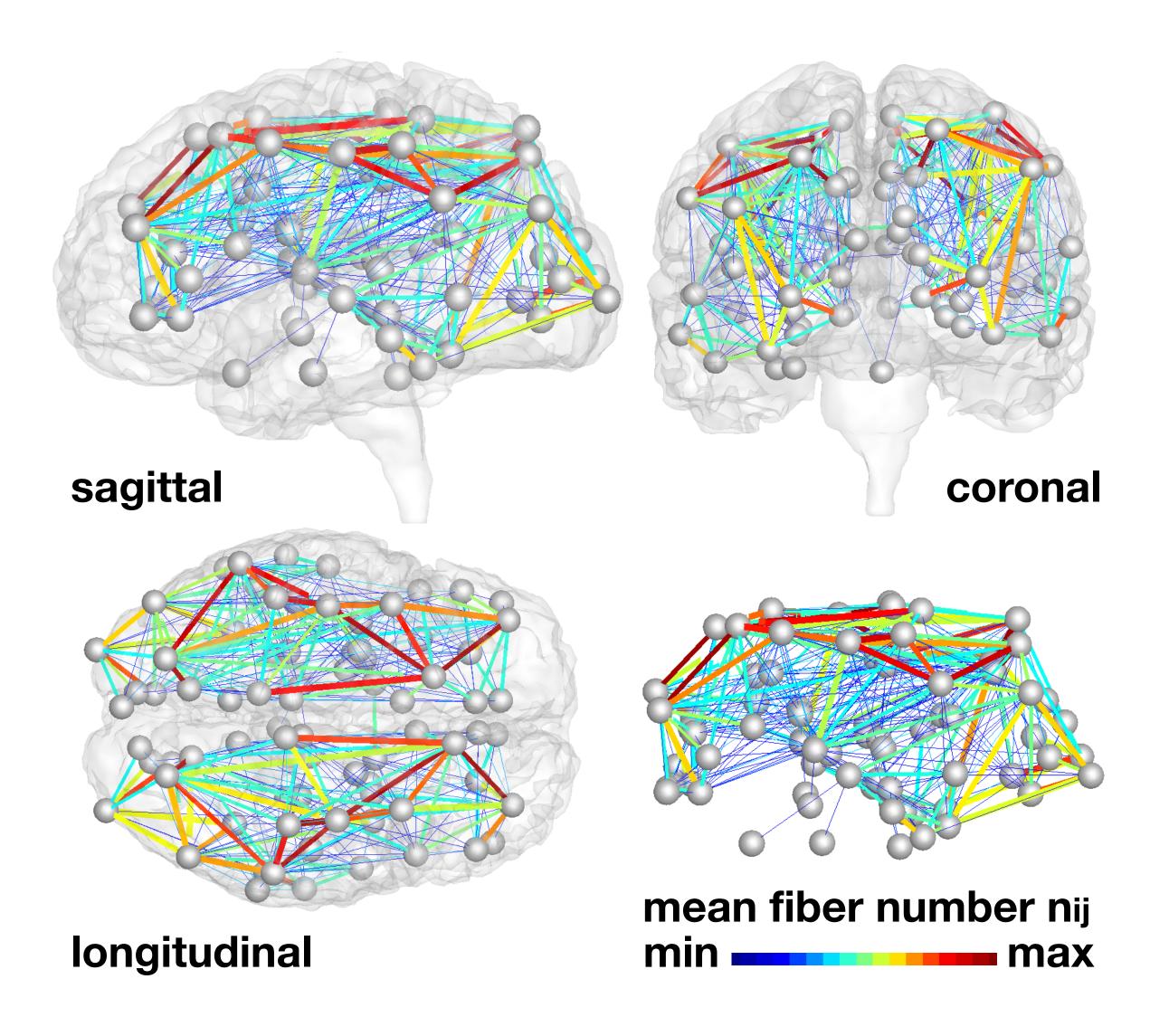


define p_i and \tilde{p}_i at each node i

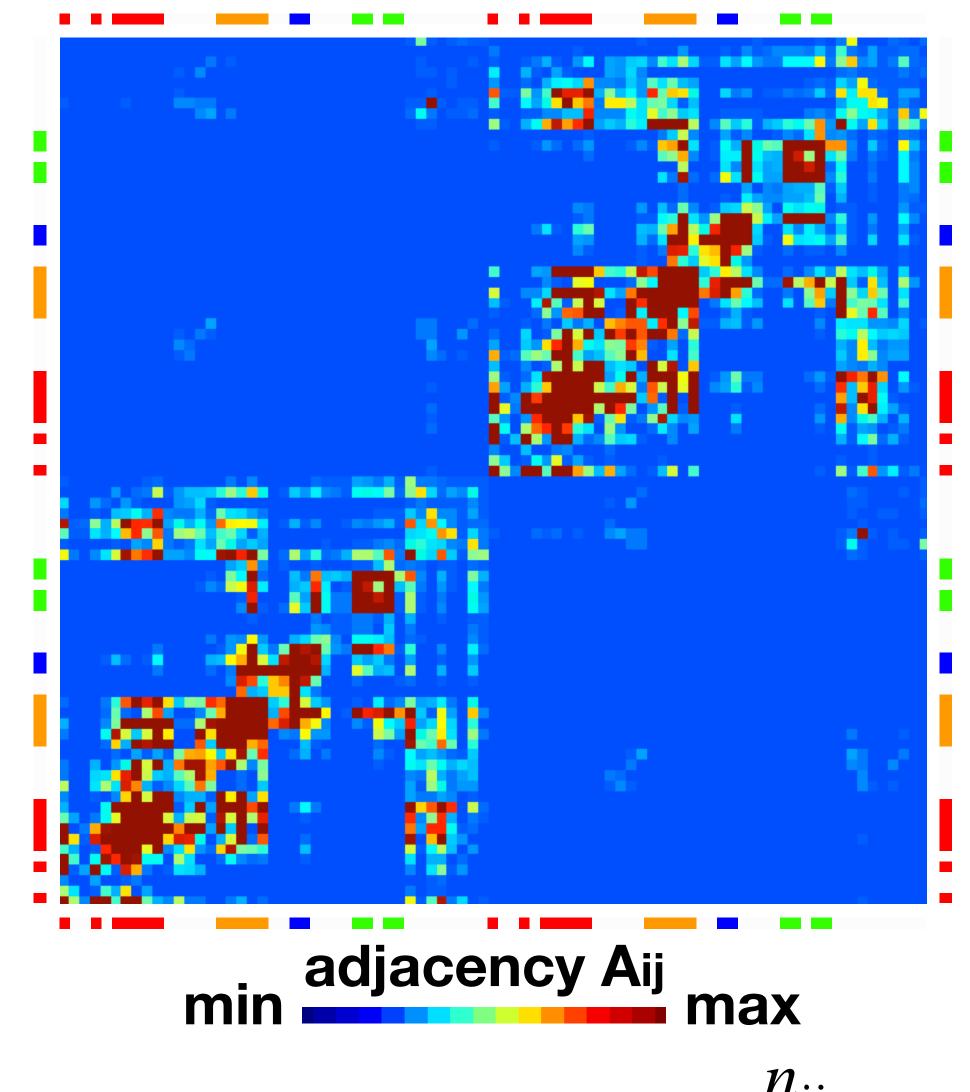
$$\frac{dp_i}{dt} = -\sum_{j=1}^n L_{ij}p_j + k_0 - k_1p_i - k_{12}p_i\widetilde{p}_i$$

$$\frac{d\widetilde{p}_i}{dt} = -\sum_{j=1}^n L_{ij}\widetilde{p}_j \qquad -\widetilde{k}_1p_i - k_{12}p_i\widetilde{p}_i$$

ordinary differential equations



weighted graph Laplacian

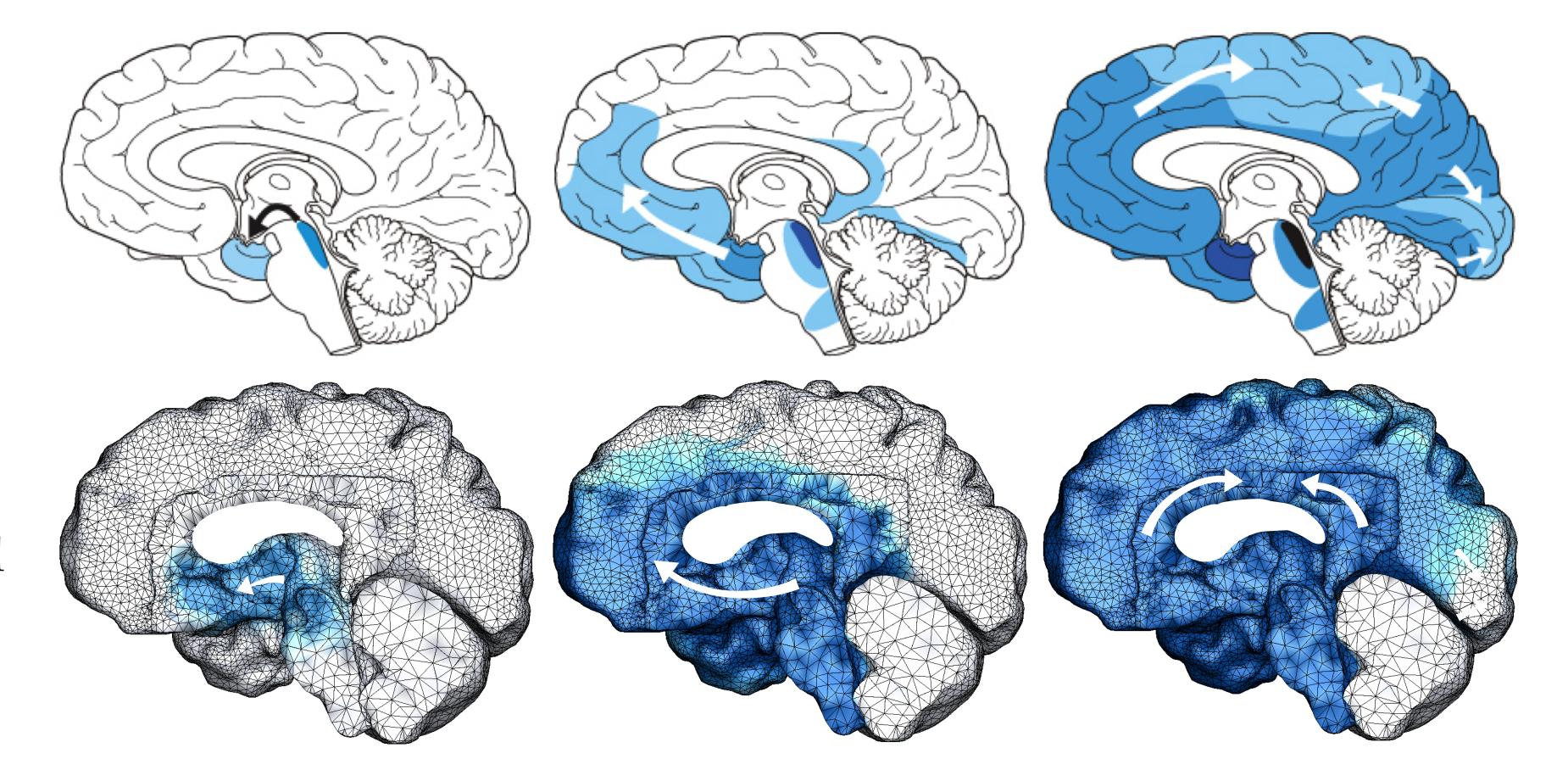


 $L_{ij} = D_{ij} - A_{ij}$ with $A_{ij} = \frac{n_{ij}}{l_{ij}}$

	0					
				X		

	0					
				X		

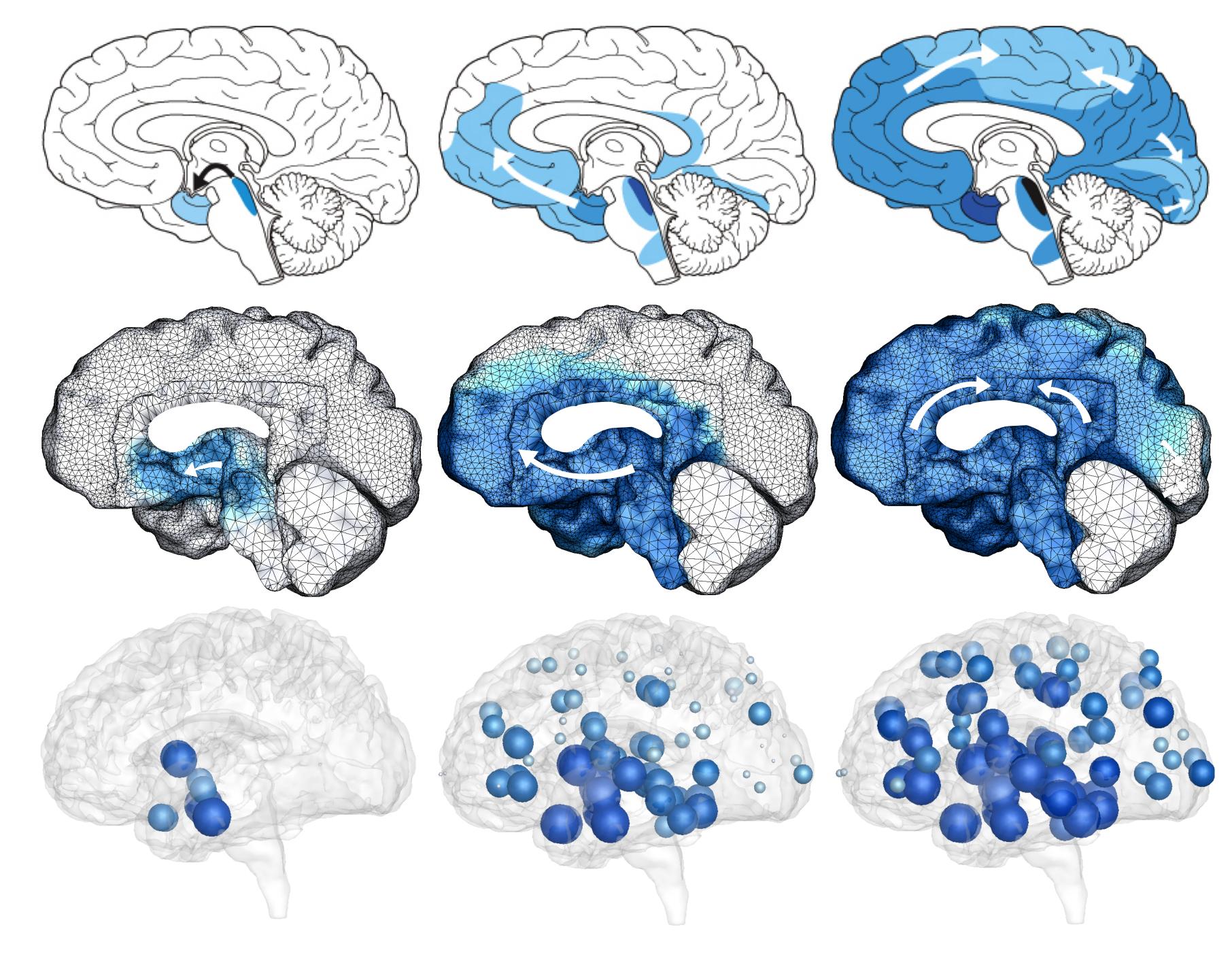
clinical data

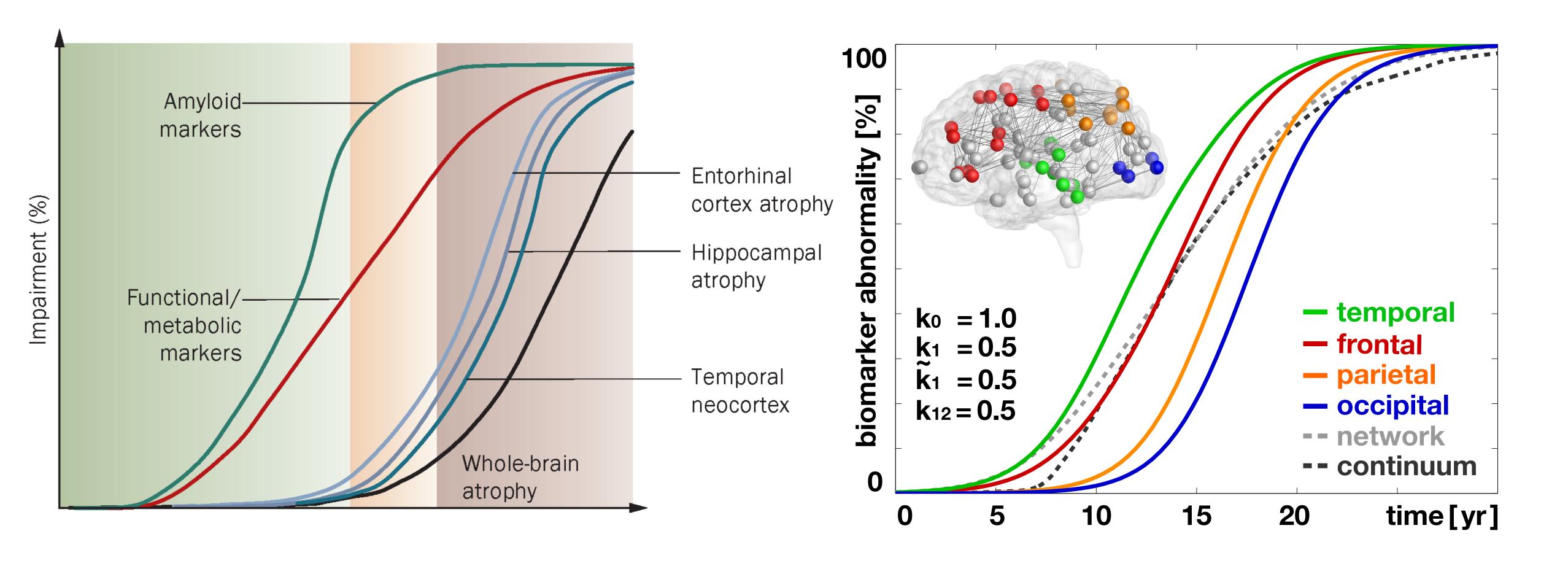


continuum model

clinical data

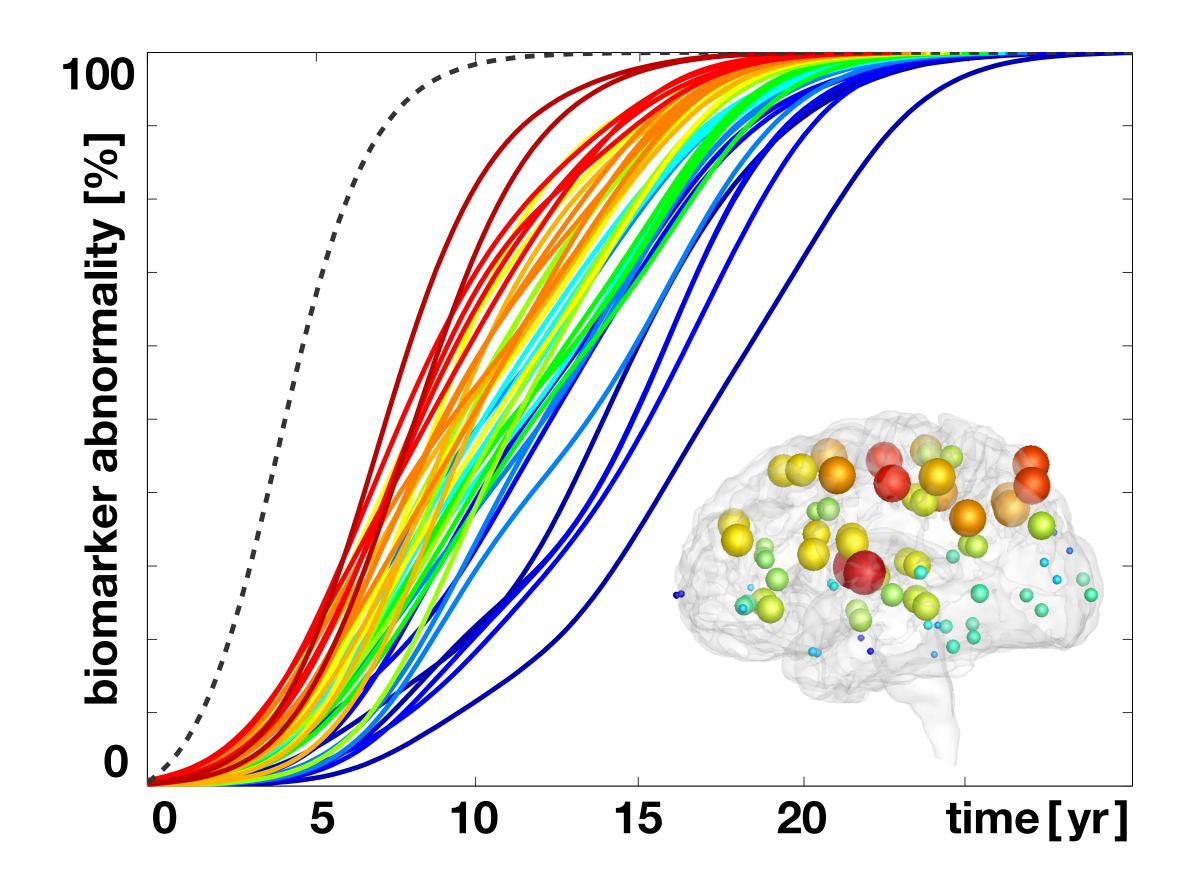
continuum model

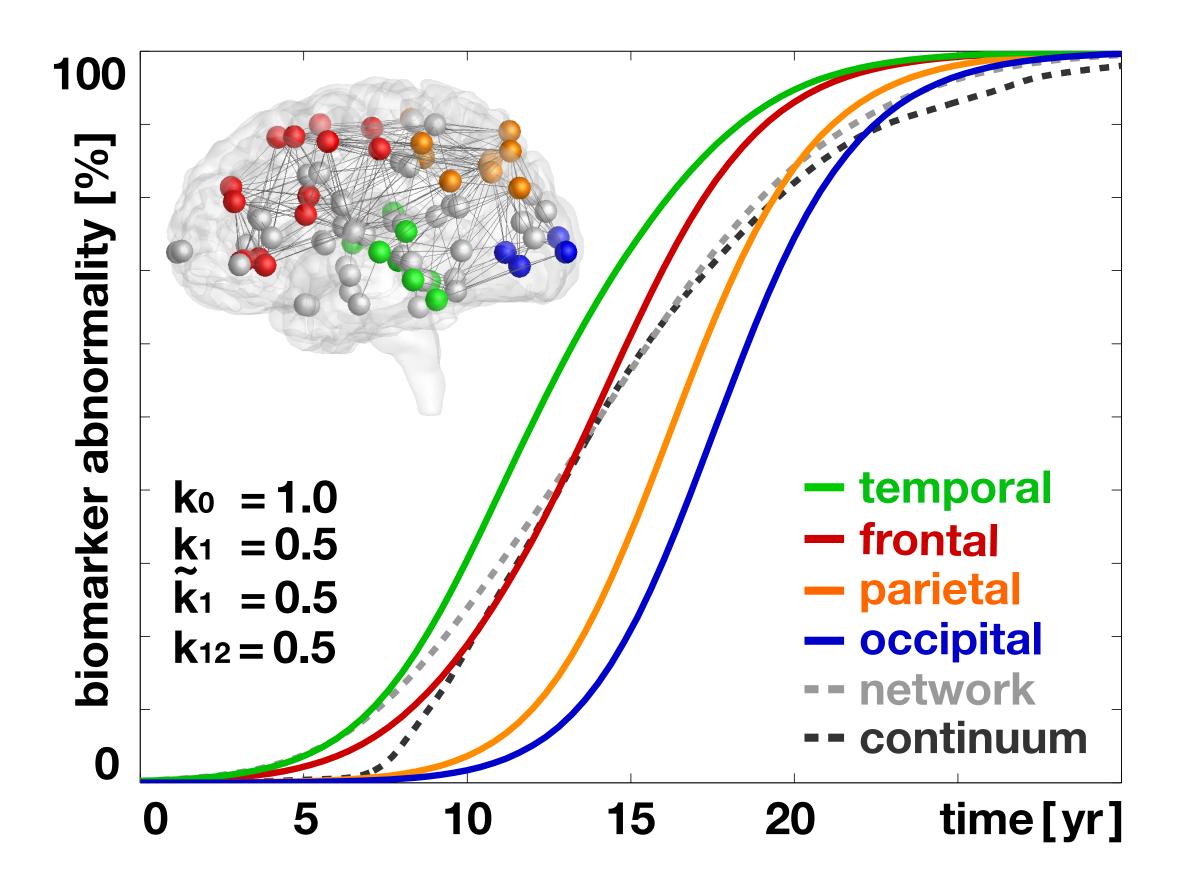




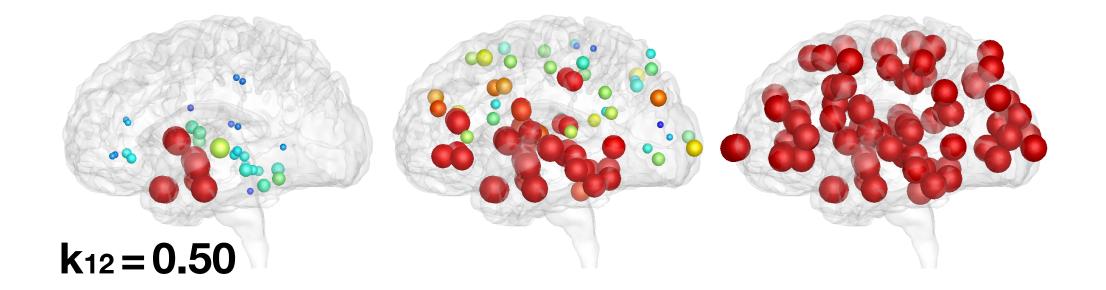
[frisoni, fox, jack, scheltens, thompson 2010]

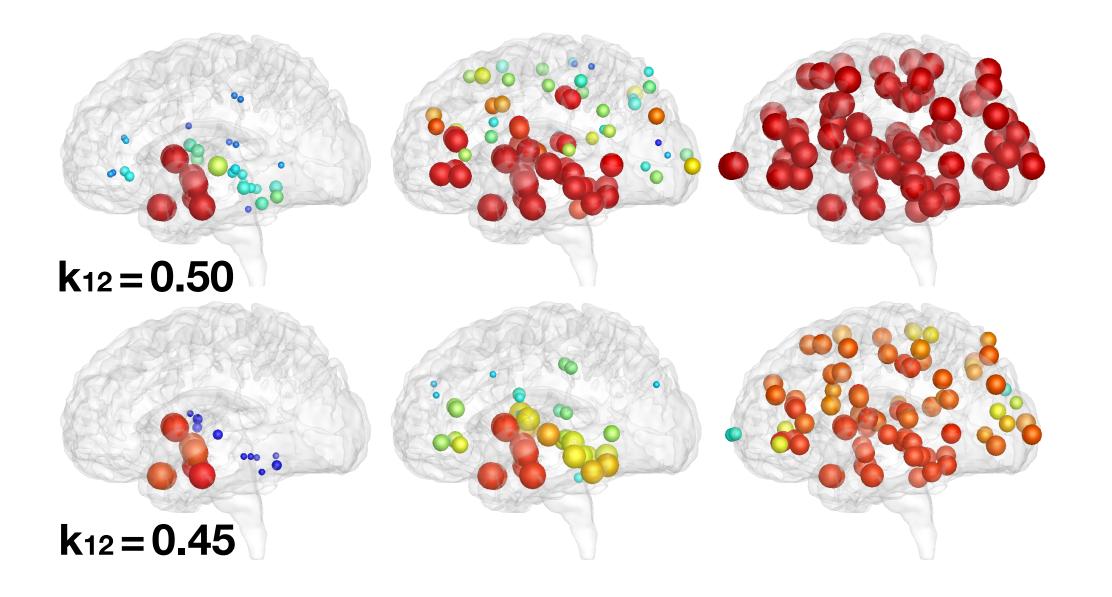
[fornari, schafer, jucker, ag, kuhl, 2019]

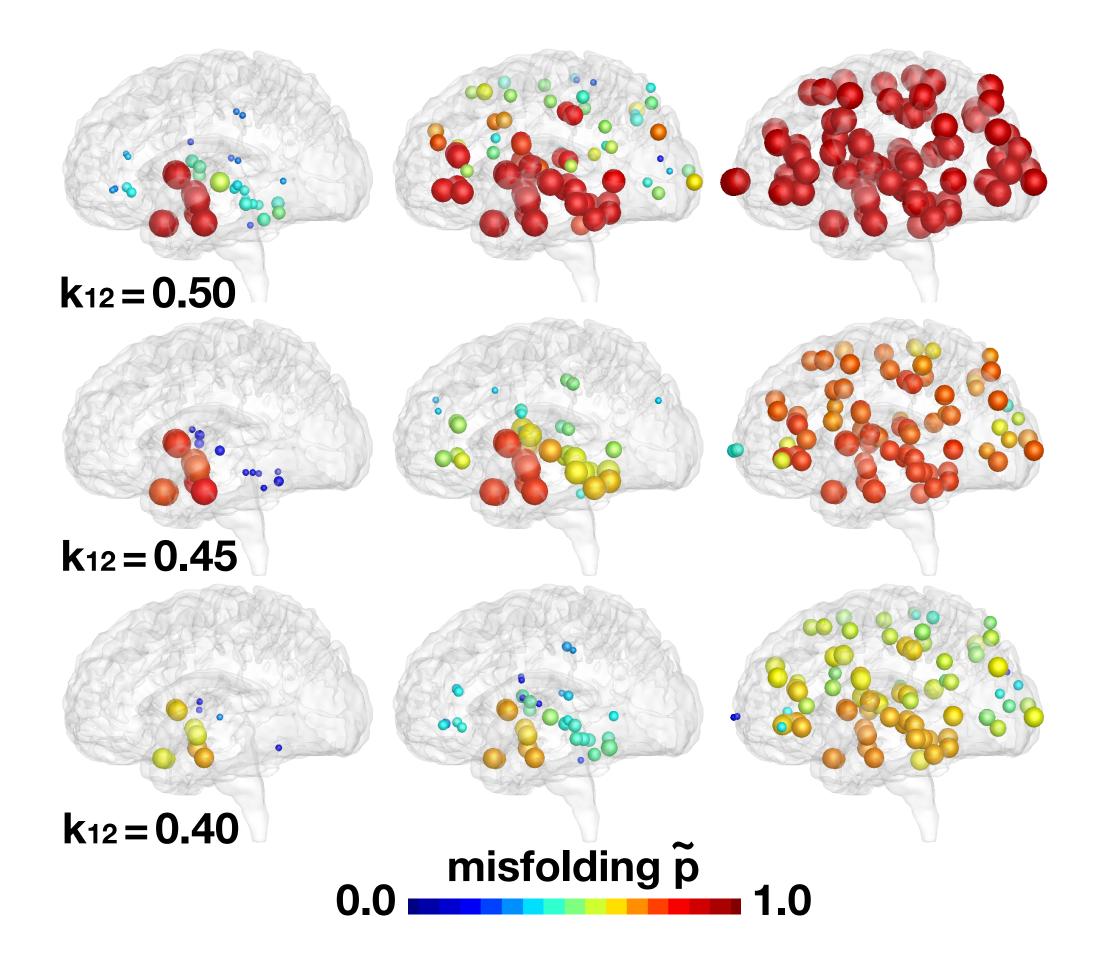


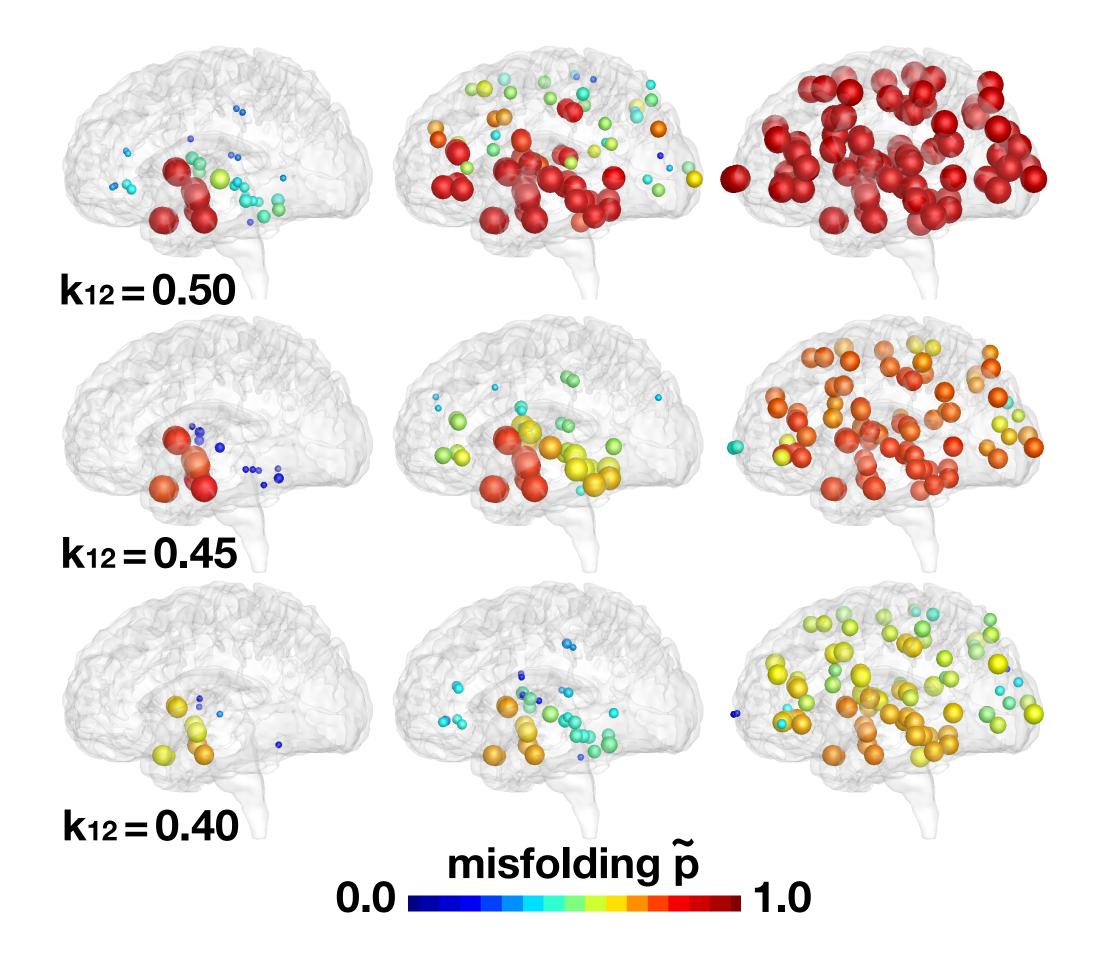


[fornari, schafer, jucker, ag, kuhl, 2019]

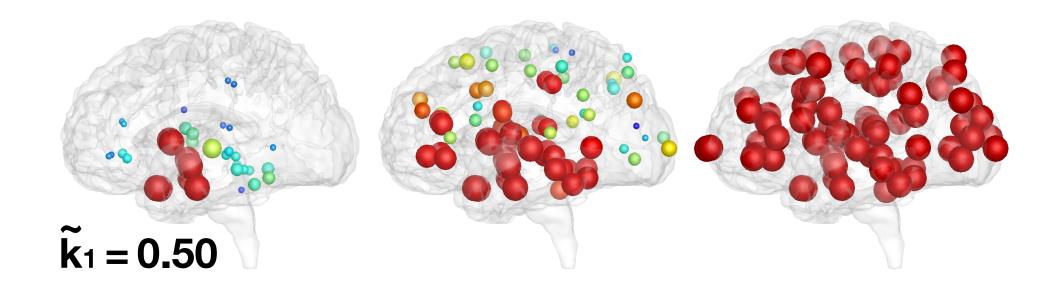


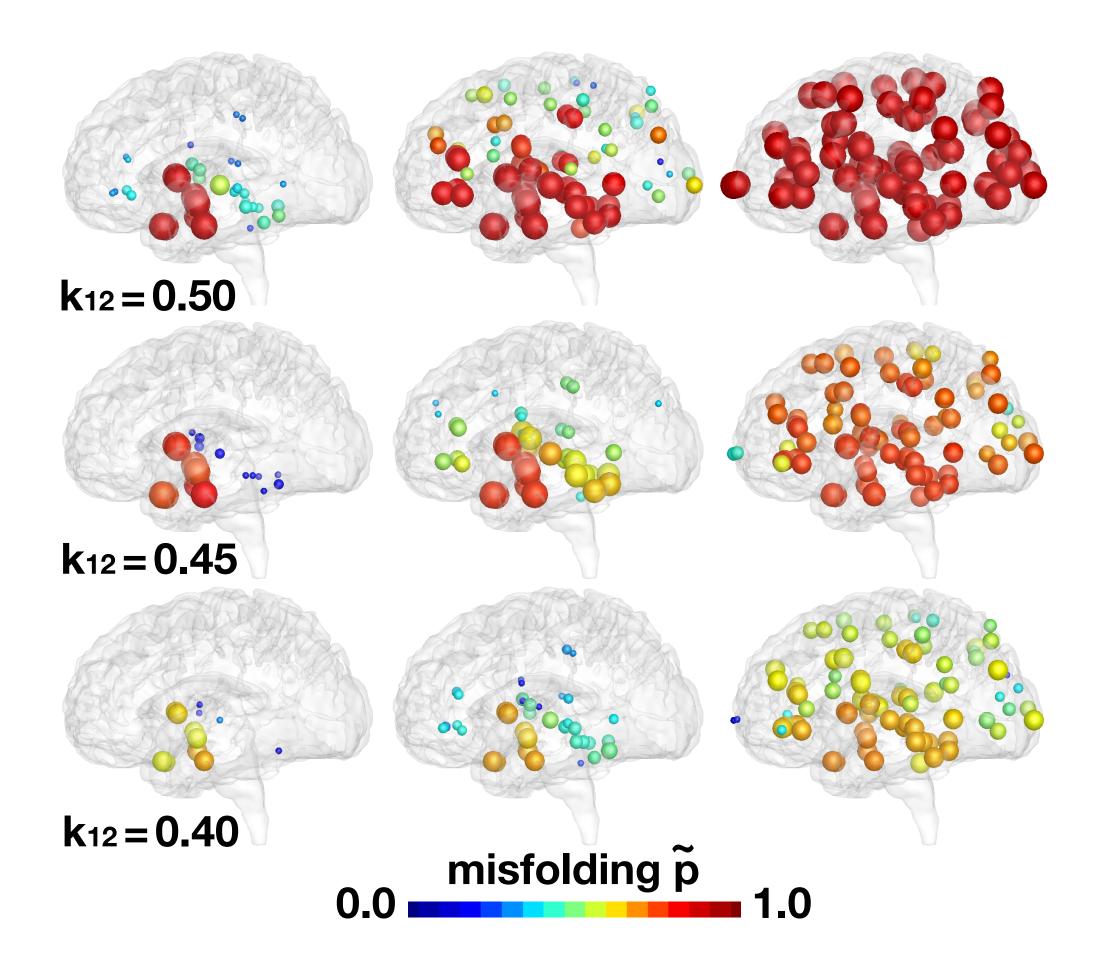




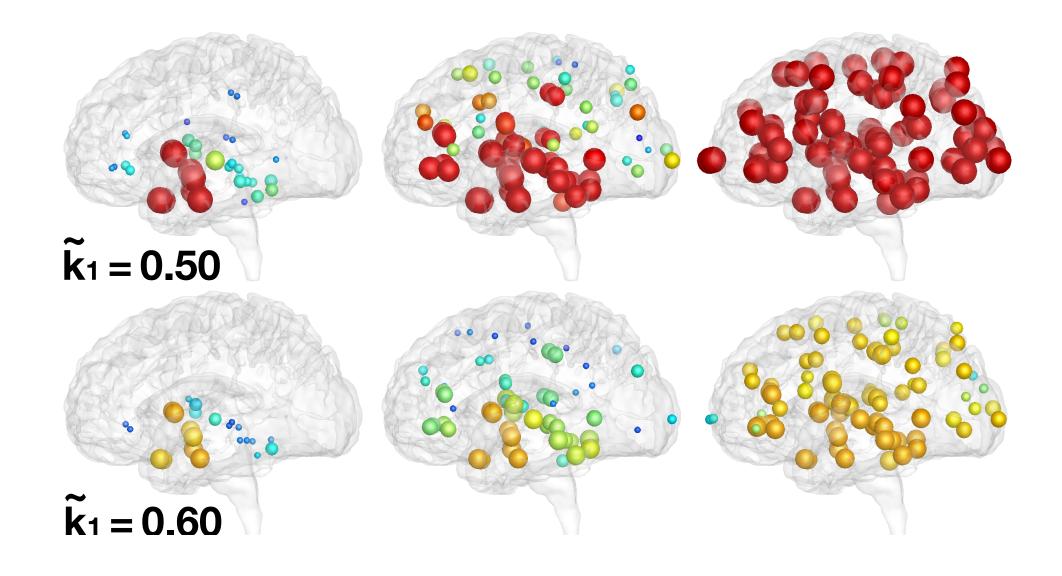


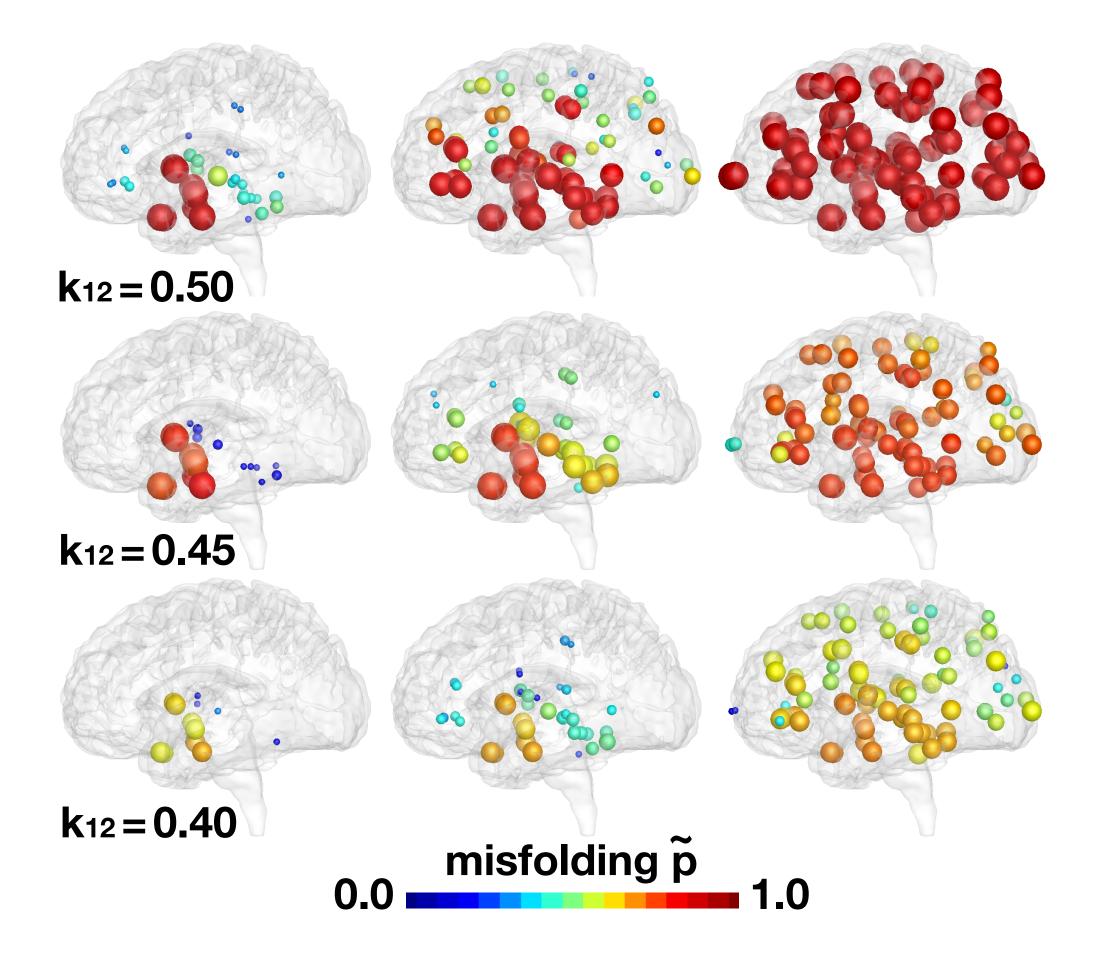
increasing clearance



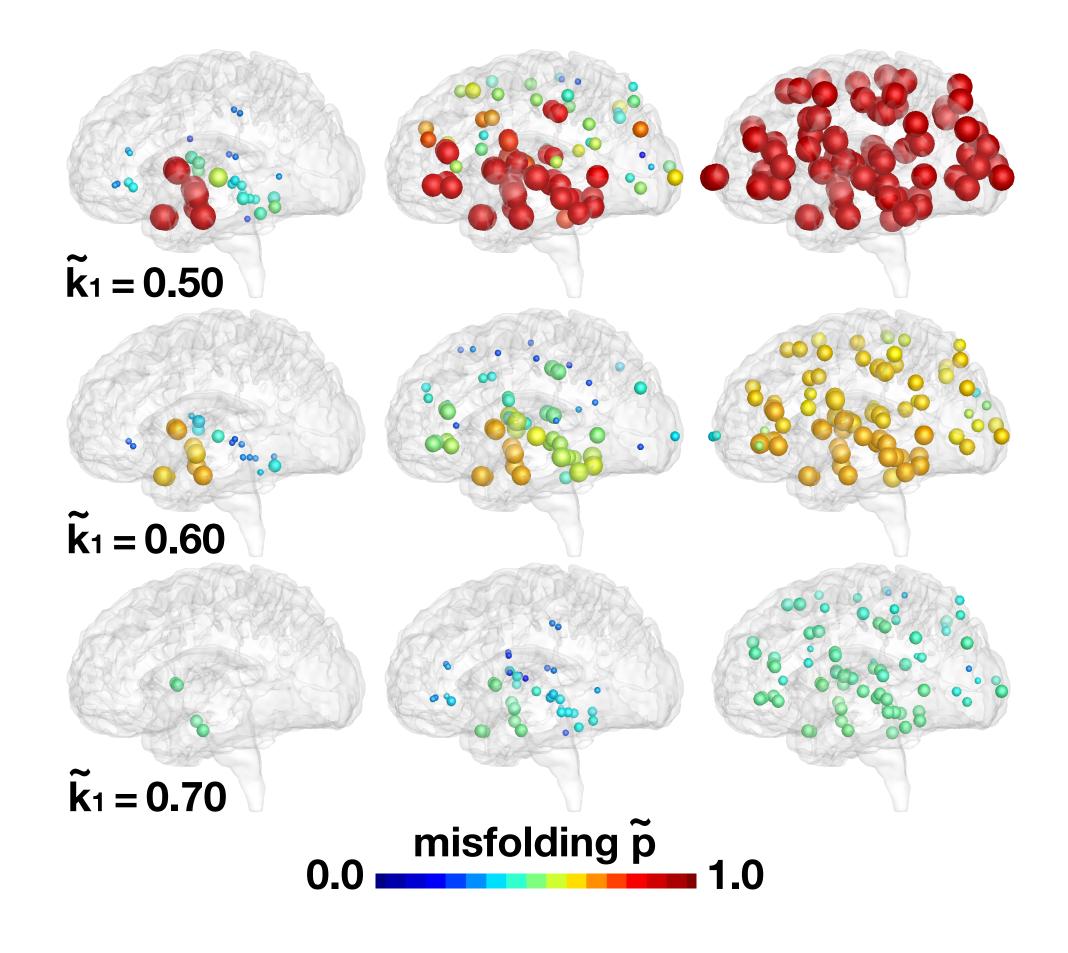


increasing clearance





increasing clearance

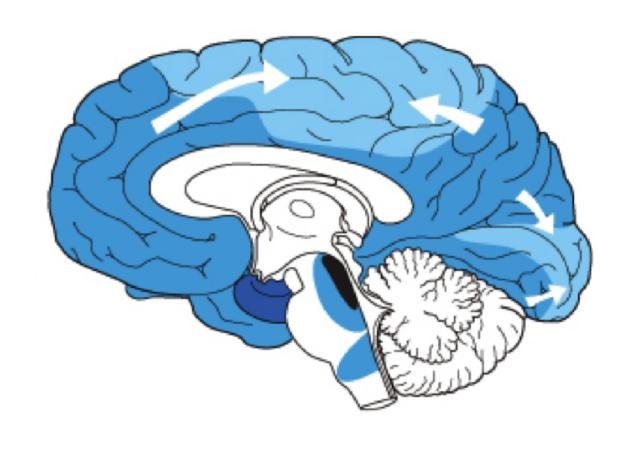


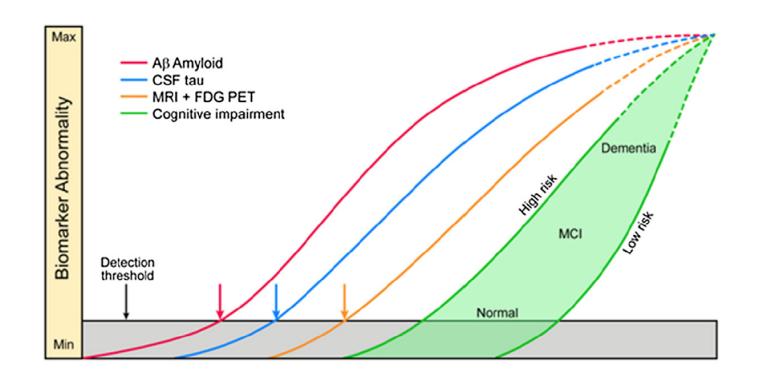
epilogue "c'est la première loi de la nature" voltaire

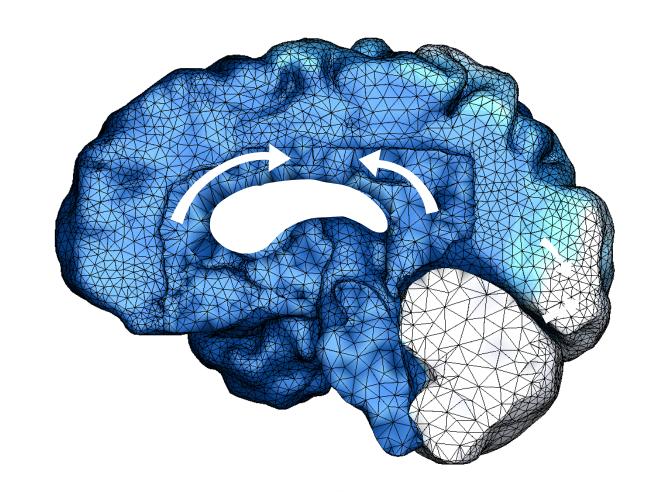
what did we learn?

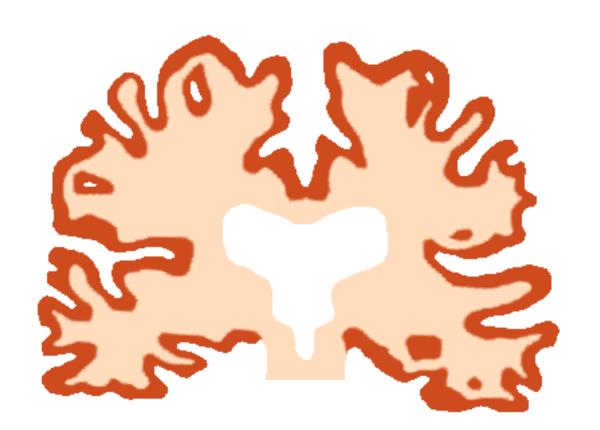
spatial progression

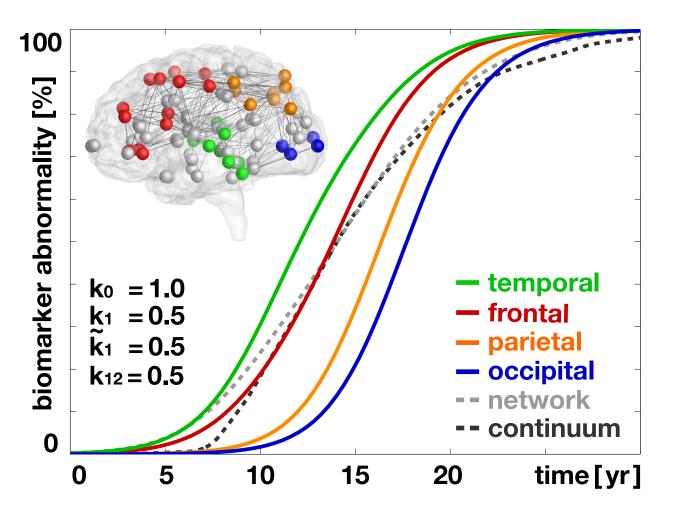
atrophy pattern



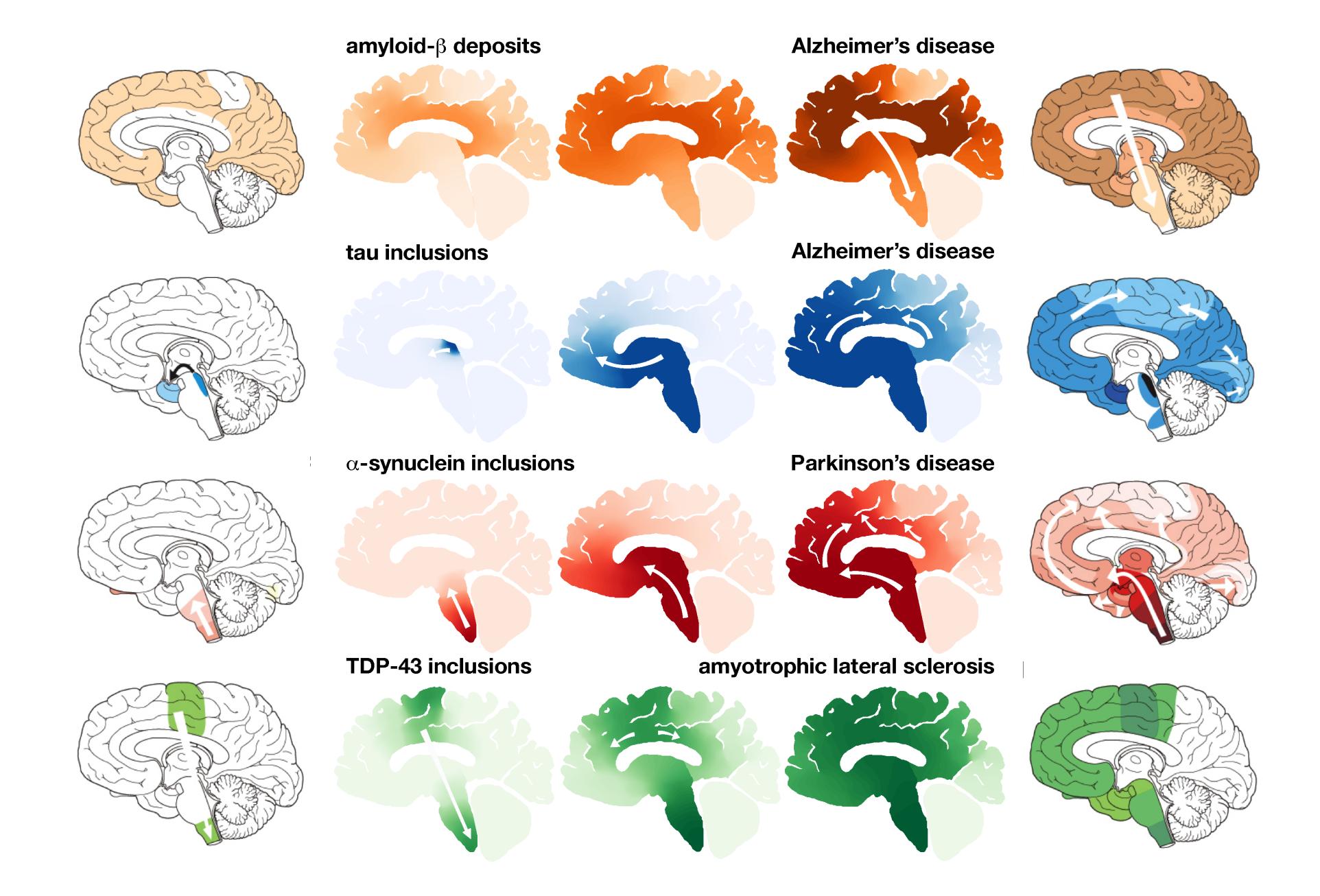




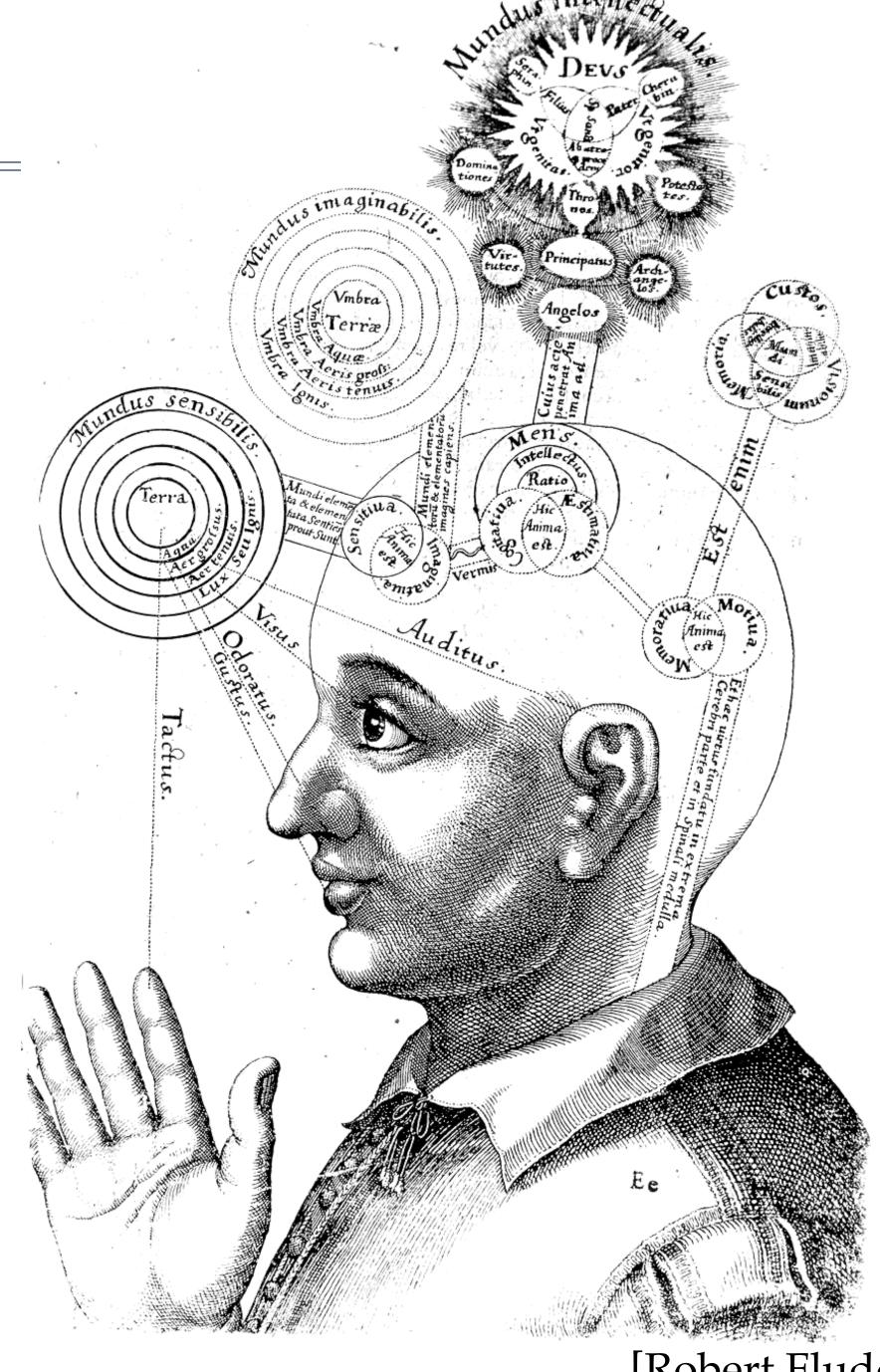




[art: g. dunn & b. edwards]



What did we learn?



[Robert Fludd]