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A B S T R A C T

Animal movement is a key mechanism for shaping population dynamics. The effect of interactions between
competing animals on a population's survival has been studied for many decades. However, interactions also
affect an animal's subsequent movement decisions. Despite this, the indirect effect of these decisions on animal
survival is much less well-understood. Here, we incorporate movement responses to foreign animals into a
model of two competing populations, where inter-specific competition is greater than intra-specific competition.
When movement is diffusive, the travelling wave moves from the stronger population to the weaker. However,
by incorporating behaviourally induced directed movement towards the stronger population, the weaker one
can slow the travelling wave down, even reversing its direction. Hence movement responses can switch the
predictions of traditional mechanistic models. Furthermore, when environmental heterogeneity is combined
with aggressive movement strategies, it is possible for spatially segregated co-existence to emerge. In this
situation, the spatial patterns of the competing populations have the unusual feature that they are slightly out-
of-phase with the environmental patterns. Finally, incorporating dynamic movement responses can also enable
stable co-existence in a homogeneous environment, giving a new mechanism for spatially segregated co-
existence.

1. Introduction

Predicting the survival of populations in competitive environments
is a key question in ecology, with applications to conservation decisions
(Lande et al., 2003), biological invasions (Lewis et al., 2016), and
management of changing ecosystems (Tylianakis et al., 2008). Indeed,
the question is not restricted to ecology, with studies existing in fields
as diverse as criminology (Brantingham et al., 2012) and cancer studies
(Gatenby and Gawlinski, 1996). However, prediction is impossible
without an understanding of the mechanisms of species competition,
together with tools to quantify mathematically their effects on demo-
graphic patterns (Murray, 2001; Lewis et al., 2016). Animal movement
is emerging as an important mechanism underlying inter- and intra-
species interactions, as the movement decisions that animals make in
response to these interactions play an important role in shaping the
‘life-path’ of the animal (Nathan et al., 2008; Börger, 2016). Although it
is reasonable to expect that movement responses to competitors could
have a big effect on the ability of animals to survive, population
dynamics models incorporating these factors are rare (Armsworth and
Roughgarden, 2005; Morales et al., 2010).

Despite this, inter-population competition is one of the oldest
phenomena in ecology to be given rigorous mathematical treatment,
with the first model dating back to Lotka (1932) and Volterra (1926),
so popularly termed the Lotka–Volterra competition (LVC) model.
Although the original LVC model is spatially implicit, and so does not
explicitly incorporate animal movement, various foundational predic-
tions have been made from its analysis. One is that stable co-existence
of two competing populations is only possible if intra-population
competition is stronger than inter-population competition. This situa-
tion is called weak competition. In contrast, for strong competition,
where inter-population competition is more deleterious than intra-
population competition, the LVC model predicts bi-stability: only one
of the populations will survive in the long run and the other will die out,
with stable co-existence impossible. This predicted inability for
strongly competing populations to co-exist is sometimes called compe-
titive exclusion (Hardin, 1960; Kishimoto, 1990).

The existence of bi-stability in the Strongly competitive LVC model
(henceforth SLVC model) naturally leads to the question of which
additional ecological processes may affect convergence to one or other
of the stable states. Or, to put it in more biological terms, which
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behavioural or environmental factors affect the survival of competing
populations* This question leads to a wealth of possibilities for study,
which have been the subject of numerous works. Examples include
those on the effects of environmental heterogeneity (Zhu and Yin,
2009), predation (Morozov et al., 2008), control efforts (Chen, 2006),
and spatial stochasticity (Neuhauser and Pacala, 1999). In this paper,
we will focus on one specific behavioural factor: movement responses
to competing populations.

Incorporating movement of any kind requires that we construct
spatially explicit models of population dynamics. The simplest way to
do this is by adding diffusive movement to a spatially implicit model.
Although more technical procedures exist for incorporating space
(Durrett and Levin, 1994), this method provides a base-line starting
point for mathematical analysis, so remains popular (see e.g. Lewis
et al., 2016, Chapter 4 and references therein). Indeed, a spatial version
of the SLVC model incorporating diffusive movement has been studied
mathematically by several authors (Dancer et al., 1999; Crooks et al.,
2004; Nakashima and Wakasa, 2007).

When environmental features are incorporated into this model, co-
existence patterns may occur. One set of examples feature non-convex
domain shapes (Mimura et al., 1991), modelling geographic features
such as peninsulas or curved valleys. Another include inhomogeneous
boundary conditions (Crooks et al., 2004), modelling environmental
heterogeneity on the boundaries of the population range. However,
when the environment is homogeneous and convex, as is typical of
many ecological situations, then this diffusive SLVC model predicts
that only one of the competing populations ultimately survives (Kan-
On, 1997) (except in the fine-tuned situation where competition is
essentially equal between the two populations, Brantingham et al.,
2012; Dancer et al., 1999). In other words, stable co-existence is
essentially never predicted by the diffusive SLVC model in homoge-
neous environments.

From the perspective of biological invasions, the diffusive SLVC
model predicts that a stronger invading population will spread into a
weaker native population via a travelling wave. The invading popula-
tion eventually dominates, causing the native population to be wiped
out. Recently, Girardin and Nadin (2015) gave analytic conditions on
the direction of this travelling wave, relating the competition strength
to species diffusivity, in the limiting case where the inter-specific
competition is arbitrarily larger than intra-specific competition. In
principle, this enables prediction of which populations may succeed in
an invasion scenario, by understanding of the diffusive and competition
parameters governing the movement and growth of both native and
alien populations.

In this paper, we extend this reaction–diffusion model of strong
competition to incorporate movement responses between the two
populations. This is in part inspired by recent empirical studies
showing that top-predators change their movement when close to
competing predators (Vanak et al., 2013; Swanson et al., 2016). Our
aim is to understand the effect of such movements on the spatial
population dynamics. The key idea is that movement responses may be
used by an otherwise ‘weaker’ population to ‘push back’ the travelling
wave, causing a reversal in the eventual fate of the populations.
Mathematically, these movement responses are encoded in an advec-
tion term, leading to a system of reaction–advection–diffusion equa-
tions. These naturally combine the advection–diffusion equations of
taxis models (Lewis and Murray, 1993; Potts and Lewis, 2014) with the
reaction–diffusion equations of spatial population dynamics (Namba,
1989; Durrett and Levin, 1994; Tilman and Kareiva, 1997). Roughly,
the ‘advection’ term means that we are including directed motion
(sometimes called ‘taxis’), the ‘reaction’ term refers to birth and death
processes, and the ‘diffusion’ term to the unknown drivers of move-
ment, modelled as a random process.

Despite these three aspects being clearly important to demographic
dynamics, the combination of all three is rare in mathematical ecology,
with most studies focussing on either ‘advection’ or ‘reaction’. Although

a few exceptions exist – such as prey-taxis studies (Kareiva and Odell,
1987; Lee et al., 2009) and stratified diffusion (Shigesada et al., 1995)
– these represent just the tip of the iceberg regarding taxis properties in
response to external or internal cues: e.g. competing predators moving
in response to the presence of the other population (Vanak et al., 2013;
Potts et al., 2013), prey avoiding places where predators live (Latombe
et al., 2014; Bastille-Rousseau et al., 2015), and so forth. Since
statistical and data-collection techniques are beginning to uncover
such movement responses (Vanak et al., 2013; Potts et al., 2014; Hays
et al., 2016), it is important for theoretical studies to catch-up with the
data analysis by examining the effect of taxis on population dynamics.

Our work represents a key step in this direction. In particular, we
seek to answer two questions: (i) Can taxis responses enable a
population to ‘punch above its weight’ in competition with another
population, causing it to survive when otherwise it would die out* (ii)
Under what circumstances might such movement processes lead to co-
existence of multiple strongly competitive populations* It is often
believed that such co-existence can only occur when relatively complex
ecological processes are involved, often involving environmental het-
erogeneity (Amarasekare, 2003). Here, we hypothesise that movement
responses can provide a new mechanism of co-existence between
strongly competitive populations (Hardin, 1960; Barabás et al., 2016).

2. Static movement response

We begin by examining the case where animals have a fixed
movement response to foreign populations. In the next section, we
examine the effect of allowing this to vary over time.

2.1. The model

In this section, our model considers two competing populations of
animals, whose distribution functions are given by u x t( , ) and v x t( , ),
where x denotes position (in one- or two-dimensions) and t is the time.
These populations could be thought of either as two different species,
or two groups (e.g. packs, flocks or tribes) from the same species. They
are both assumed to be competing for space in the same ecological
niche, so animals from one population have a negative effect on the
population growth of the other population. In the absence of such
competition, we assume that each population exhibits logistic growth.

Our model is based on the Lotka–Volterra competition model
(Lotka, 1932; Volterra, 1926), but also incorporates movement in
two different ways. First, movement is assumed to have a diffusive
aspect, modelling the spread of each population over time, a property
that has been considered in several previous works (e.g. Kan-On, 1997;
Dancer et al., 1999; Murray, 2001; Girardin and Nadin, 2015). Second,
each population exhibits taxis in response to the presence of the other
population. As far as we are aware, this second aspect is a novel
addition to Lotka's competition model. However, competition models
where taxis is mediated by a chemical have been considered (Painter
and Sherratt, 2003; Horstmann, 2011; Stinner et al., 2014), usually in
the context of cell biology, and have some resemblance to our model.

The equations describing our model are as follows

u
t

D u c u v ru K u a uv∂
∂

= ∇ − ∇·[ ∇ ] + ( − ) − ,
v

2

Diffusive movement
1

Taxis towards

1

competition dynamics (1)

⏟
v
t

D v c v u rv K v a uv∂
∂

= ∇ − ∇·[ ∇ ] + ( − ) − .
u

2

Diffusive movement

2

Taxis towards

2

competition dynamics (2)

Here, c1 and c2 represent the strength of taxis response by u and v,
respectively. Parameters a1 and a2 denote the deleterious effect of
competition on the population sizes of u and v, respectively, r is the
infinitesimal growth rate of each population, and K is the carrying
capacity of the environment.

Eqs. (1)–(2) bear some similarity to cross-diffusion. The difference
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is that, in cross-diffusion models, the taxis terms u v∇·[ ∇ ] and v u∇·[ ∇ ]
are replaced with cross-diffusion terms of the form α u α v u∇ [( + ) ]uu vu

2

and α u α v v∇ [( + ) ]uv vv
2 , respectively (Shigesada et al., 1979). (Here,

α α α α, , ,uu uv vu vv are constants.) Confusingly, the term ‘cross-diffusion’
has occasionally been used instead of ‘taxis’ in some works, for example
the predator–prey model of Tsyganov et al. (2004). However, we are
not aware of any previous studies that combine taxis terms of the form

u v∇·[ ∇ ] and v u∇·[ ∇ ] with Lotka–Volterra-type competition models.
From a biological perspective, the taxis mechanism from Eqs. (1)–

(2) can be understood in a number of ways. One occurs when animals
can directly observe the density of the foreign population in their
immediate vicinity (e.g. by sight or touch). Then they can use these
observations to choose whether to adjust their movement in response
to the density gradient. If ci is positive (i=1 or 2) then the tendency will
be to move from lower to higher population densities. If c < 0i then the
tendency will be in the other direction: from higher to lower densities.
This interpretation of the taxis term in Eqs. (1)–(2) could work well for
small animals that densely populate their habitat, so that they can
easily detect the local population density by sensing the animals around
them. Such an interpretation could also be applied beyond the animal
kingdom, for example to populations of moving cellular organisms.

However, larger creatures (e.g. ungulates, canids, big cats, etc.) are
likely to be more sparsely populated on the landscape than very small
ones. As such, large animals could conceivably be well within another
population's range and yet not be observing directly any of the animals
that live there. Nonetheless, there are biological mechanisms of
indirect observation by which such animals can still detect the
probability of being in the range of a foreign population, even when
other animals are not physically present. Such mechanisms can be
broadly split into two categories: (i) extrinsic signals, where one
population leaves signs of its existence in the physical landscape (e.g.
by marking the terrain with urine or faeces), and (ii) intrinsic signals,
where occasional interactions between animals of the two populations
leave traces in the spatial memory of the animals involved, informing
them of the range of the foreign population (Potts and Lewis, 2016b).

Biologically, examples of responses to extrinsic signals abound in
both intra-species (King, 1973; Stamps, 1977; Kimsey, 1980; Smith
et al., 2012; Potts et al., 2013) and inter-species (Nieh et al., 2004;
Seppänen et al., 2007; Hughes et al., 2010) spatial competition.
Intrinsic signals – i.e. using memory – are harder to detect directly,
but have been posited as a key mechanism behind animal movement
and spatial distribution (Fagan et al., 2013). Furthermore, movement
responses to knowledge of the past positions of animals are increas-
ingly being detected in animal populations, between populations of
both different species (Seppänen et al., 2007; Latombe et al., 2014;
Vanak et al., 2013) and the same species (Potts et al., 2014).

Mathematically, when indirect movement responses to foreign
populations are modelled, they lead to advection by each population
in response to the distribution of the other population (see Potts and
Lewis, 2016a in the case of extrinsic signals and Potts and Lewis, 2016b
for intrinsic signals). This often turns out to be very similar to the taxis
response that appears in Eqs. (1)–(2). To illustrate this, an example of
how these taxis terms arise from indirect interaction processes is given
in Supplementary Appendix A, in the case of scent-marking. Here, the
key assumption is that the distribution of scent marks tend towards an
equilibrium state at a much faster rate than the population distribu-
tions. In scenarios where such assumptions are valid, Eqs. (1)–(2) are
appropriate for modelling movement responses to foreign populations
due to indirect extrinsic or intrinsic signals, as well as direct inter-
animal sensing.

In this paper, we consider the case of strong competition, where
a a r, >1 2 in Eqs. (1)–(2). For the spatially implicit model, given by
setting c c D= = = 01 2 in Eqs. (1)–(2), it is well-known that there are
two stable steady-states for strong competition, given by u K= ( , 0) and
u v K( , ) = (0, ). The final state of the dynamical system is then
determined purely by its initial condition (Lotka, 1932; Murray,

2011). By explicitly incorporating space, our aim is to investigate
whether taxis may reverse the predictions of spatially implicit models.

We use the 1D version of the model in Eqs. (1)–(2) to enable faster
numerical investigation, noting that the analogous 2D model gives
almost identical results in test cases (Supplementary Appendix B). Our
system is defined on an interval x L0 ≤ ≤ with zero-flux boundary
conditions, meaning that the net migration at each end of the interval is
zero, i.e. as many animals leave the interval as arrive. To reduce the
number of parameters in our model, for easier analysis, we introduce
the following dimensionless parameters

x x
L

t tD
L

u x t u x t
K

v x t v x t
K

r rKL
D

a a KL
D

γ c K
D

= , = , ( , ) = ( , ) , ( , ) = ( , ) ,

= , = , = ,

∼ ∼ ∼

∼

∼ ∼∼ ∼ ∼

͠ i i
i

i

2

2 2

(3)

for i=1,2. Then, dropping the tildes over the letters to ease notation, we
arrive at the following system of dimensionless equations, defined on
the interval x0 ≤ ≤ 1,

⎡
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which are subject to the following zero-flux boundary conditions
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x

γ v u
x

∂
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x

2
=0,1 (7)

We solve Eqs. (4)–(7) numerically for a variety of parameter values,
given as follows. We set γ = 01 and a = 20002 and have initial conditions
such that u starts on the left and v on the right, with equal population
densities. Specifically, u x( , 0) and v x( , 0) are smooth monotonic func-
tions such that u x( , 0) = 1 for x < 0.5 − ϵ, u x( , 0) = 0 for x > 0.5 + ϵ,
v x( , 0) = 0 for x < 0.5 − ϵ, and v x( , 0) = 1 for x > 0.5 + ϵ, and ϵ is
arbitrarily small (see Fig. 1a; see also Supplementary Appendix C for
details of the choice of ϵ). We let the parameters r, γ2, and a1 vary.
However, we insist that a a< = 20001 2 , so that u is the stronger
population. We also insist that r a< 1 so that we are in the parameter
regime corresponding to strong competition. Finally, we set γ ≥ 02 , so
that v employs an aggressive movement strategy in an attempt to out-
compete u. The particular parameter values we investigate fall into the
regions r a0.02 ≤ / ≤ 0.752 and a a0.85 ≤ / < 11 2 . Supplementary
Appendix C gives details of the numerical methods used to study this
system.

2.2. Results

In our simulations, one of the two constant steady-state solutions is
always reached, which correspond to the predictions from spatially
implicit analysis (Lotka, 1932; Murray, 2011). Denoting the steady
states by u x u x t*( ) = lim ( , )t→∞ and v x v x t*( ) = lim ( , )x→∞ , these solu-
tions are either u x*( ) = 1 and v x*( ) = 0, so we say ‘u wins’, or u x*( ) = 0
and v x*( ) = 1, so we say ‘v wins’. Fig. 1b displays the regions of
parameter space where there is a switch from u winning to v winning.
Notice that increasing γ2 (the strength of aggressive movement by v)
enables v to win even when it is weaker than u: i.e. when a1 is smaller
than a2. Thus we see movement triggering a switch in the predictions of
the spatially implicit analysis.

The explanation for this switch in fortunes of u and v can be
understood by leveraging the idea of a travelling wave solution.
Technically, for such a solution to exist, Eqs. (4) and (5) must be
solved on an infinite line. However, due to the complexity of the
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system, we are unable to calculate this analytically (in fact, exact
travelling wave speeds are not known even where γ γ= = 01 2 ), and
numerics require using a bounded line-segment. Moreover, the numer-
ical solution of a diffusion–reaction system in a finite domain is known
to approximate the stable travelling wave solution with high precision
over the time when the front is sufficiently far away from the domain
boundary, and hence the perturbation induced by the boundary is
small (Murray, 2001; Fife, 2013; Lewis et al., 2016). As such, we
numerically measure an approximate travelling wave speed using the
system defined on [0, 1] in Eqs. (4)–(7). Supplementary Appendix C
details the numerical method used.

In the case γ γ= = 01 2 , Girardin and Nadin (2015) show analytically
that the asymptotic travelling wave speed (when the system is defined
on an infinite line) is positive (rightward) in the limit as a → ∞i (i=1,2)
with a a/ < 11 2 kept constant. Our numerical analysis suggests that this
result is also true away from this limit (Supplementary Table ST1).
However, if γ2 is increased, with γ = 01 fixed, then population v advects
against the direction of the u-travelling wave, pushing it back. This has
the effect of slowing the wave down, even reversing its direction if the
advective motion is strong enough.

In Figs. 2 and 3, we plot the critical value of γ2 at which the wave-
velocity switches direction from positive (right) to negative (left) for
various values of r and a1 such that r a a< < = 20001 2 . This critical
aggression speed is denoted by γ*

2 . Values of γ*
2 correspond exactly with

the points at which the fate of u switches from extinction to dominance
(Fig. 1b). Therefore the travelling wave velocity provides a convenient
way to measure the ultimate fate of u and v.

Two interesting non-monotonic relationships arise from this ana-
lysis. The first is shown in Fig. 2. As the infinitesimal reproduction rate,
r, is increased from 0, the critical aggression speed, γ*

2 , decreases
initially. This is due to the increased ability of population v to
reproduce and grow having made aggressive moves into u's area.
However, as r is increased towards a1, we are moving closer and closer
towards the region where a r a< <1 2, which is a region where u always
wins, no matter what the advection strength or initial conditions. As
such, γ*

2 increases as r a→ 1.
The second non-monotonic relationship is the subject of Fig. 3.

Here, we see that aggressive movement strategies are only advanta-
geous up to a point. Although, for certain values of a a/1 2, increasing γ2
can cause the travelling wave to reverse direction, further increases in

γ2 can cause the travelling wave to switch once more, meaning that v
eventually dies out if it is overly aggressive. The reason for this reversal
in fortunes can be understood by examining the transient state of the
travelling wave solutions (Fig. 4; Supplementary Videos SV1, SV2).
Just after time t=0, a group from population v pushes into the range of
population u, creating a non-monotonic population profile. This then
dies out leaving the front of v less steep than for lower γ2.
Consequently, the size of v at the population overlap is too small to
push v into u, even with the help of a strong advective effect.

2.3. Incorporating environmental heterogeneity

In heterogeneous environments, the reproduction rate, r, will vary
over space if certain parts of the landscape are more conducive to
survival and reproduction than others. Because the sign of the
travelling wave speed depends on r (Figs. 2 and 3), we sometimes
observe species co-existence in such landscapes. This will happen if the
parameters on the left-hand side of the terrain are in the correct regime
for a rightward travelling wave, and the parameters on the right-hand
side are such that travelling waves move leftwards. Some example
situations where this happens are given in Fig. 5. Interestingly, the
spatial pattern of the population distributions is slightly out-of-phase
with the spatial pattern of the environment. Indeed, in the area of
poorer resources, and close to the edge between the two habitats, the
total population density is slightly lower than the carrying capacity.
Notice that this co-existence phenomenon only occurs when there is
both taxis in response to foreign populations and spatial variation in r.
Without the former, the travelling wave direction will always be to the
right if a a<1 2 (left if a a>1 2), regardless of the value of r.

3. Dynamic movement response

In the model given by Eqs. (4)–(7), we assume that the movement
responses of each population, given by γ1 and γ2, are constant. In
reality, animals may be able to alter their response mechanism,
depending on the current situation. As shown in Section 2, if a
population is being pushed back by a travelling wave of advancing
foreign population, it may benefit the former population to move
aggressively towards the latter. However, if the former population is
not being pushed back then there is no benefit in such aggressive

Fig. 1. Switch in fate due to movement strategies. Panel (a) shows the initial conditions of two populations, u and v, in our numerical analysis. Fixing γ = 01 , and a = 20002 , panel (b)

shows which of u and v end up winning for different values of r, a1, and γ2 (see Eqs. (4) and (5)). For each value of r, below and to the left of the corresponding line, we see u winning, as
predicted by non-spatial analysis. Above and to the right, we see v winning, in contradiction to the spatially implicit predictions. Crosses denote places where the travelling wave speed
was measured to be zero.
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movement. Indeed, from the individual's perspective, there is a
negative effect of moving aggressively towards the other population,
as interactions with the other population are more likely to have a
negative effect than interactions with its native population. Therefore
there is a trade-off between making aggressive movements for the
social benefit of a declining population, and retreating from aggressive
encounters for individual benefit. In this section, we explore the
demographic patterns that arise from this trade-off, by allowing the
aggression parameters, γ1 and γ2, to vary over time depending on
whether animals sense a decline or increase in foreign population
density.

3.1. The model

We begin with the model given by Eqs. (4)–(7) but replace the

constants γ1 and γ2 with functions γ x t( , )1 and γ x t( , )2 . As a population
senses that a travelling wave of a foreign population is intruding into its
range, it will increase its aggression towards the foreign population.
Therefore, if u x t( , ) is increasing at some point x, γ x t( , )2 will increase.
Likewise, an increase in v x t( , ) leads to an increase in γ x t( , )1 . A simple
model of this is given as follows

γ
t

β v
t

γ
t

β u
t

∂
∂

= ∂
∂

,
∂
∂

= ∂
∂

,1 2
(8)

where β is a constant. By integrating with respect to t, we see that Eq.
(8) have the solutions γ x t γ x β v x t v x( , ) − ( , 0) = [ ( , ) − ( , 0)]1 1 and
γ x t γ x β u x t u x( , ) − ( , 0) = [ ( , ) − ( , 0)]2 2 . For convenience, we assume
that there is no advection at time t=0, so that γ x γ x( , 0) = ( , 0) = 01 2 .

By placing γ x t β v x t v x( , ) = [ ( , ) − ( , 0)]1 and γ x t β u x t u x( , ) = [ ( , ) − ( , 0)]2
into Eqs. (4)–(7), we arrive at the following equations, which give the

Fig. 2. Critical aggression speed, where the travelling-wave changes from right- to left-wards movement. The left-hand panel shows the dependence of the critical aggression speed, γ*2 ,
on a a/1 2 (the relative strength of v) and r a/ 2 (the populations’ growth rate relative to the constant a = 20002 ). The right-hand panel shows cross-sections of the left-hand panel, for three

values of a a/1 2. The critical aggression speed increases as a a/1 2 decreases. However, the dependence of γ*2 on r is non-monotonic (explained in the main text).

Fig. 3. Non-monotonic dependence of the travelling wave direction on the aggression speed. The surface in the left-hand panel shows places where the travelling wave speed is zero. For
certain fixed values of r, a1, and a2, there are two values of the aggression speed, γ2, where the travelling wave is zero. In these cases, a small amount of aggression by v can switch the
travelling wave speed from positive to negative, so that v ultimately wins, but increasing γ2 further can switch the wave speed back to positive. The right-hand panel shows this
phenomenon for four fixed values of r. The thick grey line shows the parameter values used for Fig. 4, where r a/ = 0.0752 .
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Fig. 4. Transient dynamics of different aggression levels. The top row shows the space use at three points in time when the aggression speed of v is enough to push back the travelling
wave. Parameters are a = 19001 , a = 20002 , γ = 01 , γ = 52 , r=150, and times t are shown in the panels. In the bottom row, the aggression speed is excessive and the system ends with v's

demise. Here, parameters are the same as in the top row, except γ = 202 . Animations can be found in Supplementary Videos SV1 and SV2. Note that the non-monotonic profile for

t=0.00005 is not a numerical artefact: it still exists when the time-step tΔ for the numerics is over 104 times less than the time over which the non-monotonic profile appears.

Fig. 5. Co-existence of strongly competing populations in heterogenous environments. When the environmental conditions cause the reproductive rate, r, to vary over space, it is
possible to observe co-existence of populations. Space use is plotted when u x t( , ) and v x t( , ) are at steady-state, denoted by u x*( ) and v x*( ) respectively. Parameters (for both panels) are

a = 17501 , a = 20002 , γ = 01 , γ = 52 , with r(x) varying over space as shown in the panels.
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where u x u x( ) = ( , 0)0 and v x v x( ) = ( , 0)0 . We solve Eqs. (9)–(12)
numerically for the same parameter values and initial conditions as
for the static model in Section 2 (see Supplementary Appendix C for
details of the numerical methods).

The appearance of u x( )0 and v x( )0 in Eqs. (9)–(12) means that the
system depends for all time on its initial conditions. Hence they are
crucial to the long-term behaviour and must be chosen carefully. From
a mathematical point of view, any number of initial conditions could be
considered. However, we have chosen biologically relevant initial
conditions that mimic a likely ‘first contact’ scenario between two
competing populations, whereby one population is predominantly on
the left-hand side of the interval and the other on the right (see Fig. 1a).
These conditions are especially pertinant if either (a) one population
has arrived as an invasion event or (b) the populations were originally
non-contiguous (so not competing), but then the range of one
expanded over time towards the range of the other.

3.2. Results

For a large range of parameter values, the system in Eqs. (9)–(12)
reaches a co-existence steady state, with population u mainly concen-
trated on the left-hand side of the terrain and v on the right (Fig. 6,
bottom panels). In particular, for given values of a1, a2, and r, within
the range we examined, there is a critical value of β above which co-
existence is observed in Eqs. (9)–(12), and below which the steady-
state solution is u x*( ) = 1 and v x*( ) = 0. We denote this critical value
by β* and plot it for various a1 and r in Fig. 6 (top panels), with
a = 20002 kept constant (as in Section 2.1). To our knowledge, this is
the first time that co-existence has been observed in a model of strong
competition inside a homogeneous landscape.

Two clear trends emerge. First, β* decreases as a1 increases
towards a2. The reason for this is that the competitive advantage of u
becomes more marginal the closer a1 is to a2, so the rate of change of γi
(the strength of aggressive movement) does not need to be as high for
co-existence to emerge. Second β* depends in a non-monotonic fashion
on r. For each value of a1, the curve attains a minimum at some critical
value of r between 0 and a1. This mirrors the trend seen in Fig. 2 and
can be explained in an identical fashion (see Section 2.2).

4. Discussion

Movement is often cited as key to spatial population dynamics
(Nathan et al., 2008; Morales et al., 2010). In particular, it is well-
known that animals often adjust their movement in response to the
presence of competitors. Here, we have shown that such responses can
dramatically affect the ability of populations to survive. By employing a
tactical movement strategy up the density gradient of a competing
population, an otherwise weaker population can survive and even

dominate, causing its competitors to be eliminated from the landscape.
When animals are able to modify these movement strategies over time,
co-existence of strongly competing populations is possible, even in a
homogeneous environment. This calls into question assumptions about
the conditions under which one population will exclude competing
populations from space (Barabás et al., 2016).

The reason for this effect of movement responses can be intuitively
understood by considering what happens to a travelling wave, moving
from the stronger population into the weaker. If the weaker population
begins to advect up the density gradient of the stronger population then
it may be able to push the travelling wave back, even reversing its
direction. Thus, in the long run, the otherwise ‘weaker’ population may
be able to win the competition for survival.

In reality, however, the stronger population may notice that it is
being dominated and so employ a similar movement strategy in
response, slowing the wave down. We have shown that, by dynamically
altering their responses in such a fashion, the travelling wave will often
stop moving, enabling competing populations to co-exist on the land-
scape (Fig. 6). Mathematically, the resulting system involves a taxis
response that is both gradient- and density-dependent. Responses that
involve density dependence can arise from a variety of biological
mechanisms (Kareiva and Odell, 1987; Petrovskii and Li, 2003),
suggesting that there may be other scenarios where co-existence may
emerge as a result of taxis mechanisms.

Without density-dependence, incorporating resource heterogeneity
into the model can enable co-existence of both populations (within
certain parameter ranges). Co-existence due to the interplay of move-
ment and resource heterogeneity has also been observed by previous
studies (e.g. Amarasekare, 2003; Débarre and Lenormand, 2011).
However, these models often assume that each set of environmental
conditions differentially affects the growth rate of different populations.
A key outcome of our model is that the two populations can have the
same intrinsic growth rate at each point in space, but spatially
segregated co-existence may yet occur (Fig. 5).

Although taxis mechanisms can be helpful for population survival,
our numerical experiments demonstrate that the usefulness is limited.
It will not always be possible for populations to push back a travelling
wave in a strongly competitive scenario, for example if they are
significantly weaker. What is more, if they push too fast, movement
can have a deleterious effect (Fig. 3). Here, the aggressing population
finds itself relatively isolated from the rest of the group, and cannot
sustain its existence in the face of the numerous and strong competitors
(Fig. 4). Thus this isolated sub-group dies out, leaving the population
weakened and so unable to push the travelling wave back. As such,
courage becomes fool-hardiness if too much aggressive movement is in
play, and populations must seek a balanced approach to survive.

Our mathematical model of taxis ‘up the density gradient’ can be
viewed as modelling any one of a number of biological mechanisms.
For small, high-density organisms, it may be possible to sense directly
the change in population density gradient, for example by sight or
touch. However, for other organisms, the density gradient might be
inferred from traces left in the environment by competitors (Nieh et al.,
2004; Seppänen et al., 2007; Hughes et al., 2010), for example by
scent-marking. Alternatively, some species might determine the possi-
ble presence of competitors by remembering places where competitors
were recently observed (Vanak et al., 2013; Potts and Lewis, 2016a).
All three interpretations can be modelled by the sort of reaction–
advection–diffusion equations we have studied here. Indeed precise
mathematical links between reaction–advection–diffusion equations
and both direct (Kareiva and Odell, 1987) and indirect (Potts and
Lewis, 2016a,b) interactions can be made.

Despite this, there are limitations of reaction–advection–diffusion
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equations for modelling animal interactions. If the interactions are
direct then coupling them through a density function requires there to
be a suitably large number of animals so that the continuum descrip-
tion of a good representation of the presence of actual animals (Durrett
and Levin, 1994). Otherwise, it is necessary to use a stochastic
individual-based model (e.g. Giuggioli et al., 2011). If interactions
are indirect via marks on the environment, then the population density
function will only accurately mirror the presence of marks if the
distribution of the marks equilibrates quickly compared to the prob-
ability distribution of the animals (see Supplementary Appendix A).
Finally, if some individuals exhibit long-range movements then an
integro-difference formulation may be more realistic than reaction–
advection–diffusion equations and can lead to different dynamics
(Lewis et al., 2016; Kawasaki et al., 2017).

Our results highlight the importance of gathering detailed move-
ment data on co-moving populations, as well as examining the effects
on movement of direct and indirect interactions between populations

and species. Simply measuring the growth and competition parameters
may not be enough either to understand why competing populations
might co-exist or predict future demographic dynamics. Techniques for
measuring movement responses to such interactions have been in-
creasingly developed and employed over recent years (Vanak et al.,
2013; Langrock et al., 2014; Latombe et al., 2014; Potts et al., 2014).
Therefore it would be a timely development to begin to factor the
output of such data-inference into mechanistic models, to give more
accurate predictions of demographic dynamics.

From an applied perspective, our results have potential important
application for understanding biological invasions (Gatenby and
Gawlinski, 1996; Lewis et al., 2016). If species are able to utilise the
type of movement responses studied here, they may end up slowing
down or pushing back a biological invasion of a competing species. This
could ultimately lead either to species co-existence or to failure of a
species to invade in a situation where current modelling might predict
invasion success. As such, accurately predicting the speed and efficacy

Fig. 6. Co-existence of strongly competing populations in homogeneous environments. Here, we analyse the model from Eqs. (9) to (12), where the advection is density dependent. The
top-left panel shows the values of β*, above which the system converges to a co-existence steady-state, and below which u wins and v goes extinct. The top-right panel shows cross-

sections of this surface for various values of a a/1 2. The bottom two panels show example co-existence steady-states for different parameter values. When β is just larger than β* (bottom-

left) u maintains a larger population than v, whereas for much larger β, the stable population distributions of u and v are of more similar sizes, with u only slightly larger than v (bottom-
right).
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of an invasion may require an understanding of the movement
responses of one species to another.

As well as these applied challenges, we highlight the need for
greater analytic understanding of the model studied here, as well as its
variants (e.g. incorporating various taxis responses into predator–prey
models or models of more than two interacting species, etc.). At
present, the best understanding of travelling-wave solutions to spatial
SLVC models are given in Girardin and Nadin (2015). There, quite
advanced analytic techniques were required to give exact bounds on the
travelling-wave speed in a simplified version of our system. In
particular, no advective term was present, so movement is simply
diffusive, and inter-species competition is arbitrarily stronger than
intra-species competition. To extend these results to gain analytic
insight into the models studied here would require significant math-
ematical effort. One possible way forward might come by leveraging the
techniques from the genetics literature that lead to ‘Bartonian waves’
(Barton, 1979; Jansen et al., 2008). Our results suggest that this effort
is much needed, both for theoretical and applied ecology.

In summary, our work has brought to light the necessity for better
connections between organism movement and populations dynamics.
On the empirical side, we encourage greater attention to measuring
movement responses to foreign populations when attempting to
understand demographic dynamics. On the theoretical side, our work
opens up the need for deeper examination of the effects of advective
responses on population dynamics.
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