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Abstract

We consider a competition-di$usion system with inhomogeneous Dirichlet boundary conditions
for two competitive species and show that they spatially segregate as the interspeci4c competition
rates become large. The limit problem turns out to be a free boundary problem.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The understanding of spatial and/or temporal behaviour of interacting species is a
central problem in population ecology. For competitive interactions, coexistence or
exclusion of species have been investigated theoretically using di$erent types of math-
ematical models. In particular, reaction-di$usion (RD) systems have been proposed to
study the dynamics of the spatial segregation of competing species. To analyse them,
one often has to rely on numerical methods. However, quite recently, methods based
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upon the derivation of spatial segregation limits have been successfully developed.
Such methods yield evolution equations describing the time evolution of the bound-
aries of spatially segregated regions of competing species. In some situations, the limit
equations take the form of new types of free boundary problems.
We consider a well-known RD model, namely a system of Gause–Lotka–Volterra

type for two competing species. Let u(x; t) and v(x; t) be the population densities of
the competing species at the position x∈�, where � is a bounded domain in R2, and
at the time t ¿ 0. The resulting system is given by

ut = duDu+ (ru − auu − buv)u; x∈�; t ¿ 0; (1.1)

vt = dvDv+ (rv − bvu − avv)v; x∈�; t ¿ 0: (1.2)

Here du and dv are the di$usion rates, ru and rv are the intrinsic growth rates, au

and av are the intraspeci4c and bu and bv the interspeci4c competition rates. All of the
rates are positive constants. The boundary conditions corresponding to system (1.1) and
(1.2) depend on the ecological environment. The most standard ones are the zero-Fux
boundary conditions

@u
@n

=
@v
@n

= 0; x∈ @�; t ¿ 0; (1.3)

where n is the outward normal unit vector to @�. The initial conditions are given by

u(x; 0) = u0(x); v(x; 0) = v0(x); x∈�: (1.4)

From the mathematical viewpoint, qualitative properties of non-negative solutions (u; v)
of (1.1), (1.2) and (1.4) together with the zero-Fux boundary conditions (1.3) have
been extensively studied. A fundamental result is that the stable attractor of (1.1), (1.2)
and (1.3) consists of equilibrium solutions [8,12]. This information indicates that the
existence and stability of non-negative equilibrium solutions are important for the study
of the asymptotic behaviour of solutions. Let us describe the situation more precisely.
Assume that two species are strongly competing, that is,

au

bv
¡

ru
rv

¡
bu

av
: (1.5)

Then there are only two stable spatially constant equilibrium solutions, namely (u; v)=
(ru=au; 0) and (u; v) = (0; rv=av). Moreover, when the domain � is convex, all the
spatially non-constant equilibrium solutions are unstable, even if they exist [9]. Thus
the only stable equilibria are given by (ru=av; 0) and (0; rv=av), which obviously indicates
that two strongly competing species can never coexist in convex habitats. However,
if � is not convex, the structure of equilibrium solutions depends on the shape of
�. If, for instance, � has a suitable dumb-bell shape, there exist stable non-constant
equilibrium solutions, which exhibit spatial segregation of the two competing species
[5]. Ecologically speaking, two competing species may possibly coexist, if their habitat
has a suitably non-convex shape.
If two competing species prefer rather di$erent environmental conditions, because of

di$erent adaptabilities, severe competition occurs essentially in the region of � where
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their main habitats overlap [13]. In this situation, boundary conditions (1.3) should be
replaced by the following Dirichlet conditions:

u(x; t) = uB(x; t); v(x; t) = vB(x; t); x∈ @�; t ¿ 0: (1.6)

The behaviour of the solutions has not been well-understood, even if the domain is
simply convex. The diJculty is that the behaviour of the solutions strongly depends
not only on the shape of � but also on the form of the functions uB(x; t) and vB(x; t).
In this paper, we study the dynamics of two strongly competing species (cf. (1.5))
whose densities satisfy Eqs. (1.1) and (1.2) together with the Dirichlet boundary
conditions (1.6). We search for the spatial segregation limit when the interspeci4c
competition rates bu and bv become very large. In this situation, one can expect that
the two competing species spatially segregate in the whole domain �, because they
are very strongly competing. First, we show the results of numerical simulations of
the solution of problem (1.1), (1.2), (1.4) and (1.6) in a square domain � in R2.
The boundary conditions are imposed as follows. Let �u be a smooth sub-boundary
of @�, with non-empty interior in @�, and let �v = @�\�u. We suppose that uB is
strictly positive in the interior of �u, that uB = 0 on �v and that vB is de4ned in an
opposite way. We assume that u and v are initially spatially segregated. In each 4gure,
the parameters are the same except for the values of k with bu = bv = k. See Section
4 for exact details on the numerical computations. Fig. 1 corresponds to the case that
k=100, Fig. 2 corresponds to the case that k=1000, Fig. 3 to the case that k=10 000
and the initial conditions, which are presented in these 4gures, are similar for the three
cases. We clearly observe spatially segregated regions for u and v if the interspeci4c
competition rates bu and bv increase; more precisely the resulting segregating bound-
aries become sharper. These results suggest that in the limiting situation where the
interspeci4c competition rates bu and bv are in4nite, one can expect the occurrence of
interfaces which are segregating boundaries between u and v.
The aim of this paper is to derive a free boundary problem in the limit that bu and

bv tend to in4nity. The free boundary coincides with the segregating boundary between
the two species. To do so, we rewrite (1.1), (1.2) as

ut = duDu+ f(u)− kuv; x∈�; t ¿ 0; (1.7)

vt = dvDv+ g(u)− akuv; x∈�; t ¿ 0; (1.8)

where f(u) = (ru − auu)u and g(v) = (rv − avv)v and where a and k are positive
constants derived from bu and bv. This paper is organized as follows: in Section 2, we
formulate the problem and show some a priori estimates on the solutions. In Section
3, we let k tend to in4nity to derive a limiting problem which turns out to be a free
boundary problem. For similar studies in the case of Neumann boundary conditions,
we refer to [2,7] and to an earlier paper by Evans [6]. Let us also mention an article
due to Dancer and Zhang [3] where they study the large time behaviour by means of
blow-up-type methods. The new diJculty which we address in this paper is that, in the
case of Dirichlet boundary conditions, the boundary terms obtained when performing
integrations by parts do not vanish as they do in the zero-Fux case; they cannot be
estimated independently of k. Therefore, we have to multiply the equalities by suitable
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Fig. 1. RDP: du = 1:5, dv = 1:0, � = 50, k = 102.
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Fig. 2. RDP: du = 1:5, dv = 1:0, � = 50, k = 103.
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Fig. 3. RDP: du = 1:5, dv = 1:0, � = 50, k = 104.
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test functions which vanish on @� before performing the integrations by parts. This
yields interior estimates which together with the uniform estimates for the solution pair
(uk ; vk) imply its relative compactness in L2(� × (0; T )) for every T ¿ 0.

2. Formulation of the problem and basic properties

The precise problem which we study is the Dirichlet problem

(Pk)




ut = d1Du+ f(u)− kuv in Q;

vt = d2Dv+ g(v)− �kuv in Q;

u= mk
1 on @� × R+;

v= mk
2 on @� × R+;

u(x; 0) = uk
0(x); v(x; 0) = vk0(x); x∈�;

where � is a bounded, open, connected subset of RN with smooth boundary @� and
Q := � × R+. We assume the following:

(i) f and g are continuously di$erentiable functions on [0;∞) such that f(0)=g(0)=0
and f(s)¡ 0, g(s)¡ 0 for all s¿ 1,

(ii) mk
1, mk

2 ∈C2;1( M� × R+), 06mk
1, mk

26 1 and mk
1 * m1, mk

2 * m2 weakly in
L2(@� × (0; T )) for all T ¿ 0 as k → ∞.

The initial conditions uk
0 and vk0 are de4ned by

uk
0(x) = mk

1(x; 0); vk0(x) = mk
2(x; 0) for x∈�

and uk
0 * u0, vk0 * v0 weakly in L2(�) as k → ∞.

By a solution of Problem (Pk) we mean a pair (u; v) such that u; v∈C( MQ)∩C2;1( M�×
(0;∞)) and satisfy pointwise the partial di$erential equations as well as the boundary
and initial conditions in Problem (Pk). We begin with a priori estimates for solutions
of Problem (Pk).

Lemma 2.1. Let (uk ; vk) be a solution of Problem (Pk). Then

06 uk ; vk 6 1 in MQ:

Proof. We de4ne

L1(u) := ut − d1Du − f(u) + kuv;

L2(v) := vt − d2Dv − g(v) + �kuv:

Since Li(0) = 0 and Li(1)¿ 0 for i = 1; 2, the assertion follows from the maximum
principle.
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Lemma 2.2. There exists a unique classical solution of Problem (Pk).

Proof. De4ne U := u−mk
1, V := v−mk

2. We can apply [11, Proposition 7.3.2, p. 277]
to the corresponding problem for U and V with homogeneous boundary conditions to
deduce that Problem (Pk) has a unique classical solution.

Next we de4ne ’ as the 4rst eigenfunction of the operator −D in �, namely the
function ’ such that ‖’‖H 1

0 (�)
= 1 satisfying{−D’= �’ in �;

’= 0 on @�

with �¿ 0 and ’¿ 0 in �. In the next three lemmas we obtain a priori bounds for the
solution (uk ; vk) of Problem (Pk) which are uniform with respect to the parameter k in
the equations. However these estimates only provide useful information in subdomains
! of � such that M! b �.

Lemma 2.3. There exists a positive constant C1 independent of k such that∫∫
QT

ukvk’ dx dt6
C1

k
: (2.1)

Proof. Integrating the equation for uk over QT := �× (0; T ) after multiplication by ’
yields

k
∫∫

QT

ukvk’ dx dt

=d1

∫ T

0

∫
@�

{
@uk

@&
’ − uk

@’
@&

}
dS dt + d1

∫∫
QT

ukD’ dx dt

+
∫∫

QT

f(uk)’ dx dt +
∫
�
uk
0’ dx −

∫
�
uk(x; T )’ dx;

where dS indicates the (N −1)-dimensional area element in @�=�1 ∪�2. Since ’=0
on @� and

sup
x∈@�

∣∣∣∣@’@& (x)
∣∣∣∣¡∞;

we get (2.1).

Lemma 2.4. There exists a positive constant C2 independent of k such that∫∫
QT

|∇uk |2’ dx dt;
∫∫

QT

|∇vk |2’ dx dt6C2:
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Proof. We multiply the parabolic equation for uk by uk’ and integrate by parts. This
gives

1
2
d
dt

∫
�
u2k’ dx + d1

∫
�

|∇uk |2’ dx + d1

∫
�
uk∇uk · ∇’ dx

=
∫
�
f(uk)uk’ dx − k

∫
�
u2kvk’ dx:

Therefore,

1
2

∫
�
u2k(x; T )’ dx + d1

∫∫
QT

|∇uk |2’ dx dt

6
1
2

∫
�
(uk

0)
2’ dx − d1

2

∫ T

0

∫
@�

u2k
@’
@&

dS dt

+
d1
2

∫∫
QT

u2kD’ dx dt +
∫∫

QT

f(uk)uk’ dx dt;

which implies the 4rst result of Lemma 2.4. The second one can be proved in a similar
way.

In order to prove that the sequences {uk} and {vk} are relatively compact in L2(QT )
we will apply the following FrNechet–Kolmogorov theorem (e.g. [1, Corollary IV.26, p.
74]).

Proposition 2.5 (FrNechet–Kolmogorov). Let F be a bounded subset of Lp(QT ) with
16p¡∞. Suppose that

(i) for any )¿ 0 and any subset ! b QT , there exists a positive constant * (¡ dist
(!; @QT )) such that

‖f(x + +; t)− f(x; t)‖LP(!) + ‖f(x; t + ,)− f(x; t)‖LP(!) ¡)

for all +, ,, and f∈F satisfying |+|+ |,|¡*,
(ii) for any )¿ 0, there exists ! b QT such that

‖f‖Lp(QT\!) ¡)

for all f∈F.

Then F is precompact in Lp(QT ).

For that purpose we 4rst present results about di$erences of space and time translates
of uk and vk . For r ¿ 0 suJciently small, say r ∈ (0; r̂), we de4ne

�r = {x∈� |B(x; 2r) ⊂ �}
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and

�′
r =

⋃
x∈�r

B(x; r);

where B(x; r) denotes the ball in RN with centre x and radius r.

Lemma 2.6. For each r ∈ (0; r̂), there exists a positive constant C3 such that∫ T

0

∫
�r

(uk(x + +; t)− uk(x; t))2 dx dt6C3|+|2;
∫ T

0

∫
�r

(vk(x + +; t)− vk(x; t))2 dx dt6C3|+|2

for all +∈RN , |+|6 r.

Proof. It is a direct consequence of Lemma 2.4. Indeed∫ T

0

∫
�r

(uk(x + +; t)− uk(x; t))2 dx dt

=
∫ T

0

∫
�r

(∫ 1

0
∇uk(x + .+; t) · + d.

)2
dx dt

6 |+|2
∫ 1

0

∫ T

0

∫
�r

|∇uk(x + .+; t)|2 dx dt d.

6 |+|2
∫ T

0

∫
�′

r

|∇uk(x; t)|2 dx dt

6
|+|2

inf y∈�′
r
’(y)

∫ T

0

∫
�′

r

|∇uk(x; t)|2’(x) dx dt

6C3|+|2:
A similar proof holds for vk .

Lemma 2.7. For each r ∈ (0; r̂), there exists a positive constant C4 such that∫ T−,

0

∫
�,

(uk(x; t + ,)− uk(x; t))2 dx dt6C4,;

∫ T−,

0

∫
�r

(vk(x; t + ,)− vk(x; t))2 dx dt6C4,

for all ,∈ (0; T ).
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Proof. Let 0∈C∞
0 (�′

r) be such that 06 0(x)6 1 in �′
r and 0 = 1 on �r . Then∫ T−,

0

∫
�′

r

(uk(x; t + ,)− uk(x; t))20(x) dx dt

=
∫ T−,

0

∫
�′

r

(uk(x; t + ,)− uk(x; t))
(∫ t+,

t
(uk)s(x; s) ds

)
0(x) dx dt

=
∫ T−,

0

∫
�′

r

(uk(x; t + ,)− uk(x; t))
(∫ ,

0
(uk)t(x; t + s) ds

)
0(x) dx dt

=I1 + I2 + I3;

where

I1 :=
∫ ,

0

∫ T−,

0

∫
�′

r

(uk(x; t + ,)− uk(x; t))d1Duk(x; t + s)0(x) dx dt ds;

I2 :=
∫ ,

0

∫ T−,

0

∫
�′

r

(uk(x; t + ,)− uk(x; t))f(uk(x; t + s))0(x) dx dt ds;

I3 := −
∫ ,

0

∫ T−,

0

∫
�′

r

(uk(x; t + ,)− uk(x; t))(kukvk)(x; t + s)0(x) dx dt ds:

Since 0 vanishes on @�′
r , we have

I1 = −d1

∫ ,

0
ds
∫ T−,

0

∫
�′

r

∇(uk(x; t + ,)− uk(x; t)) · ∇uk(x; t + s)0(x) dx dt

−d1

∫ ,

0

∫ T−,

0

∫
�′

r

(uk(x; t + ,)− uk(x; t))∇uk(x; t + s) · ∇0(x) dx dt ds

6C5,
∫ T

0

∫
�′

r

|∇uk(x; t)|2 dx dt + C6,
∫ T

0

∫
�′

r

|∇uk(x; t)| dx dt

6
C5,

inf y∈�′
r
’(y)

∫ T

0

∫
�′

r

|∇uk(x; t)|2’(x) dx dt

+
C7,(

inf y∈�′
r
’(y)

)1=2
(∫ T

0

∫
�′

r

|∇uk(x; t)|2’(x) dx dt
)1=2

6C8,:

Similarly, we get

I26C9,:
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Finally,

I36
C10,

inf y∈�′
r
’(y)

∫ T

0

∫
�′

r

kukvk’ dx dt6C11,:

This completes the proof of the 4rst result of Lemma 2.7. The estimate for the function
vk follows in a similar way.

Furthermore, let ) be arbitrary. Since {uk} and {vk} are bounded by 1, there exist
r0 ¿ 0 and ,0 ¿ 0 such that for 06 r6 r0 and 06 ,6 ,0,∫ T

T−,

∫
�
u2k(x; t) dx dt;

∫ T

0

∫
�\�r

u2k(x; t) dx dt6 )

and that similar inequalities hold for vk .
It follows from this remark, Lemmas 2.6 and 2.7, and Proposition 2.5 that the

sequences {uk} and {vk} are relatively compact in L2(QT ).

3. The limit problem as k → ∞

We can now state the following convergence result.

Corollary 3.1. There exists subsequences {ukn}, {vkn}, functions u∈L∞(QT ) and
v∈L∞(QT ) such that

ukn → u; vkn → v strongly in L2(QT ) and a:e: in QT ;

as kn → ∞.

Lemma 3.2. uv= 0 a.e. in QT .

Proof. It is a consequence of Lemma 2.3 and Corollary 3.1.

Next we set

wk := uk − vk
�

and w := u − v
�
: (3.1)

We deduce from Corollary 3.1 and Lemma 3.2 that

wkn → w strongly in L2(QT ) and a:e: in QT

as kn → ∞ and furthermore that

u= w+ and v= �w−;

where s+ = max(s; 0) and s− = max(−s; 0). In the sequel we prove that w is the
unique weak solution of a limiting free boundary problem. To begin with we show the
following integral equality.
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Lemma 3.3. Let T ¿ 0 be arbitrary. The function pair (u; v) deCned in Corollary 3.1
is such that

−
∫∫

QT

(
u − v

�

)
 t dx dt −

∫
�

(
u0 − v0

�

)
 (x; 0) dx

=−
∫ T

0

∫
@�

(
d1m1 − d2m2

�

)
@ 
@&

dS dt

+
∫∫

QT

{(
d1u − d2v

�

)
D +

(
f(u)− g(v)

�

)
 
}
dx dt (3.2)

for all  ∈FT where

FT := { ∈C2;1(QT ) |  (x; T ) = 0 in � and  = 0 on @� × [0; T ]}:

Proof. We take the di$erence of the partial di$erential equations for uk and vk=�,
multiply by  and integrate by parts which yields

−
∫∫

QT

(
uk − vk

�

)
 t dx dt −

∫
�

(
uk
0 − vk0

�

)
 (x; 0) dx

=−
∫ T

0

∫
@�

(
d1m1 − d2m2

�

)
@ 
@&

dS dt

+
∫∫

QT

{(
d1uk − d2vk

�

)
D +

(
f(uk)− g(vk)

�

)
 
}
dx dt:

We then let k = kn → ∞. Thus we get (3.2).

We de4ne

d(s) :=

{
d1 if s¿ 0;

d2 if s¡ 0;

D(s) :=

{
d1s if s¿ 0;

d2s if s¡ 0;

h(s) :=




f(s) if s¿ 0;

−g(−�s)
�

if s¡ 0:

We will show below that w is the unique weak solution of Problem

(P)




wt =DD(w) + h(w) in Q;

D(w) = d1m1 − d2m2

�
on @� × R+;

w(x; 0) = u0(x)− v0(x)
�

in �:
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We remark that, since the function D is invertible, the boundary condition in Problem
(P) is a standard Dirichlet boundary condition.

De#nition 3.4. A function w is a weak solution of Problem (P) if it satis4es:

(i) w∈L∞(� × R+),

(ii)
∫∫

QT
(w t+D(w)D +h(w) ) dx dt=

∫ T
0

∫
@�(d1m1−d2m2

�
)
@ 
@&

dS dt−∫� w0 (x; 0) dx

for all T ¿ 0 and  ∈FT .

Lemma 3.5. The function w deCned by (3.1) is a weak solution of Problem (P).

Proof. This follows from (3.2) and the de4nitions of the various quantities appearing
in the integral equation in De4nition 3.4.

In the sequel we prove the uniqueness of the weak solution of Problem (P). We do
so by means of several lemmas.

Lemma 3.6. Let w1 and w2 be two solutions of Problem (P) with initial functions
w0;1 and w0;2. Then∫∫

QT

|w1(x; t)− w2(x; t)| dx dt

6T
∫
�

|w0;1(x)− w0;2(x)| dx +
∫∫

QT

(T − t)|h(w1)− h(w2)| dx dt:

The proof of Lemma 3.6 is based on properties of the solution of the adjoint problem

(A)




 t + 8(x; t)D = 9(x; t); (x; t)∈QT ;

 = 0 on @� × (0; T );

 (x; T ) = 0 for x∈�:

We 4rst show the following result.

Lemma 3.7. Let T ¿ 0, 9∈C∞
0 (QT ) be such that |9|6 1 and 8∈C∞(QT ) be such

that there exists a positive constant 8∗ with

8(x; t)¿ 8∗ ¿ 0 in QT :

Then there exists a unique solution  ∈C2;1(QT ) of Problem (A). It satisCes

| |6T − t in QT (3.3)

and ∫∫
QT

(D )2 dx dt6
T |�|
82∗

: (3.4)
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Proof. We 4rst set , = T − t, 8(x; t) = M8(x; ,), 9(x; t) = M9(x; ,) and  (x; t) = M (x; ,).
Then

M , =− t ; D M =D 

and  satis4es the forward in time problem

(F)




M , = M8(x; ,)D M − M9(x; ,); (x; ,)∈QT ;

M = 0 on @� × (0; T );

M (x; 0) = 0 for x∈�:

It follows from [10] that Problem (F) has a unique classical solution M , which in turn
yields a unique classical solution of the adjoint problem (A).
Since |9|6 1, the functions , and −, are upper and lower solutions of Problem (F).

Thus

−,6 M 6 , in QT

or equivalently

−(T − t)6  6T − t in QT :

In order to show (3.4), we multiply the parabolic equation in Problem (A) by D and
integrate by parts on QT . So,∫∫

QT

{ tD + 8(x; t)(D )2} dx dt =
∫∫

QT

9(x; t)D dx dt

which implies that

−
∫∫

QT

(∇ )t · ∇ dx dt +
∫∫

QT

8(x; t)(D )2 dx dt =
∫∫

QT

9(x; t)D dx dt;

where we have used that  t = 0 on @� × (0; T ). Thus

1
2

∫
�

|∇ (x; 0)|2 dx − 1
2

∫
�

|∇ (x; T )|2 dx +
∫∫

QT

8(x; t)(D )2 dx dt

6
8∗
2

∫∫
QT

(D )2 dx dt +
1
28∗

∫∫
QT

9(x; t)2 dx dt

6
1
2

∫∫
QT

8(x; t)(D )2 dx dt +
1
28∗

∫∫
QT

9(x; t)2 dx dt:

Since  (·; T ) ≡ 0, also ∇ (·; T ) ≡ 0 and we deduce that∫∫
QT

8(x; t)(D )2 dx dt6
T |�|
8∗
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since |9|6 1. So∫∫
QT

(D )2 dx dt6
1
8∗

∫∫
QT

8(x; t)(D )2 dx dt6
T |�|
82∗

which gives (3.4).

Proof of Lemma 3.6. Let w1 and w2 be two solutions of Problem (P) with initial
functions w0;1 and w0;2. Set w̃ := w1 − w2, w̃0 := w0;1 − w0;2, z := h(w1) − h(w2) and
de4ne for all (x; t)∈QT

q(x; t) :=




D(w1(x; t))− D(w2(x; t))
w1(x; t)− w2(x; t)

if w1(x; t) �= w2(x; t);

min{d1; d2} otherwise:

Note that

min{d1; d2}6 q(x; t)6max{d1; d2} in QT :

It follows from De4nition 3.4 (ii) that∫∫
QT

{w̃( t + qD ) + z } dx dt =−
∫
�
w̃0 (x; 0) dx (3.5)

for all  ∈FT .
Now let n∈N. Using molli4ers one can 4nd a smooth function qn such that

‖qn − q‖L2(QT )6
1
n

(3.6)

and

min{d1; d2}6 qn(x; t)6max{d1; d2} in QT : (3.7)

Fix 9∈C∞
0 (QT ) with |9|6 1 and let  n be the solution of Problem (A) with this

function 9 and 8 replaced by qn. Setting  =  n in (3.5) gives∫
QT

[w̃{( n)t + qD n}+ z n] dx dt =−
∫
�
w̃0 n(x; 0) dx

and hence, since

( n)t + qn(x; t)D n = 9(x; t);

we have∣∣∣∣
∫∫

QT

w̃{(q − qn)D n + 9} dx dt
∣∣∣∣

6
∫∫

QT

|z nw̃| dx dt +
∫
�

|w̃0 n(x; 0)| dx

6
∫∫

QT

(T − t)|z| dx dt + T
∫
�

|w̃0| dx (3.8)
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by (3.3). Next we show that the 4rst term on the left-hand side of (3.8) vanishes as
n → ∞. Indeed,∫∫

QT

|w̃‖q(x; t)− qn(x; t)‖D n| dx dt

6 (‖w1‖L∞(QT ) + ‖w2‖L∞(QT ))
(∫∫

QT

(q − qn)2 dx dt
)1=2

×
(∫∫

QT

(D n)2 dx dt
)1=2

6
C11T 1=2|�|1=2
nmin{d1; d2} ;

where we have substituted (3.4), (3.6) and (3.7). Letting n → ∞ in (3.8) we obtain∣∣∣∣
∫∫

QT

w̃9 dx dt
∣∣∣∣6

∫∫
QT

(T − t)|z| dx dt + T
∫
�

|w̃0| dx (3.9)

for each 9∈C∞
0 (QT ) with |9|6 1. Take as functions 9 the elements of a subsequence

{9m}, (m∈N) such that {9m} converges to sign (w̃) in L1(QT ) as m → ∞. Letting
m → ∞ in (3.9) yields∫∫

QT

|w̃| dx dt6
∫∫

QT

(T − t)|z| dx dt + T
∫
�

|w̃0| dx (3.10)

which completes the proof of Lemma 3.6.

Corollary 3.8. There exists at most one weak solution w of Problem (P). The function
w belongs to C�;�=2(QT ) for all �∈ (0; 1).

Proof. Suppose that w1 and w2 are two weak solutions of Problem (P) with initial
data w0;1 = w0;2 and let M ¿ 0 be such that |wi|6M (i = 1; 2). Since h is locally
Lipschitz continuous on R, there exists a constant L such that

|h(w1)− h(w2)|6L|w1 − w2| in QT :

Applying (3.10) with QT replaced by � × (t0; t0 + ,) gives∫ t0+,

t0

∫
�

|w1 − w2| dx dt

6 ,
∫
�

|w1(x; t0)− w2(x; t0)| dx +
∫ t0+,

t0

∫
�
(t0 + , − t)|h(w1)− h(w2)| dx dt

6 ,
∫
�

|w1(x; t0)− w2(x; t0)| dx + ,L
∫ t0+,

t0

∫
�

|w1 − w2| dx dt
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from which it follows that∫ t0+,

t0

∫
�

|w1 − w2| dx dt6 2,
∫
�

|w1(x; t0)− w2(x; t0)| dx (3.11)

for all ,6 1=(2L).
Let

t̃ := sup{t ∈ [0; T ] |w1(x; s) = w2(x; s) for 06 s6 t; x∈�}
and assume that t̃ ¡T . Let

t0 :=

{
0 if t̃ = 0;

t̃ − ) if t̃ ¿ 0 with )¡min{t̃; 1=(2L)}:
Then w1(·; t0) = w2(·; t0) so that by (3.11),

w1 = w2 on � × (t0; t0 + ,)

,∈ [0;min{1=(2L); T − t0}], which contradicts the de4nition of t̃. Therefore, Problem
(P) has at most one weak solution w. The HSolder continuity of w in QT follows from
[4, Theorem 1.1, p. 41].

Finally, we remark that just as in [2] one can write a strong form of Problem (P),
where the equations on the free boundary explicitly appear.

4. Numerical computations of some two-dimensional patterns of the RD system and
of the free boundary problem

The equations which we solve are given by

ut = duDu+ �u(1− u)− kuv (x; y)∈ (0; 1)× (0; 1); t ¿ 0; (4.1)

vt = dvDv+ �v(1− v)− kuv (x; y)∈ (0; 1)× (0; 1); t ¿ 0; (4.2)

together with the boundary conditions,

(u(x; 0; t); v(x; 0; t)) =

{
(−2:5x + 0:5; 0); x∈ (0:0; 0:2];

(0;−0:625(1− x) + 0:5); x∈ (0:2; 1:0);
(4.3)

(u(x; 1; t); v(x; 1; t)) =

{
(−0:625x + 0:5; 0); x∈ (0:0; 0:8];

(0;−2:5(1− x) + 0:5); x∈ (0:8; 1:0)
(4.4)

and some initial state which is shown in the 4gures. We also compute the solution of
the limiting free boundary problem given by the equation

wt =DD(w) + �w(1− |w|); x∈ (0; 1)× (0; 1); t ¿ 0; (4.5)
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Fig. 4. FBP: du = 1:5, dv = 1:0, � = 50.
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together with the boundary conditions,

w(x; 0; t) =

{−2:5x + 0:5; x∈ (0:0; 0:2];

0:625(1− x)− 0:5; x∈ (0:2; 1:0);
(4.6)

w(x; 1; t) =

{−0:625x + 0:5; x∈ (0:0; 0:8];

2:5(1− x)− 0:5; x∈ (0:8; 1:0):
(4.7)

The values of the parameters are

du = 1:5; dv = 1:0; �= 50; k = 102; 103; 104: (4.8)

The time step is given by Dt = 2−16, and the space steps by Dx =Dy = 2−6.

5. Concluding remarks

We have obtained a free boundary problem from the competition-di$usion system
by taking a limit as the interspeci4c competition rates tend to in4nity. Fig. 4 shows
numerical simulations of the free boundary problem where the initial and boundary
conditions are deduced from those of the competition-di$usion system. Comparing with
Fig. 3, one can see that it is a good approximation to the reaction-di$usion system.
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