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Dynamic scaling of morphogen gradients on
growing domains
Patrick Fried1,2 & Dagmar Iber1,2

Developmental mechanisms are highly conserved, yet act in embryos of very different sizes.

How scaling is achieved has remained elusive. Here we identify a generally applicable

mechanism for dynamic scaling on growing domains and show that it quantitatively agrees

with data from the Drosophila wing imaginal disc. We show that for the measured parameter

ranges, the Dpp gradient does not reach steady state during Drosophila wing development.

We further show that both, pre-steady-state dynamics and advection of cell-bound ligand in a

growing tissue can, in principle, enable scaling, even for non-uniform tissue growth. For the

parameter values that have been established for the Dpp morphogen in the Drosophila wing

imaginal disc, we show that scaling is mainly a result of the pre-steady-state dynamics.

Pre-steady-state dynamics are pervasive in morphogen-controlled systems, thus making this

a probable general mechanism for dynamic scaling of morphogen gradients in growing

developmental systems.
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S
patial patterning during embryogenesis is controlled by
morphogens that control tissue growth and differentiation
at a distance from the cells that secrete them1. How

morphogens are transported has remained controversial2–4. The
proposed morphogen dispersal models can be divided into two
categories: cell-based and diffusive4. Cell-based transport requires
the endocytosis of ligand, and dynamin has indeed been shown to
be important for morphogen spreading5. Internalized ligand can
then be transported either by transcytosis5, a process by which
macromolecules are transported across the interior of a cell,
or by cytonemes, that is, by specialized filopodia that mediate
long-distance signalling during development6,7. Diffusion of
morphogens, either freely or hindered3, is well documented, but
the relative contributions of the different transport mechanisms
have remained controversial. According to the French Flag
model8, cells read out the local morphogen concentration and
respond when specific concentration thresholds are exceeded
(Fig. 1a). To control patterning in embryos of different sizes
with the same morphogen-based mechanism, the absolute
positions where the threshold concentrations are reached
need to shift between differently sized embryos (Fig. 1b).
Different models have been proposed to explain the scaling
of morphogen gradients in the various systems where scaling
has been analysed9–17. However, these models have
remained controversial because of conflicting experimental
observations16,18–21.

One such theory proposes that the production rate of the
morphogen could be adjusted such that morphogen gradients are
higher on larger tissues and thus keep a constant threshold

concentration at the particular relative domain position, where
the developmental pattern of interest is defined16. This model,
however, does not apply to the Decapentaplegic (Dpp) gradient in
the Drosophila wing and haltere imaginal discs, because
measurements show that the gradients indeed widen with the
expanding domain15. In parallel, however, also the maximal value
of the gradients increases in the Drosophila wing and haltere
imaginal discs, as well as in the early Drosophila embryo9,14,15,22

(Fig. 1c), such that the measured gradients fall on the same curve
(that is, scale) only when rescaled both relative to their maximal
value and relative to the length of the domain (Fig. 1d).
Accordingly, the Dpp concentration appears to increase with
time for every single cell15 (Fig. 1c). Absolute concentration
measurements would then be insufficient to define a cell’s relative
position in the domain. Interestingly, it has been reported that
the concentration gradient of the downstream target of Dpp
signalling, phosphorylated Mad, does not increase to the same
extent as the Dpp gradient increases23. There may thus be an
adaptation mechanism in place, which maintains stable response
levels in spite of increasing absolute levels of Dpp ligand.

Morphogen gradients can, in principle, also scale with domain
size as a result of an appropriate adjustment of the diffusion and/
or decay constants. These adjustments could be achieved either by
passive or active modulators16. An active modulation mechanism
for the Dpp gradient in the wing imaginal disc has recently
been proposed17 as an extension of a previously proposed
expander–repressor scheme13. However, as recently noted, for
this expander–repressor mechanism, the amplitude of the
morphogen–receptor complex decreases more than twofold for

ed

x / L(t)

c(
t)

 / 
c 0

(t
)

λ/L

L1

L2 L2

L1

a b
c(t)

L (t2)

L (t1)

c

c0(t1)

f

c0(t2)

cc

c0c0

Position (μm)

T
ot

al
 li

ga
nd

 (
a.

u.
)

0 150 300

0

40

80

Relative position

R
el

. t
ot

al
 li

ga
nd

0 0.5 1

0

0.5

1
SE = 0.13

Figure 1 | Dynamic scaling of morphogen gradients on growing domains. (a) According to the French Flag model, concentration thresholds determine

differential cell fate (blue, white and red) in a tissue. (b) To maintain proportions in differently sized tissue, gradients need to lengthen on longer domains.

(c) Both the height, c0, and the length of the measured15 Dpp gradient (equation (1)) increase on the growing wing imaginal disc of length L(t).

(d) The measured15 normalized Dpp gradients, c(t)/c0, of length l(t) overlay on a rescaled domain, x/L(t). (e) The spreading of a morphogen gradient on a

growing domain as a result of diffusion, advection and dilution in the absence of any reactions. Morphogens enter the domain at the left-hand side

according to a flux boundary condition. The boundary at the right-hand side is impermeable, that is, we have zero-flux boundary conditions. For details, see

Methods. (f) The normalized simulated gradient profiles from e overlay on the rescaled domain, that is, the gradients scale with domain size (cyan line:

24 h, blue line: 57 h, black line: 90 h). SE refers to the scaling error (equation 2) between the gradients at t¼ 24 h and t¼ 90 h (0: perfect scaling; 1:

no scaling; for details, see Methods). In all panels, the horizontal axis reports the position on the domain and the vertical axis reports concentration,

as indicated.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6077

2 NATURE COMMUNICATIONS | 5:5077 | DOI: 10.1038/ncomms6077 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


a twofold increase in length, indicating that this mechanism is
mainly based on an effective increase in the Dpp diffusion
coefficient16. However, measurements in a range of systems,
including the Drosophila wing imaginal disc, show that the
(effective) diffusion coefficient of the ligand does not change, even
though its gradient scales15. Scaling has therefore been suggested
to be achieved by a reduction in the decay constant of the ligand
on larger domains15; the decay constant has not yet been directly
measured on the expanding domain and experimental evidence
for this proposal is therefore outstanding—as is a mechanism to
achieve this reduction. It has recently been proposed that an
expander–repressor mechanism based on an expander that
reduces the Dpp decay rate could explain gradient scaling in
the wing disc if the cellular growth rate was controlled by a
relative change in Dpp signalling24. However, this previously
proposed mechanism for growth control15 has remained
controversial, because clones in the wing imaginal disc that
cannot transmit Dpp signalling grow at the same rate as signalling
competent cells25. Moreover, the model fails to recapitulate the
experimentally observed linear expansion of the wing disc
domain with time15, but rather results in very fast initial
growth and barely any domain expansion after about 50 h.
As a result of the particular growth kinetics, advection and
dilution contribute only to the early phases of growth in this
model.

Here we describe a general applicable mechanism for scaling of
morphogen gradients on growing domains that recapitulates the
quantitative measurements of the Dpp gradient in the Drosophila
wing imaginal discs15,23,26. We show that both, pre-steady-state
dynamics and advection of cell-linked ligand, can, in principle,
result in scaling. For the parameter values that have been
established for the Dpp morphogen in the Drosophila wing
imaginal disc, scaling is, however, mainly the result of the pre-
steady-state dynamics. The proposed mechanism also resolves the
controversy related to Dpp transport in that it combines
diffusion-based transport with cell-linked transport. The
mechanism works for any ligand–receptor system if gradients
are read out during a pre-steady state on a more or less uniformly
growing tissue. Pre-steady-state dynamics and uniform growth
are pervasive in morphogen-controlled systems, making it likely
to be that the here-identified mechanism is of general use for
scaled position-dependent readout in growing developmental
systems.

Results
A measure of scaling. We speak of scaling whether two gradients
on differently sized domains overlay when normalized with
respect to their maximal value and plotted on domains that have
been normalized with respect to their maximal length,
L. Accordingly, we can evaluate the quality of scaling by deter-
mining the scaling error (SE), DX

X , where DX specifies the differ-
ence of the normalized position X, at which a given normalized
ligand concentration is attained by different gradients (for details
see Methods). According to experimental data15, the Dpp
gradients in the Drosophila wing imaginal disc remain of
exponential shape as the disc is growing out, but the gradient
lengthens such that the characteristic length l increases with
time t. The concentration gradients can therefore be well
approximated by15

cðx; tÞ ¼ c0ðtÞ exp � x
lðtÞ

� �
; ð1Þ

where x denotes the position in the domain, with 0rxrL(t) and
x(t)¼ L(t) �X. We have perfect scaling between time points t1 and
t2, if lðt1Þ

Lðt1Þ ¼
lðt2Þ
Lðt2Þ.

To obtain a measure of the SE, which is zero for perfect scaling
and one for no scaling, we write

SE ¼
DX
X

1� Lðt1Þ
Lðt2Þ
¼

1� lðt2Þ=Lðt2Þ
lðt1Þ=Lðt1Þ

1� Lðt1Þ
Lðt2Þ

: ð2Þ

For details on the derivation and calculation of SE, see Methods.

Scaling by pre-steady state kinetics and advection. To illustrate
the mechanism of scaling, we first consider a very simple model
of morphogen dynamics on a one-dimensional (1D) domain:
Morphogens are produced on the left-hand side of the domain
and enter the domain according to a flux boundary condition; we
use an impermeable boundary on the other side (zero-flux
boundary condition). Morphogens spread by diffusion; no reac-
tions are included. The equations are given in the Methods. When
we solve such a simple model on a growing domain, we find that
the morphogen gradient expands over time (Fig. 1e) in a way that
the gradient scales with domain size (Fig. 1f). Our model differs
from previous studies of gradient scaling in that the simulated
gradients do not reach their steady state within the physiological
time scale, and in that the model is solved on a growing domain,
such that we include advection and dilution. Dilution is an
inevitable consequence of growth, that is, in the absence of any
other processes the concentration of a component must decline as
the domain expands because the number of molecules is fixed
while the compartment size increases. Advection is inevitable if
the ligand is attached to the moving domain, that is, if ligand is
attached on cells or resides inside cells. In the Drosophila wing
imaginal disc, at least 97% of all ligand has been found either
internalized (485%) or absorbed on cells, and o3% of all Dpp
ligand is free in the extracellular space26–28. Cell-bound and
internalized ligand cannot but move passively with the cells as the
cells are pushed out during tissue growth (Fig. 2a). We illustrate
this effect with a stable linear gradient of a compound, which is
advected with the expanding domain in the absence of any
diffusion or reactions (Fig. 2b). The gradient stretches with the
expanding domain and the maximum of the gradient decreases
due to dilution on the larger domain (Fig. 2b, lighter grey lines).
However, when rescaled with respect to the maximum
concentration and the domain size, all lines perfectly overlay,
that is, the gradients scale (Fig. 2c). The same holds true for an
exponential gradient (Fig. 2d,e). For advection to be an efficient
and functional transport mechanism, a large fraction of the ligand
must be either bound to the cell surface or must be found inside
cells26–28, internalized ligand–receptor complexes must remain
stable for a long time, must be partitioned about equally during
cell divisions29 and must remain active after cell divisions29. All
these conditions have previously been shown to apply to Dpp
transport in the Drosophila wing imaginal disc21,23,24,29 and are
likely to also apply to other morphogen transport systems.

Spreading of morphogens by diffusion is effective, however,
also in the absence of growth (Fig. 2f), although the expansion is
narrower (Fig. 2g, grey line) than in the presence of growth
(Fig. 2g, black line). When we quantify the relative contributions
of advection (Fig. 2h, red line, Supplementary Fig. 1), dilution
(Fig. 2h, grey line), and diffusion (Fig. 2h, blue line,
Supplementary Fig. 1), we notice that transport by diffusion
and dilution effects dominate close to the source, while advective
transport dominates further away where the velocity field of the
uniformly growing tissue is highest (Fig. 2i); we note that the
velocity field on the rescaled, uniformly growing domain is
constant over time. Importantly, although morphogen spreading
as a result of advection is proportional to time (Fig. 2g, blue line),
diffusion-based spreading of ligand results in the expansion of the
gradient proportional to the square root of time (Fig. 2g, grey
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line); for details on the analysis, see Methods. In summary, only
in case of advective transport, the gradient and the domain
expand perfectly in parallel such that we have perfect scaling
(Fig. 2c,e). The expansion of the gradients in Fig. 1e,f represents a
mixture of these effects (Fig. 2g, black line). In particular, we note

that without dilution, the expansion of the gradients in Fig. 1e,f at
later time points would be rather linear with time, as
characteristic for transport by advection (Fig. 2j, red line). On
the other hand, incorporation of ligand degradation would
severely limit the expansion of the morphogen gradient, and
would result in a rapid formation of the steady-state profile
(Fig. 2k, green profiles).

Dynamic scaling of the Dpp gradient in the wing disc. In the
Drosophila wing imaginal disc, most rate constants that relate to
Dpp transport and signalling have been measured. This allows us
to check the proposed scaling mechanism quantitatively with
experimental data and to explore the relevance of the physiolo-
gical values for the scaling mechanism. Figure 3a shows the Dpp
signalling network. Dpp is produced at rate rDpp in a narrow
stripe at the boundary of the anterior (A) and posterior (P)
compartments in the Drosophila wing imaginal disc, and the
ligands diffuse into the target domain where they interact with
their receptors (Tkv) on cells. Experiments demonstrate that most
ligand is found inside cells26–28, and we therefore use a model2

that also considers receptor binding and unbinding (at rates kon

and koff), and ligand internalization, and thus comprises diffusible
ligand, internal and membrane-bound receptors, as well as
receptor–ligand complexes (Fig. 3a, Methods). The membrane-
bound receptor–ligand complexes, Dpp-Tkvout, can be
internalized (kin) and the internalized receptor–ligand
complexes, Dpp-Tkvin, are either degraded (kdeg) or exocytosed
(kout) back to the membrane. Tkv receptors are produced
throughout the domain (rTkv). We extend the previous model2

to also include a negative feedback of Dpp signalling via
phosphorylated Mad on Dpp receptor (Tkv) production30, as
well as a repressive effect close to the AP boundary due to
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Figure 2 | Dynamic scaling as a result of pre-steady-state dynamics and

advection. (a) As a result of advection, ligand on and inside cells is

transported passively as cells are pushed out during tissue growth.

(b) A stable non-diffusive linear gradient that experiences advection and

dilution during growth expands on a growing domain (blue: initial gradient;

light grey to black: increasing time steps). (c) The normalized gradients in

b scale perfectly on the rescaled domain (SE¼0, equation 2). (d,e) Perfect

scaling (SE¼0) does not depend on the shape of the stable gradient and

also works for an initial exponential distribution. (f) The model shown in

Fig. 1e,f yields an expanding gradient also on a static, non-growing domain

(length 300 mm), due to the pre-steady state (light grey to black: increasing

time steps). (g) The mean-square displacement, E[x2], over time for the

model that only includes advection and dilution (blue line, see Fig. 2d for

gradient profiles), for the model incorporating advection, dilution and

diffusion (black line, see Fig. 1e,f for gradient profiles), and for the model

on the static, non-growing domain only incorporating diffusion (grey line,

see Fig. 2f for gradient profiles). The mean-square displacement of the

diffusion-only model (grey line) perfectly follows the expectedffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE½x2�Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ðD � tÞ

p
curve, while the advection-only model (blue line)

expands linearly in time,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE½x2�Þ

p
Bt (see Methods for a derivation); the

model that includes both diffusion and growth lies in between those

extremes (black line). (h) The relative contributions of the diffusion (blue),

advection (red) and dilution (grey) terms on the temporal evolution of the

total morphogen profile. (i) The velocity field on the scaled, uniformly

growing domain. (j) Removal of the dilution term (red line) from the full

model shown in Fig. 1e,f, (black line) results in a more linearly increasingffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE½x2�Þ

p
, similar as in the advection-only model (shown in Fig. 1c) (blue

line). (k) Higher degradation rates (increasing rates light to dark green)

limit the expansion of the gradient compared with the purely diffusive

model (grey line), and the gradients reach their steady-state profiles faster.

For further details see Supplementary Note 1.
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Engrailed and Hedgehog signalling31, because experiments
demonstrate that the receptor density affects both the height
and the width of the gradient32, something that we also see in our
simulations (Fig. 3b). The wild-type simulations reproduce the
measured gradient in tkv expression and Tkv protein abundance,
which are both lowest close to the dpp-expressing stripe31 (Fig. 3c
and Supplementary Fig. 2).We solve the model on a growing 1D
domain of length L(t) that spans the entire A–P axis of the
Drosophila wing imaginal disc, that is, � L(t)rxrL(t), with
zero-flux boundary conditions at the ends of the domains.

We note that given its simplicity, the model is sufficiently general
to be applicable also to morphogens other than Dpp. The
proliferation rate in the wing imaginal disc decreases over time
inversely proportional to the area such that the domain expands
linearly in size15. When we solve the model on a domain that
expands linearly at the measured15 growth speed vg, that is,
L(t)¼ L(0)þ vgt, we find that the resulting ligand gradient scales
with the size of the patterning domain for physiological
parameter values (Supplementary Table 1). Thus, as the domain
expands, both the maximal value and the reach of the ligand
gradient increase (Fig. 3d), and the rescaled gradients overlay well
(Fig. 3e). The scaling of the gradients is not perfect (according to
equation 2, SE¼ 0.45 between the gradients at 24 and 90 h). In
spite of imperfect scaling, we note that the extent to which the
gradients overlay is very similar to what is observed in
experiments15 in that the model has the same scaling properties
as the Dpp gradient in the Drosophila wing disc. Thus, the
simulations match the measured length of the Dpp gradient, l(t),
versus the length of the wing disc domain, L(t), over develop-
mental time (Fig. 3f). The model also matches the measured
distribution of ligand in unbound, internalized and surface-
bound form (Fig. 3g). Thus, much as in measurements26–28, only
about 3% of ligand represents free, extracellular ligand, while at
least 85% of Dpp ligand resides inside cells and another 12% is
absorbed on cells. Importantly, scaling is observed for all distinct
ligand pools, that is, for the extracellular Dpp ligand alone
(Supplementary Fig. 3a) and for the ligand–receptor complex,
both if located on the extracellular membrane, Dpp-Tkvout

(Supplementary Fig. 3b), or taken up by the cells, Dpp-Tkvin

(Supplementary Fig. 3c). The signalling gradients thus also scale.
The model also captures the increase of the maximal ligand
concentration with domain size. Here the maximal ligand
concentration is calculated as the sum of the Dpp, Dpp-Tkvout
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Figure 3 | The scaling mechanism reproduces the Dpp gradient

characteristics from the Drosophila wing imaginal disc quantitatively.

(a) The simulated Dpp network for the Drosophila wing imaginal disc. For

details, see main text and Methods. (b) The parameters that affect the

amount of receptor that is present outside affect the length of the gradient.

Increasing the receptor production by twofold results in higher but shorter

gradients (red), while decreasing receptor production by twofold results in

wider but lower gradients (blue), as observed in experiments32. The black

line shows the standard gradient. (c) The simulated expression profile of

the Tkv receptor (black line) and of the Dpp ligand (red line). (d,e) The

simulated gradient profiles of total Dpp (d) expand with the growing

domain in a way that (e) the rescaled gradient profiles overlay on the

rescaled domain. SE refers to the scaling error (equation (2)) between the

gradients at t¼ 24 h and t¼ 90 h. Time points shown (light to dark grey):

24, 46, 68, 90 h. (f) The length of the exponential gradient, l(t), is about

linearly related to the length of the domain, L(t), and matches the measured

values (red)15. (g) The fraction of ligand that is unbound, bound to

receptors on the membrane, or to internalized receptors matches the

measured values15. The fractions were calculated based on the total

concentration of each species in the whole posterior compartment.

(h) With the exception of very early stages, the maximal value of the

gradient, c0ðtÞ ¼ cDppðx ¼ 0; tÞ þ cDpp-Tkvin
ðx ¼ 0; tÞþ cDpp-Tkvout

ðx ¼ 0; tÞ,
and the length of the domain, L(t), are related according to a powerlaw,

c0(t)¼ L(t)b (black line); the blue line shows the fitted line with b¼ 1.18; the

linear fit was carried out between 10 and 90 h. (i) The exponent b of the

power law depends on the relative speed, with which the ligand production

zone and the target domain expand, and the measured b is reproduced as

long as the two domains expand together as observed in the experiment15.

The relative expansion of the ligand-producing domain only has a very small

effect on the length of the gradient, l/L, and scaling is still observed if the

ligand-producing domain does not expand.
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and Dpp-Tkvin concentration at the A–P compartment boundary
(x¼ 0) and corresponds to c0 in equation 1. Much as in the wing
disc15, c0(t) and domain size are related according to a power law
with exponent b¼ 1.18 (Fig. 3h), which is twice the measured
experimental value because the model is solved in one spatial

dimension. The measured expansion of the Dpp-producing
domain, the source, is necessary to recapitulate this aspect
(Fig. 3i, black line). Gradient scaling is, however, still possible also
without any expansion of the source, both in simulations (Fig. 3i,
red line) and in mutants15. If the Dpp-producing tissue stripe
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cannot expand, the Dpp gradient is shorter, both in measure-
ments15 and simulations (Fig. 3i, red line), because ligand
production is reduced; a shorter gradient is also observed when
reducing the ligand production rate (Fig. 4a) and the opposite
behaviour is observed for the receptor production rate (Fig. 4b).
Similarly, a higher receptor decay rate (Fig. 4c) and a higher
ligand–receptor on-rate result in shorter gradients (Fig. 4d), while
a higher ligand–receptor off-rate results in longer gradients
(Fig. 4e). We note that these parameter values also affect the
extent to which ligand is free, absorbed or internalized (Fig. 4,
third column), but barely have an impact on the quality of scaling
(Fig. 4, fourth and fifth columns) as judged by the SE. Here we
note that the lower SE for higher ligand production rates (Fig. 4a)
is the result of receptor saturation, and thus limited ligand
turnover and higher effective diffusion; without receptor
saturation, the ligand production rate would barely affect the
scaling quality. To compare the quality of scaling by the eye, we
rescaled the domains not only with respect to the length of the
domain but also adjusted it with respect to the relative mean
square displacement of the ligand (denoted Relative Normalized
Position in Fig. 4); otherwise, the same relative SE would look
worse for a wider gradient.

The quality of scaling mainly depends on the pre-steady-state
dynamics of the gradient and is therefore highest for slow ligand
turnover, that is, for low rates of receptor internalization, kin

(Fig. 4f), for high rates of receptor exocytosis, kout (Fig. 4g), and
for a low degradation rate, kdeg (Fig. 4h). The internalization rate
of the BMP and TGF-b receptors has been measured in several
cell culture systems and half the receptor is internalized within 5–

15 min, both in the presence and absence of ligand33–35,
corresponding to a rather high effective internalization rate of
0.8–2.3� 10� 3 s� 1. We use the most conservative value of
kin¼ 0.8� 10� 3 s� 1 in the model; we note that twofold
deviations from this value barely affect the scaling properties of
the system, but have an impact on the fraction of extracellular
and internalized ligand (Fig. 4f). The receptor-related rates and
the binding rates also affect the fraction of extracellular ligand
and the gradient length (Fig. 4b–e). We set these rates to typical
physiological values (Supplementary Table 1) that allow us to
reproduce the measured fractions. We note that the different rates
compensate for each other (Fig. 4), such that there is a wide range
of parameter sets that allows us to match the experimental
measurements. As degradation rate of internalized ligand, we use
kdeg¼ 4� 10� 6 s� 1, which corresponds to a half-life of
internalized Dpp of 48 h. The low degradation rate of
internalized ligand ensures that gradient formation is slow
(Fig. 2k), such that the gradient does not reach steady state
during wing disc development, as required for the scaling
mechanism. The long half-life of internalized ligand is in
apparent contradiction to the fast clearance of Dpp ligand in
the experiments by Teleman and Cohen28. However, in those
experiments only very little intracellular Dpp was detected, and
the measured clearance rate thus mainly represented the loss of
extracellular ligand, as also noted in the previous analysis by
Lander et al.2 Given the fast rate of ligand internalization, this
aspect is also captured by our model. The Dpp degradation rate
that was reported by Gonzalez-Gaitan and colleagues15,26, on the
other hand, was inferred from the measured length of the Dpp
gradient and the Dpp diffusion coefficient, but was not measured.
Thus, the reported reduction in the Dpp degradation rate over
time15 does not represent an actual experimental observation but
only reflects the predicted behaviour of the Dpp degradation rate
for the case that scaling was obtained with a steady-state Dpp
gradient. As our model reproduces the Dpp gradient length with
the diffusion coefficient measured by Gonzalez-Gaitan’s team,
our simulation is also in agreement with these data. Here we note
that measurements of the Dpp diffusion constant range between
0.1 (refs 15,26) and 20mm2 s� 1 (ref. 27). Even though small changes
in the diffusion coefficient already affect the gradient shape
(Fig. 4i), a higher diffusion coefficient can be compensated by a
higher receptor–ligand affinity (Fig. 4d,e) and/or higher receptor
abundance (Fig. 4b,c,f,g) to arrive at the same measured gradient
length (Fig. 5a); in that case, however, there is considerably less
free extracellular ligand. As the exact fraction of extracellular
ligand is difficult to establish experimentally, the entire range of
measured diffusion coefficients is, in principle, consistent with
the proposed gradient scaling mechanism. Similarly, we note
that with a fivefold higher degradation rate, which corresponds
to a half-life of internalized Dpp of o10 h, we still obtain
scaling and we still match the measured Dpp gradient length, l(t),
versus the length of the wing disc domain, L(t), over
developmental time (Fig. 5b). A half-life of at least 10 h is
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Figure 5 | Alternative model parameterizations quantitatively fit the

experimental data. The predicted length of the exponential gradient, l(t),

at different domain lengths, L(t), (solid line) and the measured values (red

dots)15. (a) A 100-fold higher diffusion coefficient can be compensated by a

100-fold higher Dpp-Tkv binding rate (kon). However, the predicted fraction

of free ligand would then be much smaller than 1%. (b) A fivefold higher

degradation rate (kdeg¼ 2� 10� 5 s� 1) can be compensated by a slightly

higher diffusion coefficient (DDpp) and a slightly higher Dpp-Tkv binding

rate (kon). All quantitative data, including the fraction of free ligand, would

still be reproduced. The alternative parameterizations are listed in

Supplementary Table 1.

Figure 4 | The sensitivity and robustness of the scaling mechanism to changes in the parameter values. Influence of either doubling (red) or halving

(blue) the specified model parameters of the full model shown in Fig. 3 (as given in Supplementary Table 1), that is, of the (a) Dpp production rate, (b) Tkv

production rate, (c) Tkv degradation rate, (d) Dpp-Tkv binding rate, (e) Dpp-Tkv unbinding rate, (f) Tkv internalization rate, (g) Tkv exocytosis rate, (h)

degradation rate of internalized Dpp, (i) Dpp diffusion constant, on the gradient shape at 90 h (first column), on gradient scaling (second column) and on

the fractions of the different Dpp ligand populations (Dpp-Tkvin: light shading; Dpp-Tkvout: intermediate shading; Dpp: dark shading) (third column).

Influence of either halving (fourth column) or doubling (fifth column) the specified model parameters of the full model shown in Fig. 3 (as given in

Supplementary Table 1) on scaling of the normalized gradients on the rescaled domain. Some parameter values affect the spread of the gradient, but not the

scaling. To correct for the effects of different positions on the gradient profiles, we normalized the domain with the relative change in the gradient dispersal,

that is, Relative Normalized Position¼ [Absolute Position/L(t)] � ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE½x2

wt�Þ
p

/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE½x2

mutant�Þ
p

�. SE refers to the scaling error (equation (2)) between the

gradients at t¼ 24 h and t¼90 h (0: perfect scaling; 1: no scaling; for details, see Methods).
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supported by previous observations, according to which
internalized Dpp ligand remains active beyond cell divisions29;
the cell cycle time is 6–30 h in wing imaginal discs15.

Our proposed scaling mechanism is therefore consistent with
all these previous measurements.

How uniform does growth need to be for gradients to scale.
Finally, we wondered to what extent gradient scaling would
depend on uniform growth. When we either restrict all growth to
a small part of the domain (Fig. 6a) or set growth to zero in a
small part of the domain (Fig. 6b), as is the case in certain clones,
gradient scaling is barely affected as long as the overall growth of
the whole domain is linear. Scaling can thus be still obtained in
case of non-uniform linear growth. Scaling is even observed if the
domain grows only at the tip (Fig. 6c). In that case, there is
no advective transport, and indeed, when we quantify the con-
tributions of diffusion, advection and dilution in the wing disc
model (Fig. 3a) we find that transport by diffusion dominates
close to the source (Fig. 6d and Supplementary Fig. 1), even
though only 3% of ligand is free (Fig. 3g). In line with this, the
experimentally established gradient length, l(t), versus the
domain length, L(t), can be fitted by a square root function
(Fig. 6e) as characteristic for a purely diffusive, pre-steady-state
transport process (Fig. 2g, Methods). We note, however, that
there are limits to the extent to which non-uniform growth can be
tolerated: for exponentially growing domains, the SE increases
considerably (SE¼ 0.53 for the exponentially growing domain
versus SE¼ 0.45 for the linearly growing domain) (Fig. 6f). The
fact that the SE is still so small can be accounted to the impact of
advection, which is considerably stronger on an exponentially
growing domain (Supplementary Fig. 4). For comparison,
increasing kdeg fivefold while leaving all other parameter values
unchanged (such that the steady state is attained much more
quickly) results in SE¼ 0.82 on a linearly growing domain.

Conclusion. In summary, the simulations establish that scaling of
the Dpp morphogen gradient on the linearly, uniformly growing
wing disc domain is the result of the pre-steady-state dynamics of
the ligand (Figs 3–6). The large amount of available quantitative
experimental data allowed us to quantitatively test the proposed
mechanism: the model recapitulates the measurements in the
Drosophila wing disc quantitatively, and resolves the controversy
related to Dpp transport and readout in that it combines
diffusion-based transport with cell-linked transport. Further
experiments will nonetheless be of interest. In particular, it will
be important to confirm the rather long half-life of internalized
Dpp ligand explicitly, which ensures that the gradient dynamics
are in pre-steady state. According to our analysis, the half-life
should be at least 10 h, but much longer half-lives (B48 h) are
likely.

In contrast to a recently proposed model for morphogen
gradient scaling24, it is not necessary that the morphogen controls
growth to achieve scaling. Gradient scaling and domain growth
can therefore be independently controlled processes that are
linked via advection. Ligand transport by advection, in principle,
enables perfect scaling on a uniformly expanding domain
(Fig. 2b–e), because the gradient then expands in parallel with
the expanding domain (see Methods for details), as required for
scaling. However, transport by advection has only little effect on
gradient scaling in the wing disc relative to diffusion (Fig. 6),
because the growth field of the uniformly growing domain is
rather small close to the ligand source (Fig. 2i), and because
dilution and degradation of internalized ligand limit the quality of
scaling (Fig. 2j,k).

There is a general requirement for gradient scaling during
embryogenesis as well as during the evolution of differently sized
species. Pre-steady-state dynamics and (quasi-) uniform, linear
growth are pervasive in morphogen-controlled systems, making it
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Figure 6 | Relative contributions of diffusion and advection on ligand

transport in the Drosophila wing disc model. (a) A small clone that solely

contributes to the observed growth (no growth outside the clone) has only

minor impact on gradient scaling as long as the total domain size grows

linearly. Blue vertical lines indicate the initial boundaries of the clone; red

vertical lines indicate the boundaries of the clone in the final domain. (b) A

small non-growing clone does not influence scaling as long as the total

domain size grows linearly. Blue vertical lines indicate the initial boundaries

of the clone; red vertical lines indicate the boundaries of the clone in the

final domain. (c) Linear tip growth (no advection) only slightly affects the

quality of scaling. (a–c) SE refers to the scaling error (equation (2))

between the gradients at t¼ 24 h and t¼90 h (0: perfect scaling; 1: no

scaling; for details, see Methods). (d) The influence of advection of the

bound (and therefore advected) ligand species is very small compared with

the diffusion of the free ligand, suggesting that the influence of advection is

negligible in the wing disc and scaling is mainly obtained by a diffusion-

based pre-steady-state expansion of the gradient. The calculation was

carried out at the final time point, t¼ 90 h. (e) The measured length of the

exponential gradient, l(t), at different lengths, L(t), of the wing disc (red

dots)15 can be fitted with a square-root function of domain length (which

itself is linearly related to time), thus supporting a diffusion-based pre-

steady-state gradient expansion (for details, see Methods). (f) Gradients

do not scale on an exponentially growing domain. SE refers to the scaling

error (equation (2)) between the gradient at t¼40 h and t¼ 90 h

(0: perfect scaling; 1: no scaling; for details, see Methods). Note that the

exponentially growing domain at 40 h has the same length as the linearly

growing domain at 24 h. For further details, see Supplementary Note 2.
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probable that the here-identified mechanism is of general use for
scaled position-dependent readout in growing developmental
systems.

Methods
A simple model for ligand dynamics on a growing domain. In the simple
models, for which we show results in Figs 1e,f and 2, we only consider a ligand with
concentration c(x,t), which diffuses with diffusion coefficient D¼ 0.005 mm2 s� 1

on a growing 1D domain, xA[0, L(t)] with L(t)¼ L(0)þ vgt, where t denotes time.
We note that the diffusion constant had to be chosen much smaller than the
measured range (D¼ 0.1 mm2 s� 1 (refs 15,26) to D¼ 20mm2 s� 1 (ref. 27)),
because in this simple model we do not include any reactions that would limit the
length of the gradient to its physiological length. Over the 90 h of development, the
wing disc domain expands from an initial size L(0)¼ 50 mm to a final size of
L(90 h)¼ 300 mm15. The measured growth speed is thus vg ¼ ð300mm� 50mmÞ

90h ¼
7:7�10� 4mm�s� 1 with L(t)¼ L(0)þ vgt. Based on Reynolds transport theorem, the
diffusion equation for c on a growing domain is given by

@c
@t
þ u

@c
@x
þ c

@u
@x
¼ D

@2c
@x2

: ð3Þ

Here, u denotes the growth field, u @c
@x is the advection term, c @u

@x is the dilution term
and D @2c

@x2 is the diffusion term. Reactions are not included in this simple model.
Dilution is a natural consequence of growth. The inclusion of the advection term is
justified only if the ligand is transported by the growing tissue. This is the case if
most functional ligand is bound on cells or is inside cells, as has indeed been
reported for Dpp in the Drosophila wing imaginal disc26,27.

To model the influx of ligand from the producing domain, we use flux-
boundary conditions with flux jin¼ 10� 14 mm� 1 on the left-hand side (x¼ 0). The
boundary condition on the right-hand side (x¼ L(t)) has little impact on the
model, because the ligand concentration on the right-hand side is rather low; we
chose zero-flux boundary conditions, that is,

@c
@x

����
x¼0

¼ � jin and
@c
@x

����
x¼LðtÞ

¼ 0: ð4Þ

As initial conditions we are using c(x,0)¼ 0. The growth field u for a uniformly
growing domain is given by

u ¼ dx
dt
¼ vg

LðtÞ : ð5Þ

A model for the Dpp gradient in the Drosophila wing disc. We base our model
on a previously published model for Dpp ligand dynamics in the Drosophila wing
imaginal disc2. The model considers both the diffusible ligand Dpp and the cell-
bound receptor Tkv. Ligands can bind to receptors at the cell surface at rate kon to
form the Dpp-Tkv complex Dpp-Tkvout, and unbind at rate koff. The receptor–
ligand complex is not degraded on the cell surface, but is rather internalized at rate
kin; the internalized Dpp-Tkv complex, Dpp-Tkvin, can still signal. The internalized
complex, Dpp-Tkvin, is then either degraded at rate kdeg or transported back to the
membrane at rate kout.

Dpp production is restricted to a small domain just anterior to the boundary of
the A and P compartments. The measurements of the Dpp gradient are typically
carried out in the posterior compartment, and we will therefore solve the model on
a 1D domain centred at the A–P boundary, which itself is posterior to the Dpp-
expressing cells. The ligand-producing domain is denoted by LDpp and the
expression rate of Dpp by rDpp. The receptor, Tkv, is produced inside cells at rate
rTkv throughout the target domain and reaches the cell surface by exocytosis.
Accordingly, we include an internal and an external receptor species in the model,
denoted by Tkvin and Tkvout, respectively. The unbound and bound receptors
appear to be endocytosed at similar rates33. As these measurements are of limited
precision, we use identical rates in the model. Thus, the internal Tkv receptor,
Tkvin, is exocytosed at rate kout and unbound, external receptor, Tkvout, is
endocytosed at rate kin.

As an extension to the previously published model2, we now include the well-
described details of the regulation of tkv expression in the model as well, because
the resulting spatially modulated receptor profiles can affect the spatial ligand
dynamics32. The expression of tkv in Drosophila is downregulated both by Dpp and
Hh signalling30,31. We include the downregulation by Dpp signalling via an
inhibiting Hill term H that depends on the concentration of bound Dpp-Tkv
receptor, that is,

H ¼ Kn

Kn þðcDpp�Tkvin þ cDpp�Tkvout Þ
n ð6Þ

Hh signalling induces the expression of dpp and reduces the expression of tkv. We
do not include Hh dynamics in the model explicitly, but rather decrease rTkv by
twofold in the Dpp-producing domain LDpp. rTkv(x) is therefore defined as:

rTkvðxÞ ¼
r0

Tkv
0:5�r0

Tkv

�
if x =2 LDpp

if x 2 LDpp
ð7Þ

In summary, the reaction terms Ri for the components ci in Fig. 3a in the main
paper are given as

RDpp ¼ rDppLDpp � koncDppcTkvout þ koff cDpp�Tkvout

RDpp�Tkvout ¼ koncDppcTkvout � koff cDpp�Tkvout � kincDpp�Tkvout þ koutcDpp�Tkvin

RDpp�Tkvin ¼ kincDpp�Tkvout � koutcDpp�Tkvin � kdeg cDpp�Tkvin

RTkvout ¼ � koncDppcTkvout þ koff cDpp�Tkvout � kincTkvout þ koutcTkvin

RTkvin ¼ rTkvðxÞ�Hþ kincTkvout � koutcTkvin � dTkvcTkvin

ð8Þ
Unlike in the previous publication of the model2, we solve the model on a

growing domain and thus formulate the model as advection-reaction-diffusion
equations for a compound ci with diffusion coefficient Di, velocity field u and
reaction terms Ri:

@t ci þrðuciÞ ¼ Dir2ci þRi: ð9Þ
According to experimental data, the wing disc is expanding linearly with time,

and we therefore solve the model on a linearly growing 1D domain, xA[� L(t),
L(t)] with

L tð Þ ¼ L 0ð Þþ vg t: ð10Þ
According to measurements, the ligand-producing stripe expands as the wing

disc is growing, that is,

LDppðtÞ ¼ 0:2�LðtÞ: ð11Þ
The receptors are restricted to cells and their diffusion coefficient is therefore set

to zero. We use zero flux boundary conditions for all components, that is,

rci ¼ 0: ð12Þ
The absolute protein concentrations in the wing imaginal disc have not been

established. We therefore use non-dimensionalized protein concentrations. It is
likely to be that receptor is initially distributed uniformly, and accordingly we use
an initially spatially uniform, non-dimensional concentration cTkvout ð0Þ ¼

rTkv �kout

dTkv �kin

for the receptor concentration on the surface, Tkvout. The initial internal receptor
concentration, Tkvin is set to the ratio of the production and degradation rates,
that is, cTkvin ð0Þ ¼

rTkv
dTkv

. For the free ligand and for both internal and external
receptor–ligand complexes, we use zero as initial conditions, that is,

cDppð0Þ ¼ 0
cDpp�Tkvout ð0Þ ¼ 0
cDpp�Tkvin ð0Þ ¼ 0
cTkvout ð0Þ ¼ rTkv �kout

dTkv �kin

cTkvin ð0Þ ¼ rTkv
dTkv

ð13Þ

Parameter values. The parameter values that are used in our standard model are
listed in Supplementary Table 1. Based on experiments, the initial size of the wing
disc was set to L(0)¼ 50mm and the developmental time was set to 90 h15. The final
imaginal disc size is about 300 mm (ref. 15), and accordingly the growth rate was set
to vg ¼ ð300mm� 50mmÞ

90h ¼ 7:7�10� 4mm�s� 1.
The internalization rate was set according to measurements. Thus,

measurements in a wide range of systems show that half of the Dpp ligand is
internalized within 10–15 min33,34,35, that is, kin¼ 0.8–2.3?10� 3 s� 1; we use a
conservative internalization rate, that is, kin¼ 0.8?10� 3 s� 1. The exocytosis rate
has not yet been established. We use kout¼ 1?10� 4 s� 1 to obtain the measured
fraction of internalized ligand, Z85% (refs 2,27).

Two important parameter values in the model that deserve further discussion
are the diffusion coefficient, D, and the degradation rate, kdeg. Measurements by
different groups have resulted in very different values for the Dpp diffusion
constant, with reported values ranging between 0.1 (refs 15,26) and 20 mm2 s� 1

(ref. 27). As shown in Figs 3d–f and 5a, scaled gradients can be obtained over the
entire measured range, because the diffusion coefficient can be compensated by
adjusting the ligand–receptor binding affinity (kon, koff) and/or the receptor
abundance in the model, that is, rTkv, kout, kin or dTkv, all of which have not yet
been measured. Accordingly, the entire range of measured diffusion coefficients is
consistent with currently available experimental data. However, it has to be noted
that for a given gradient width, there is only one diffusion coefficient that yields the
measured fraction of free ligand, because the diffusion coefficient is the only
parameter for which the gradient width and the fraction of free ligand change in
opposite directions as the parameter value is changed (Fig. 4i). The affinities and
the receptor expression/degradation rates, on the other hand, regulate the width of
the gradient and the fraction of free ligand in the same direction (Fig. 4b–e). We
used the Dpp diffusion coefficient, DDpp¼ 0.1 mm2 s� 1, which was reported in the
Kicheva et al.26 publication, because it resulted in the measured fraction of free
ligand of 3% (refs 26,27); the other above mentioned parameter values that have an
impact on the gradient length and fraction of free ligand were adapted accordingly.
We stress here that although DDpp¼ 0.1 mm2 s� 1 was uniquely best suited to
reproduce the reported distribution of ligand, the measurements of the ligand
fractions are too imprecise as that they would exclude different diffusion
coefficients. Moreover, there are a number of processes that affect the effective
diffusion that we do not include in the model (for example, binding to the
extracellular matrix).
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The second important parameter value is kdeg, which determines the time scale
on which the gradient reaches its steady-state profile. This rate has so far not been
determined explicitly, and the many indirect measurements are unsuitable to infer
its value as discussed in the main text. We use kdeg¼ 4?10� 6 s� 1 as turnover rate
for internalized Dpp, which corresponds to a half-life of internalized Dpp of 48 h.
We note that scaling and a similar fraction of internalized Dpp can still be obtained
with a fivefold higher turnover rate (kdeg¼ 2?10� 5 s� 1) for internalized Dpp
(Fig. 5b). Previous estimates had suggested kdegZ10� 4 s� 1, but these were based
on a steady-state assumption2,15,26. A steady-state assumption implies a high
degradation rate such that the ‘prediction’ of a high degradation rate directly
follows from the specific assumption of a steady-state gradient; we now show that
such a steady-state assumption does not hold with physiological parameters. For
more details, see the Results section.

In summary, we set all parameter values to be within the probable
physiological range (Supplementary Table 1), but we note that a wide range of
parameter sets would be consistent with the available data; the exact values are
thus not identifiable, but also do not matter for the analysis of the scaling
mechanism.

Gradient expansion in the simple ligand model. In Fig. 2 we analysed how
diffusion, advection and dilution affect the expansion of the gradient, c, in the
simple model, that is, @c

@t þ u @c
@x þ c @u

@x ¼ D @2c
@x2.

To quantify the dispersion of c(x,t), we determined the mean squared
displacement

E½x2�ðtÞ ¼

RLðtÞ
0

x2cðx; tÞdx

RLðtÞ
0

cðx; tÞdx

ð14Þ

As before, L(t)¼ L(0)þ vgt denotes the domain length. As expected, we
observed that for advection

ffiffiffiffiffiffiffiffiffiffi
E½x2�

p
increases linearly with respect to time, while in

case of diffusion
ffiffiffiffiffiffiffiffiffiffi
E½x2�

p
increases with the square root of time. In particular, we

found that for an exponential initial profile with characteristic length l,ffiffiffiffiffiffiffiffiffiffi
E½x2�

p
¼

ffiffiffi
2
p

l LðtÞ
Lð0Þ, and for the diffusion-only transport

ffiffiffiffiffiffiffiffiffiffi
E½x2�

p
¼

ffiffiffiffiffi
Dt
p

. Here we
derive these relationships.

Influence of diffusion on gradient expansion. In Fig. 2d we solved equations
(1–3) on a static domain. On a static domain, there are no advection and dilution
effects, and transport is thus purely a result of diffusion. We therefore deal with
the simple 1D diffusion equation

@c
@t
¼ D

@2c
@x2

: ð15Þ

For a Dirac delta function d(x) as an initial condition, the solution to the diffusion
equation on an infinite domain is

cðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
4pDt
p exp � x2

4Dt

� �
; ð16Þ

which is the normal distribution with mean m¼ 0 and variance s2¼ 2Dt. The
variance s2¼ 2Dt is twice the value obtained in our simulations, E[x2]¼Dt. This
difference can be accounted to the flux-boundary condition in our model.

Thus, although the right-hand boundary has little effect as long as the domain
is sufficiently large, the ligand source at the left-hand boundary prevents us
from using an infinite domain approximation. Rather, we need to consider the
diffusion equation on a semi-infinite domain (x A[0,N]). If we use f(x) as initial
condition and homogeneous Neumann boundary conditions in the first instance,
we obtain

cðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
4pDt
p

Z1

0

exp � ðx� aÞ2

4Dt

� �
þ exp � ðx� aÞ2

4Dt

� �� �
f ðaÞda ð17Þ

Using again the Dirac Delta function as initial condition, that is, f(x)¼ d(x), and
the property of the Delta function

R1
�1 gðxÞdðxÞdx ¼ gð0Þ, this simplifies to

cðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
4pDt
p exp � x2

4Dt

� �
þ exp � x2

4Dt

� �� �

¼
ffiffiffi
2
p
ffiffiffiffiffiffiffiffiffiffi
2pDt
p exp � x2

4Dt

� �
; ð18Þ

which is the half-normal distribution with s2¼ 2Dt. The variance is the second
central moment of a random variable U, that is, Var(U)¼E[U2]� (E[U])2.
Therefore, we can write E[U2]¼Var(U)þ (E[U])2 and, given the variance and

mean of the half-normal distribution, we have E½x2� ¼ s2 1� 2
p

	 

þ s

ffiffi
2
pffiffi
p
p
� �2

¼ s2

¼ 2Dt. This is the same expectation value of x2 as in the normal distribution.
In our model, we still have a slightly different situation in that we have a

constant influx at the left-hand side boundary instead of a given initial distribution.
We can approximate our inhomogeneous Neumann boundary condition at x¼ 0
as a mixture distribution of half-normal distributions with different end times tend,

where tend ¼ i
k t and i¼ 0,1,2, ... ,k. For large k, the following is therefore a good

approximation

cðx; tÞ � 1
kþ 1

Xk

i¼0

ffiffiffi
2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pD i

k t
q exp � x2

4D i
k t

� �
ð19Þ

E[x2] of this mixed distribution is then the weighted sum of the individual
expectation values, Ei½x2� ¼ 2D i

k t, which range from Ei¼ 0[x2]¼ 0 to
Ei¼ k[x2]¼ 2Dt. As Ei p t, we have

E½x2� ¼ Dt; ð20Þ

as observed in our simulations of the simple ligand-only model on a static domain
(Fig. 2g, grey line). In summary, in case of diffusion,

ffiffiffiffiffiffiffiffiffiffi
E½x2�

p
¼

ffiffiffiffiffi
Dt
p

increases with
the square root of time.

Influence of advection on gradient expansion. Now we consider ligand
transport on a uniformly growing domain L(t)¼ L(0)þ vgt in the absence of
diffusion. Transport by advection (in the absence of diffusion) applies if all
ligands are strictly attached or within a cell and the domain is growing.
We then have

@c
@t
¼ � u

@c
@x
� c

@u
@x
: ð21Þ

Given that we have linear, uniform growth, we have @u
@x ¼

vg

LðtÞ and dilution is thus
spatially uniform, such that the gradient height decreases uniformly, while the
gradient shape remains preserved.

Assuming that we have some initial distribution U with initial mean m0¼ 0 and
initial variance s0¼ 0, we can again write E½U2� ¼ VarðUÞþ ðE½U �Þ2 ¼ s2

0 þ m2
0.

To analyse the impact of growth, we consider a scaled distribution V(t)
such that U ¼ VðtÞ Lð0Þ

LðtÞ. We now use that Var(aU)¼ a2Var(U) and E[aU]¼ aE[U],

such that E[V2]¼ a2(Var(U)þ (E[U])2). With a ¼ Lð0Þ
LðtÞ, we thus have

E½V2� ¼ LðtÞ
Lð0Þ

� �2
VarðUÞþ ðE½U �Þ2
	 


¼ LðtÞ
Lð0Þ

� �2
s2

0 þ m2
0

	 

. We now consider a

concentration profile cðz; 0Þ ¼ cð0; 0Þ� exp �z=lð Þ on an infinite domain z
A[0,N]. We then have E[z2]¼ 2l2. To capture the impact of growth from L(0) to
L(t), we use the mapping x ¼ LðtÞ

Lð0Þ z, and have

E½x2� ¼ 2l2 LðtÞ
Lð0Þ

� �2

; ð22Þ

as indeed observed in the simulations. In summary, in case of advection,
ffiffiffiffiffiffiffiffiffiffi
E½x2�

p
¼

LðtÞ
Lð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

0 þm2
0

p
increases linearly with the linearly expanding domain, and thus

linearly with time.

Contribution of diffusion and advection to ligand transport. Both, in the simple
model as given by equation (3) and in the detailed model for the Dpp gradient in
the Drosophila wing imaginal disc as given by equations (8,9), diffusion and
advection contribute to ligand transport. Supplementary Fig. 1 quantifies the
relative contributions of the two transport modes. In both models, transport by
diffusion dominates close to the source (Supplementary Fig. 1a,e,i, m), while
transport by advection dominates far away from the source (Supplementary
Fig. 1c,g,k,o), because transport by advection is still strong, while transport by
diffusion is negligible; there is no transport by advection on the right-hand-side
boundary. Transport by advection is strongest slightly away from the source
(Supplementary Fig. 1b,f,j,n), where the velocity field u is of intermediate strength
(Fig. 2i), while the gradient of the ligand concentration is still high (Supplementary
Fig. 1d,h,l,p). Far away from the source, 490% of all Dpp transport can be
accounted to advection (Supplementary Fig. 1k)—even though no more than 80%
of Dpp in the outer parts got there by advection (Supplementary Fig. 1o).

In the simple model, transport rates by diffusion and advection both decline
over time (Supplementary Fig. 1a,b). On the other hand, in the more detailed
model, transport rates by diffusion and advection both increase over time
(Supplementary Fig. 1i,j). This can be accounted to the different descriptions of
ligand production. In the simple model, we use a flux boundary condition on the
left-hand-side boundary, while in the detailed wing disc model, ligand is produced
continuously in the expanding stripe in the centre of the domain. As a result, the
spatial ligand gradient at the left-hand-side declines at later times in the simple
model, but continues to increase in the more detailed model, thereby supporting
increased transport by both diffusion and advection.

Evaluation of scaling quality. We speak of scaling if two gradients on differently
sized domains overlay when normalized with respect to their maximal value and
plotted on domains that have been normalized with respect to their maximal
length. To evaluate the quality of scaling, we seek to determine the extent, to which
the gradients are shifted over time on the normalized domain, X A[0,1].
Accordingly, we define the SE as DX

X , where DX specifies the difference of the
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position X at which a given normalized concentration cðx;tÞ
cð0;tÞ is attained by the

different gradients.
According to experimental data, the Dpp gradients in the Drosophila wing

imaginal disc remain of exponential shape as the disc is growing out, but the
gradient lengthens such that the characteristic length of the gradient, l, increases15.
We therefore now consider exponential gradients of the form

cðx; tÞ ¼ cð0; tÞ� exp � x
lðtÞ

� �
ð23Þ

c ¼ cðx; tÞ
cð0; tÞ ¼ exp � LðtÞX

lðtÞ

� �
; ð24Þ

with x(t)¼ L(t)X, and L(t) is the size of the domain at time t. We have perfect
scaling if lðt1Þ

Lðt1Þ ¼
lðt2Þ
Lðt2Þ :

To evaluate the SE between two gradients at two different time points t1

and t2, we consider the two normalized gradients c ¼ exp ð� Lðt1ÞX1

lðt1Þ Þ and

c ¼ exp ð� Lðt2ÞX2

lðt2Þ Þ on the rescaled domain X ¼ x
LðtÞ 2 ½0; 1�. We then have

c ¼ exp ð� Lðt1ÞX1

lðt1Þ Þ ¼ exp ð� Lðt2ÞX2

lðt2Þ Þ, which yields Lðt1ÞX1

lðt1Þ ¼
Lðt2ÞX2

lðt2Þ , and thus
X2
X1
¼ lðt2Þ=Lðt2Þ

lðt1Þ=Lðt1Þ. The SE is then

DX
X
¼ X1 �X2

X1
¼ 1� lðt2Þ=Lðt2Þ

lðt1Þ=Lðt1Þ
¼ 1� a: ð25Þ

We note that this corresponds to determining lðt2Þ=Lðt2Þ
lðt1Þ=Lðt1Þ in the l(t) versus L(t) plot in

Fig. 3f as a measure of scaling. As expected, the SE is zero if lðt2Þ=Lðt2Þ
lðt1Þ=Lðt1Þ ¼ 1 and

approaches one in the limit L(t)-N as t-N if l(t)¼ const., i.e., if the gradient
does not lengthen on a growing domain. For a finite time t2, the maximal SE is
obtained with l(t2)¼ l(t1) such that max DX

X

	 

¼ 1� Lðt1Þ

Lðt2Þ. To obtain a measure for

the SE, which is zero for perfect scaling and one for no scaling, we use

SE ¼
DX
X

1� Lðt1Þ
Lðt2Þ
¼

1� lðt2Þ=Lðt2Þ
lðt1Þ=Lðt1Þ

1� Lðt1Þ
Lðt2Þ

¼ 1� a

1� Lðt1Þ
Lðt2Þ

: ð26Þ

To calculate the SE for the gradients in our models we need to determine their
characteristic length l(t) at different time points. In principle, this could be done by
fitting an exponential function to the simulation results and determining the
characteristic length from the fit. However, such fittings are imprecise, and we
rather use that E[z]¼ l for an exponential gradient cðzÞ ¼ exp � z

l

	 

on z

A[0,N]. Accordingly, we can approximate a in equation (25) by calculating E[X]
for two normalized, rescaled gradients at two different time points t1 and t2, that is,

a ¼ E½Xðt2Þ�
E½Xðt1Þ�

¼
E xðt2Þ

Lðt2Þ

h i

E xðt1Þ
Lðt1Þ

h i ¼ Lðt1ÞE½xðt2Þ�
Lðt2ÞE½xðt1Þ�

: ð27Þ

As expected, if the two gradients are identical and thus a¼ 1, the SE is zero.
Moreover for t-N, we have L(t2)-N and thus a-0, SE-1. For a finite time t2,

the maximal SE is now maxðSEÞ ¼ 1� Lðt1 Þ
Lðt2 Þ

1� Lðt1 Þ
Lðt2 Þ
¼ 1.

Software. The equations were solved with finite difference methods as imple-
mented in MATLAB on uniform growing domains, and by finite element methods
as implemented in COMSOL Multiphysics 4.3b on non-uniformly growing
domains36,37.
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