
MINI-PROJECT: SPATIAL SEGREGATION IN COMPETITION-DIFFUSION SYSTEMS

This project centres around a study of the research article

• Crooks, E.C.M.; Dancer, E.N.; Hilhorst, D.; Mimura, M.; Ninomiya, H.,
Spatial segregation limit of a competition-diffusion system with Dirichlet boundary conditions. Non-
linear Anal. Real World Appl. 5 (2004), no. 4, 645-665.

which is concerned with spatial segregation in the strong-competition limit (k → ∞) of solutions of the
competition-diffusion system

(Pk)



ut = d14u + f (u) − kuv in Ω × R+,

vt = d24v + g(v) − αkuv in Ω × R+,

u = mk
1 on ∂Ω × R+,

v = mk
2 on ∂Ω × R+,

u(x, 0) = uk
0(x), v(x, 0) = vk

0(x) x ∈ Ω.

Here u and v correspond to the population densities of two competing species, and mk
1,m

k
2 are given functions

of space and time that describe the behaviour of u and v on the boundary of the spatial domain Ω. Prototype
examples for the nonlinear self-interaction functions f (u) and g(v) are the logistic functions

f (u) = u(ru − auu), g(v) = v(rv − avv), (†)

where ru, rv, au, av are positive constants, in which case the system satisfied by u, v is sometimes known as a
Lotka-Volterra competition-diffusion system.

Following the introduction in Section 1, which covers both ecological background and previous work, some
important estimates are presented in Section 2, before these estimates and some compactness properties
of solutions are used to discuss the limit as k → ∞ in Section 3. Section 4 is concerned with numerical
simulation of solutions.

Here are some suggestions of things to think about/discuss, organised by the sections of the paper. You
might like to choose which aspects to focus on according to your own backgrounds/interests. The parts
marked * are perhaps the most straightforward.

• Section 1: Introduction

(i)* What is the ecological motivation for the boundary condition u = mk
1, v = mk

2 on ∂Ω? What
alternative boundary conditions could one consider, and what do they correspond to ecologically?

(ii)* In the case when f (u) and g(v) are given by (†), find all pairs of constant equilibrium solutions
(u0, v0) of the system ut = d14u + f (u) − kuv, vt = d24v + g(v) − αkuv (forget about the bound-
ary condition for this), and find their stability as solutions of the ODE system ut = f (u) − kuv,
vt = g(v) − αkuv. Your answers will depend on the parameters, of course. What happens when k is
large?
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• Section 2: Formulation of the problem and basic properties

This section focuses mainly on proof of a priori estimates of solutions of (Pk) independent of the
parameter k, which are then used in Section 3 to pass to the strong-competition limit as k → ∞. The
most important proofs to try to work through and understand are Lemma 2.1, Lemma 2.3, Lemma
2.4, Lemma 2.6 and Lemma 2.7. Here are a few extra points to think about:

(i)* Which result is the key to proving spatial segregation between u and v? This underpins the whole
paper, and application of this approach to similar problems will always need an estimate of this type.

(ii) In Lemma 2.3 and Lemma 2.4, the factor φ is present in the integral because of the boundary
condition imposed in (Pk). Can you prove analogues of these two results with φ replaced by the
constant 1 if the boundary conditions are replaced by ∂u/∂ν = 0 = ∂v/∂ν on ∂Ω × R+?

(iii)* The proof of Lemma 2.1 uses the maximum principle (or more precisely, comparison princi-
ple) for scalar parabolic equations, which informally says: if u and u are sub- and super-solutions
respectively of ut = d∆u + f (x, u), that is

ut ≤ d∆u + f (x, u) and ut ≥ d∆u + f (x, u) for all (x, t) ∈ Ω × R+,

and

u(x, 0) ≤ u(x, 0) for all x ∈ Ω, u(x, t) ≤ u(x, t) for all (x, t) ∈ ∂Ω × R+,

then
u(x, t) ≤ u(x, t) for all (x, t) ∈ Ω × R+.

The proof given in the paper is quite brief - can you write out a fuller version, with more details?
You might like first to explain why 0 ≤ uk and 0 ≤ vk in Q̄ := Ω × R+, before showing that uk ≤ 1
and vk ≤ 1 in Q̄.

(iv) Lemmas 2.6 and 2.7 establish estimates on the differences between space and time translates of
solutions respectively. In one of these results, the bounds obtained do not depend on the diffusion
coefficients d1, d2, whereas in the other, they do. Which is which? Here, dependence on d1, d2 is
not important, but there might be other modelling situations where we would like to have estimates
independent ofd1 or d2. Can you think of any?

• Section 3: The limit problem as k → ∞

It is important to work through and understand the proof of Lemma 3.3, since this is the key to
understanding where the limit problem (P) comes from.

(i)* Corollary 3.1 is a straightforward consequence of results in Section 2. Can you write a short
proof, referencing the results that are needed?

(ii) Lemma 3.6, Lemma 3.7 and Corollary 3.8 are concerned with showing uniqueness of the weak
solution of the initial-boundary problem (P). Why is uniqueness important here?

(iii) Study of Lemma 3.6 and Lemma 3.7 can be left until later if you do not have time now, but it is
good to try to understand how the proof of Corollary 3.8 uses Lemma 3.6, particularly if you have
not seen arguments like this before.
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(iv)* On page 656, it is stated that if w := u − v
α then u = w+ and v = αw−. Can you write down a

proof of this? Which property of the limit functions u, v is crucial for this proof?

(v) Suppose, for concreteness, that m1 > 0 and m2 = 0 on ∂Ω× [0,T ]. Suppose also that there exists
a smooth family of closed hypersurfaces Γ = ∪t∈[0,T ]Γ(t), with Γ(t) ⊂⊂ Ω, and subdomains Ωu(t),
Ωv(t) such that for each t ∈ [0,T ],

Ω = Ωu(t) ∪Ωv(t), Γ(t) = Ωu(t) ∩Ωv(t),

and
w(·, t) > 0 on Ωu(t), w(·, t) < 0 on Ωv(t).

Then Γ(t) is a so-called free boundary, depending on time, between the region where w > 0 and
where w < 0. Let

ū := w+, v̄ := αw−,
where

w+ := max{w, 0}, w− := max{−w, 0}.
Assuming that (ū, v̄) is sufficiently smooth up to Γ(t), can you derive a re-formulation of the limit
problem (P) in terms of ū, v̄ and the free boundary Γ?

You should obtain a PDE satisfied by ū in ∪t∈[0,T ]Ωu(t), another PDE satisfied by v̄ in ∪t∈[0,T ]Ωv(t),
initial conditions for ū, v̄, boundary conditions for ū, v̄ on ∂Ω, and conditions on ū, v̄ and the relation-
ship between ∂ū/∂ν and ∂v̄/∂ν on the free boundary Γ, where in each case, ν denotes the outward
normal to Ωu(t),Ωv(t) respectively.

Start by writing the equation in Definition 3.4(ii) in terms of ū, v̄,Ωu(t) and Ωv(t). You might like to
consult Section 4 of the article

– Hilhorst, Danielle; Martin, Sebastien; Mimura, Masayasu, Singular limit of a competition-
diffusion system with large interspecific interaction J. Math. Anal. Appl. 390 (2012), 488-513.

where some similar arguments are used.

• Section 4: Numerical computations (see also Figures 1-3)

(i) Can you reproduce the simulations in Figures 1-4?

(ii) What happens if you make different choices of the boundary functions mk
1,m

k
2 or the initial con-

ditions uk
0, v

k
0? (note that in the simulations in the paper, the boundary and initial conditions actually

do not depend on the parameter k)

See also the further paper

- Squassina, Marco; Zuccher, Simone, Numerical computations for the spatial segregation limit of
some 2D competition-diffusion systems. Adv. Math. Sci. Appl. 18 (2008), no. 1, 83-104.

for some more discussion on numerical computation for systems of this type
(http://www.dmf.unicatt.it/ squassin/papers/lavori/squzuc-numerical.pdf)
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• Some extensions/more things to think about

(i) In this article, α is a (strictly positive) constant. But in principle, α (and k) may depend on x.
What would such heterogeneity this correspond to ecologically? Can you try to extend the results
of this article to the case when α is a smooth (say C2) function of x with

α(x) ≥ δ > 0, x ∈ Ω,

for some constant δ > 0 What about if α(x) ≥ 0 for all x ∈ Ω but there are some x (or regions of x)
where α(x) = 0?

(ii) Not much is known, even now (15 years after this article was published), about the relationship
between the initial and boundary conditions and the precise patterns that are observed in solutions
of the limit problem when time t are both large, even in one space dimension. Can you make some
conjectures about this?

(iii) If d1 = d2, more results can be shown. Why is this? Can you prove any additional properties?

A few pieces of suggested additional reading

• Namba, Toshiyuki; Mimura, Masayasu Spatial distribution of competing populations. J. Theoret.
Biol. 87 (1980), no. 4, 795-814.

• Dancer, E. N.; Zhang, Zhitao, Dynamics of Lotka-Volterra competition systems with large interac-
tion. J. Differential Equations 182 (2002), no. 2, 470-489.

• Dancer, E. N.; Hilhorst, D.; Mimura, M.; Peletier, L. A., Spatial segregation limit of a competition-
diffusion system. European J. Appl. Math. 10 (1999), 97-115.

• Crooks, E.C.M.; Dancer, E.N. ; Hilhorst, D., On long-time dynamics for competition-diffusion sys-
tems with inhomogeneous Dirichlet boundary conditions. Topol. Methods Nonlinear Anal. 30
(2007), no. 1, 1-36.
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