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Self-propagation of pathogenic protein
aggregates in neurodegenerative diseases
Mathias Jucker1,2 & Lary C. Walker3,4

For several decades scientists have speculated that the key to understanding age-related neurodegenerative disorders may be
found in the unusual biology of the prion diseases. Recently, owing largely to the advent of new disease models, this hypothesis
has gained experimental momentum. In a remarkable variety of diseases, specific proteins have been found to misfold and
aggregate into seeds that structurally corrupt like proteins, causing them to aggregate and form pathogenic assemblies ranging
from small oligomers to large masses of amyloid. Proteinaceous seeds can therefore serve as self-propagating agents for the
instigation and progression of disease. Alzheimer’s disease and other cerebral proteopathies seem to arise from the de novo
misfolding and sustained corruption of endogenous proteins, whereas prion diseases can also be infectious in origin. However,
the outcome in all cases is the functional compromise of the nervous system, because the aggregated proteins gain a toxic
function and/or lose their normal function. As a unifying pathogenic principle, the prion paradigm suggests broadly relevant
therapeutic directions for a large class of currently intractable diseases.

P roteins are essential to cellular metabolism and communication,
and they form the framework on which cells and tissues are built.
To undertake these roles, most proteins fold into a specific, three-

dimensional architecture that is largely determined by their distinctive
sequences of amino acids. Others have a degree of structural flexibility that
enables them to tailor their shape to the task at hand1,2. For proteins, then, as
for the rest of biology, structure governs function. Hence, it is critical for cells
to maintain an efficient quality-control system that ensures the proper
production, folding and elimination of proteins3,4. When a protein misfolds
and evades normal clearance pathways, a pathogenic process can ensue in

which the protein aggregates progressively into intracellular and/or extra-
cellular deposits. The consequence is a diverse group of disorders, each of
which entails the aggregation of particular proteins in characteristic patterns
and locations (Fig. 1)5–8. New insights into the ontogeny of these proteo-
pathies are beginning to emerge from the unusual properties of the prion,
arguably one of the most provocative molecules in the annals of medicine.

The prion paradigm
Prions (‘proteinaceous infectious particles’) are unconventional infec-
tious agents consisting of misfolded prion protein (PrP) molecules; in

1 Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany. 2DZNE, German Center for Neurodegenerative Diseases, D-72076
Tübingen, Germany. 3Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA. 4 Department of Neurology, Emory University, Atlanta, Georgia 30322, USA.
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Figure 1 | Commonalities among age-related
neurodegenerative diseases. The deposited
proteins adopt an amyloid conformation and show
prion-like self-propagation and spreading in
experimental settings, consistent with the
progressive appearance of the lesions in the human
diseases. a, Amyloid-b deposits (senile plaques) in
the neocortex of a patient with Alzheimer’s disease.
b, Tau inclusion as a neurofibrillary tangle in a
neocortical neuron of a patient with Alzheimer’s
disease. c, a-Synuclein inclusion (Lewy body) in a
neocortical neuron from a patient with Parkinson’s
disease/Lewy body dementia. d, TDP-43 inclusion
in a motoneuron of the spinal cord from a patient
with amyotrophic lateral sclerosis. Scale bars are
50mm in a and 20mm in b–d. e–h, Characteristic
progression of specific proteinaceous lesions in
neurodegenerative diseases over time (t, black
arrows), inferred from post-mortem analyses of
brains. Amyloid-b deposits and tau inclusions in
brains of patients with Alzheimer’s disease (e and f),
a-synuclein inclusions in brains of patients with
Parkinson’s disease (g), and TDP-43 inclusions in
brains of patients with amyotrophic lateral sclerosis
(h). Three stages are shown for each disease, with
white arrows indicating the putative spread of the
lesions (for details see refs 5–8). Panels e and f are
reproduced, with permission, from ref. 61.
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described in different models, we referred to the AlzPath-
way10 and the PDMap,11 the knowledge-driven inter- and
intracellular molecular interaction map of AD and PD, respec-
tively. The objectives of generating this model landscape
map are 3-fold. First, we wanted to obtain an overview of the
coverage of mathematical models describing the processes
underlying neurodegeneration. Second, we wished to
identify patterns in the description of processes involved in
neurodegeneration through mathematical modeling, which
project the potential scope in the field. Third, this
visualization could serve as a reference map for researchers
to guide future work. To the best of our knowledge, this is the
first attempt to collectively analyze the mathematical models
describing different aspects of ND processes, and this may
aid in focusing activities on untouched areas and in building
composite models in the field of neurodegeneration.

To generate the landscape (Figure 1), neurodegeneration-
related molecular processes were categorized into 15 differ-
ent functional modules using the mechanisms described in
our model collection. Owing to spatial constraints, we repre-
sent only the core regulations of the molecular processes,
limited to important components. The models are formulated
based on the assumption that cellular processes are modular
in nature, allowing convenient classification of the models

into different categories based on Gene Ontology biological
processes: “inflammatory response,” “intercellular signaling,”
“oxidative metabolism,” “energy metabolism,” “apoptosis,”
“ion homoeostasis,” “synaptic transmission,” “blood–brain
barrier transport,” “protein degradation,” “protein refolding,”
“fibril organization,” “Tauopathy,” “APP breakdown,”
“microtubule-based transport,” and “genetics.” The models
are distributed in the map based on the processes they
describe. Each process is colored with an intensity that is
proportional to the number of models in that module.

The consensus clinical indication of neurodegeneration is
misfolding, aggregation, and accumulation of disease-
specific proteins in the brain, resulting in neuronal apopto-
sis. This is reflected in modeling studies (Figure 1), where
several groups attempted to understand the mechanism
underlying “fibril organization.” While the proteins that mis-
fold are disease-specific, they may have a common mecha-
nism of formation of these fibrils, and hence, this has been
extensively investigated. Mechanisms of neuron stimulation
and ROS generation, grouped under “oxidative stress” and
“synaptic transmission,” respectively, are the next most highly
studied ND processes. On the contrary, “microtubule-based
transport,” “protein refolding,” “intercellular signaling,” and
“genetics” have fewer models.

Figure 1 Model space in neurodegeneration—model landscape map. Cellular and molecular processes of ND that are described in our
collection of 89 models are presented here. It is an abstract representation of the processes involved, i.e., only important mechanisms
of each process are shown for better visualization. Boundaries of subcellular organelles are represented as solid lines, cell boundaries
as thick solid lines, and the blood–brain barrier as thick dashed lines. The 15 biological processes associated with ND that the models
describe are in capital bold red font. The models falling under each of these processes are displayed as numbers (from 1 to 89) and
are listed on the right; the bibliographic reference numbers to these models are within square brackets. The density of distribution of
models belonging to each process is illustrated as color gradients (gradient definition is provided in the figure). An interactive version of
this map is available from the ND specific page of BioModels8.
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Fig. 2. Convergence: structural and functional brain network orga-
nization. (A) Whole-brain fiber bundles reconstructed from diffusion tensor
MRI are colored according to their connection similarity (8). A structural brain
network can be constructed by parcellating fibers according to the cortical or
subcortical regions they interconnect. (B) The human brain’s structural net-
work constructed from diffusion tensor MRI (16) has rich-club hubs in the
precuneus, superior frontal and superior parietal cortex, the subcortical
hippocampus, putamen, and thalamus. Dark (thick) blue and light (thin)
blue lines represent connections between rich clubs and connections from
rich clubs to others, respectively. The sizes of the nodes reflect the number
of their connections. (C) Repertoires of spatial modules have emerged from
the analysis of spontaneous BOLD fluctuations in the brain at rest, i.e.,
ICNs that comprise clusters of nodes fluctuating synchronously. This figure
shows two examples of temporal functional modes (TFMs, more detailed
ICNs) derived from temporal independent component analysis of fast resting-
state fMRI (25). TFMs often correspond to task-related neurocognitive mod-
ules. As an example, TFMs 11 and 13 are similar to the task-activated semantic
network and the lateralized language network, respectively. (D) Hierarchi-
cal (modular) resting-state functional network. Changes in dynamic global
coupling occur between the four ICNs (modules) associated with the default
mode network (26). However, relatively stable coupling exists among the

submodules (red lines within the second circle) within a given ICN, and
highly stable local coupling is maintained among nodes within individual
submodules (black solid lines within submodules in the second circle). The
stability of connectivity estimated over a relatively long time period suggests
that, at the level of the submodule, functional connectivity is closely related
to the underlying structural connectivity, especially intracortical connec-
tivity (which diffusion MRI cannot resolve). Note that ICNs show a hierarchical
modularity: Submodules within ICNs are composed of hierarchically clustered
voxels. This hierarchical modularity is neuronally plausible, considering the
multiscale nature of neuronal circuits from micro- to macroscopic brain
networks. See also (21). The ICNs displayed in this figure are networks
located mainly in the posterior cingulate cortex and precuneus (PCC/PrCu),
the anterior cingulate cortex and medial prefrontal cortex (ACC/MPFC), the
posterior cingulate cortex and anterior cingulate cortex (PCC-ACC), and the
medial temporal lobe and hippocampal formation (MTL/HP). Submodules
within the PCC-ACC ICN in the second and the third circles are ACC/MPFC
(node size, 6 mm by 6 mm by 6 mm, n = 188 nodes), PCC/PrCu (n = 104),
inferior parietal lobe and angular gyrus (IPL/AG) (n = 52), precentral gyrus
(PrG) (n = 7), and superior temporal gyrus (STG) (n = 25). Modified from (8)
for (A) and from (26) for (D), and permitted to reproduce from (16) for (B)
and from (25) for (C).
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“they violate most of biology's sacred rules”
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kinetic model 
 we assume two populations of healthy and toxic (misfolded) proteins.

regular proteins [9]; and the nucleated polymerization model, in which the misfolded protein is polymeric while the regular form is
monomeric [23]. Rather than adopting the by now widely accepted nucleated polymerization model [29], the objective of this study
is to establish the simplest possible model that can explain the common features of various types of neurodegenerative disorders:
the growth and spreading of misfolded proteins.40

2. Methods

2.1. Kinetics of prion-like spreading
To motivate our model for prion-like spreading, we consider the simplest possible kinetic representation that accounts for two
configurations of the protein, the natural healthy state p and the misfolded state p̃. In this model, the misfolded protein recruits a45

healthy protein at a rate k11′ , the healthy protein binds to the misfolded protein and adopts its misfolded conformation at a rate k1′2′ ,
and the proteins fragment into infectious seeds at a rate k2′2,

p + p̃
k11′→ p p̃ p p̃

k1′2′→ p̃ p̃ p̃p̃
k2′2→ p̃ + p̃ (1)

It is still not entirely known whether this conformational conversion from the healthy state p to the misfolded state p̃ is best repre-
sented through the refolding model in which the healthy protein misfolds on a single misfolded protein to first form a heterodimer,
then a homodimer, and then these homodimers aggregate to amyloid or through the seeding model in which misfolded proteins

Figure 2: Kinetics of prion-like spreading. In the refolding model, a healthy protein misfolds on a single misfolded protein to first form a heterodimer, then a
homodimer, and then these homodimers fragment or aggregate to amyloid. In the seeding model, misfolded proteins first organize in highly ordered infections
seeds, then recruit healthy proteins that misfold on several misfolded proteins, and then fragment or aggregate to amyloid. The rate constant k12 collectively
represents these processes as the conformational conversion from the healthy to the misfolded state.

50

first organize in highly ordered infections seeds, then recruit healthy proteins that misfold on several misfolded proteins, and then
aggregate to amyloid [1, 31]. Here we collectively represent both models through a single kinetic equation that simply represents
the conformational conversion from the healthy to the misfolded state through the rate constant k12,

p + p̃
k12→ p̃ + p̃ . (2)

We can then formulate the governing equations for the total amount of healthy protein p and misfolded protein p̃,

dp
dt
= Div(Dp · ∇p) + k0 − k1 p − k12 p p̃

dp̃
dt
= Div(Dp̃ · ∇ p̃) − k̃1 p̃ + k12 p p̃

(3)

3
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seeding of toxic proteins

[jucker, walker, 2013],             [weickenmeier, jucker, ag, kuhl 2018]
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epilogue 
“c’est la première loi de la nature”

voltaire
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What did we learn?

[Robert Fludd]


