
MINI-PROJECT: TRAVELLING FRONTS AND LINEAR DETERMINACY

This mini-project is concerned with travelling-front solutions of reaction-diffusion-(convection) equations,
which are ubiquitous throughout mathematical biology and represent the transition from one steady state to
another at a constant rate as time evolves, and in particular, the question of whether the minimal speed of a
family of travelling waves, which can be characterised as a spreading speed, is or is not determined by the
linearisation of the underlying reaction-diffusion equation about the zero (or extinction) steady state. The
article

• Al-Kiffai, A., Crooks, E.C.M., Lack of symmetry in linear determinacy due to convective effects in
reaction-diffusion-convection problems. Tamkang J. Math. 47 (2016), no. 1, 51-70.

discusses some similar questions and can be read/studied alongside the exercises given below.

Section 1: Introduction Reaction-diffusion equations of the form

(1) ut = duxx + f (u),

where f : R→ R is smooth and satisfies

(2) f (0) = f (1) = 0, f ′(0) > 0, f ′(1) < 0, f (u) > 0 for all u ∈ (0, 1),

arise widely in the modelling of biological (and other) phenomena, the prototype being the famous Fisher-
Kolmogorov-Petrovskii-Piskounov equation (Fisher-KPP), discussed in 1937 both by Fisher and by Kolo-
morov where

f (u) = ru(1 − u).

Such equations are said to be ‘monostable’, since there is one stable steady state at u = 1 and one unstable
steady state at u = 0. It is well-known that there exist decreasing travelling-front solutions u(x, t) = w(x−ct),
where the profile w satisfies

(3) w′(ξ) < 0 for all ξ ∈ R, w(ξ)→ 1, 0 as ξ → −∞,∞,

if and only if the speed c ≥ c∗, where1

(4) c∗ = min
ρ∈Γ

max
ξ∈R

{
dρ′′(ξ) + f (ρ(ξ))

−ρ′(ξ)

}
,

and
Γ = {ρ ∈ C1(R;R) : ρ′(ξ) < 0 for all ξ ∈ R, ρ→ 1, 0 as ξ → −∞,∞}.

Importantly for applications, in a famous 1978 paper, Aronson and Weinberger showed that the minimal
travelling-front speed c∗ can be characterised as a spreading speed, in the sense that for an initial condition
u(x, 0) = u0(x) ∈ [0, 1] with

u0(x) = 0 for x >> 0 and u0(x) ∈ (α, 1) for x << 0,

the solutions u of (1) satisfy limt→∞ supx≥ct u(x, t) = 0 if c > c∗, whereas if c < c∗, then limt→∞ infx≤ct u(x, t) = 1.

1Note that if there is a travelling-front profile w with speed c, then w ∈ Γ and dw′′(ξ)+ f (w(ξ))
−w′(ξ) = c for all ξ ∈ R, so it is easy to see

(exercise - check this) that if a front exists its speed must satisfy c ≥ c∗ where c∗ is defined in (4), that is, c∗ ≤ c is necessary for a
travelling front satisfying (1) and (3) to exist. It turns out that c∗ ≤ c is also sufficient for a travelling front satisfying (1) and (3) to
exist; see, for example, the reference Volpert, Volpert and Volpert ‘94, Gilding and Kersner ‘04, or Crooks ‘03 for a proof of this in
more general settings.
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The linear value c̄ is defined to be the minimal value of c ∈ R for which the linear equation

(5) dw′′ + cw′ + f ′(0)w = 0

has a solution w(ξ) = exp(−µξ) with real µ > 0, and hence the minimal value for which the linearisation of
(1) admits a decreasing travelling-front solution that decays to 0 at +∞. It can be shown that

c̄ = 2
√

d f ′(0),

and that
c∗ ≥ c̄,

since the existence of −µ < 0 is necessary for a front-solution w(x − ct) of (1), (3) to exist.

Exercise 1: Verify that c̄ = 2
√

d f ′(0) and draw a sketch of the phase plane for (w,w′) satisfying (5) in
a neighbourhood of (0, 0) in each of the cases c > c∗, c = c∗ and c < c∗. Use the sketch to explain why
c∗ ≥ c̄.

In general, we may have

c∗ > c̄ (‘pushed’ case) or c∗ = c̄ (‘pulled’ case),

and say that the minimal-front speed (or spreading speed) is linearly determinate if

c∗ = c̄.

Clearly, in the linearly determinate case, we have an explicit value for the minimal travelling-front speed
(and hence the spreading speed), which is important for applied problems such as determining the speed
of biological invasions that are modelled by equations of this type. In addition, the type of stability results
that can be shown for travelling fronts, in the sense of for what initial conditions, and in what sense (e.g.
in which norm, or...) do solutions of the initial-value problem for (1) converge to the travelling front as
t → ∞, differ depending on whether or not the front has minimal speed, that is, whether or not c = c∗, and
on whether or not the minimal-speed front is linearly determinate, that is, c∗ = c̄ or c∗ > c̄.

So it is important to know whether the spreading speed is linearly determinate or not for a given equation.
In practice, there are two tools that are particularly useful for this:

• Firstly, the ‘min-max’ formula (4), can be used to establish upper bounds for c∗ be substituting spe-
cific choices of test function ρ ∈ Γ.

• Secondly, if c > c∗, since the front behaves like w(ξ) ≈ e−µξ where e−µξ solves the linearisation (5),
there are two possible rates of decay of the front to 0, namely

−µ1 =
−c +

√
c2 − 4d f ′(0)
2d

, −µ2 =
−c −

√
c2 − 4d f ′(0)
2d

.

Clearly, −µ2 is more negative than −µ1, and it is known (see the references Rothe ‘81, Lucia, Mura-
tov, Novaga ‘04) that the only situation in which a front of speed c decays like −µ2 is when

c = c∗ > c̄.

This implies that, for a given equation, if you have an explicit formula for a travelling front and thus
can check its rate of decay to 0, you know that it must be a minimal-speed front that is not linearly
determined if it decays like −µ2.
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In order to take advantage of these tools, it is useful to introduce an alternative characterisation of the
minimal-front speed c∗, namely

(6) c∗ = inf
ψ∈Λ

sup
0<w<1

{
dψ

′

(w) +
f (w)
ψ(w)

}

where the set Λ is defined by

Λ :=
{
ψ : [0, 1]→ [0,∞) : ψ is continuously differentiable, ψ(0) = 0, ψ

′

(0) > 0,(7)

and ψ(w) > 0 for w ∈ (0, 1)} .

This formula was first derived in the famous reference of Hadeler and Rothe ‘75, and is related to the
important fact that, for a strictly monotone front profile w, we can think of w′ as being a function of w
(exercise - why is this not possible if the front is not monotone?), and so write

(8) ψ(w) = −w′.

Exercise 2: For a strictly monotone continuously differentiable function w and ψ as defined in (8), show
that

dw′′(ξ) + f (w(ξ))
−w′(ξ)

= dψ′(w) +
f (w)
ψ(w)

,

and that
dw′′(ξ) + cw′(ξ) + f (w(ξ)) = 0 ⇔ dψ′(w)ψ(w) − cψ(w) + f (w) = 0.

The next exercise illustrates the fact that it is possible to have either c∗ = c̄ or c∗ > c̄, using the two tools
given above. This example is based on one given in Hadeler-Rothe ‘75. It takes advantage of a family of
explicit travelling-front solutions, known as ‘Huxley pulses’.
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Exercise 3: Consider the reaction-diffusion equation

ut = uxx + u(1 − u)(1 + au),

where a is a positive constant. Then f (u) := u(1−u)(1 + au) satisfies the conditions (2), so it follows from
the discussion above that for each a > 0, there exists c∗(a) such that a travelling-front solution satisfying
(3) exists if and only if c ≥ c∗(a), and that c∗(a) ≥ c̄(a), where c̄(a) is the a-dependent linear value.

(i) Show that for each a > 0, the linear value c̄(a) = 2.

(ii) Use the formula (6) to show that c∗(a) is a non-decreasing function of a.

(iii) Show that for each a > 0, the function wa(x − cat) with

wa(ξ) :=
1

1 + exp
(√

a
2 ξ

) , ca =
a + 2
√

2a
,

is a travelling-front solution of (1), (3).

(iv) By analysing the limit as ξ → ∞ of w′a(ξ)/wa(ξ), show that wa decays at the faster of the two
possible rates of decay whenever a > 2.

(v) Deduce that

c∗(a) =

{
2 if 0 ≤ a ≤ 2,

a+2√
2a

if a ≥ 2

and hence that
c∗(a) = c̄(a)

if and only if a ∈ [0, 2].

The following is a famous sufficient condition for linear determinacy (see Hadeler-Rothe ‘75): if

(9) f (w) ≤ f ′(0)w for all w ∈ (0, 1)

then
c∗ = c̄.

i.e. no Allee effect

f ′(0)u

f (u)

0 1

This condition is clearly satisfied for the prototype f (u) = ru(1 − u), implying that for the Fisher-KPP
equation,

c∗ = c̄ = 2
√

dr,

as is well known. It is easy to check that (9) is also satisfied whenever f is concave.
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Exercise 4: Use the formula (6) together with the family of test functions

ψκ(w) = κw

to prove that the condition (9) is sufficient to ensure that c∗ = c̄.

Exercise 5: For the example in Exercise 3, show that the condition (9) is satisfied if and only if a ∈ [0, 1],
and deduce that (9) is not a necessary condition for linear determinacy.

The following exercise explores the role of the diffusion coefficient d in linear determinacy for the reaction-
diffusion equation (1).

Exercise 6: Show that if w is a travelling-front profile of speed c when the diffusion coefficient d = 1,
then for any diffusion coefficient d > 0, the re-scaled function

y(ξ) := w
(
ξ
√

d

)
is a travelling-front profile of speed

√
dc, and that the linear values satisfy

c̄(d) =
√

dc̄(1),

where c̄(d) denotes the linear value when the diffusion coefficient is d. Deduce that the equation is either
linearly determinate for all d > 0, or for no d > 0, that is, linearly determinacy is not affected by the
diffusion coefficient d.

Section 2: Problems with convection The equation (1) can be modified by the addition of a nonlinear
convection term, e.g.,

(10) ut + h′(u)ux = duxx + f (u).

Such additional terms can arise due to, for instance, chemotaxis, as discussed in the article of Al Kiffai-
Crooks ‘16. Can you think of any other modelling situations where nonlinear convection might arise?

An important consequence of the inclusion of convective effects is that the symmetry between decreasing
and increasing fronts that exists in the convection-less case no longer holds.

Exercise 7: (i) Show that if u(x, t) is a solution of the convection-less equation (1), then the function

û(x, t) := u(−x, t)

is again a solution of (1), and deduce that if ŵ(ξ) = w(−ξ), then w(x − ct) is a decreasing front with speed
c if and only if ŵ(x − (−c)t) is an increasing front with speed −c.

[Note that here we use the word ‘speed’, in keeping with common usage, when we should really say
‘velocity’ since we allow c ∈ R and understand c < 0 as corresponding to propagation to the left.]

(ii) Now consider the equation (10) that includes a convective term h′(u)ux. What equation is now satisfied
by the function û(x, t) := u(−x, t) if u satisfies (10)?
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Analogously to the convection-less case, it can be shown that there exists a decreasing travelling-front
solution of (10)of speed c if and only if c ≥ c∗, where

(11) c∗ = inf
ρ∈Λ

sup
w∈(0,1)

{
ψ′(w) + h′(w) +

f (w)
ψ(w)

}
,

and Λ is as above, and again,
c∗ ≥ c̄,

where here (exercise - check this)
c̄ = h′(0) + 2

√
d f ′(0).

Exercise 8: (i) Use this result for the existence of decreasing fronts to formulate a corresponding result
for the existence of increasing fronts.’

(ii) What is the analogue of c̄ for increasing fronts?

(iii) Using the respective linear values, or otherwise, show that if w(x − c1t) and w(x − c2t) are increasing
and decreasing travelling-front solutions of (10) respectively, where c1, c2 ∈ R are the speeds (strictly
speaking, velocities) of the fronts, then c1 < c2.

The next exercise extends (9) to establish a sufficient condition for linear determinacy for (10).

Exercise 10: Use (11) to show that if

(12) h′(w) +
√

d
f (w)√
f ′(0)w

≤ h′(0) +
√

d
√

f ′(0) for all w ∈ (0, 1),

then
c∗ = c̄.

The paper of Al Kiffai-Crooks ‘16 contains some alternative sufficient conditions for linear determinacy, as
well as examples illustrating, for instance,

• how convection can render an equation linearly determinate when it would not be linearly determi-
nate in the absence of convection

• the fact that an equation might be linearly determinate for decreasing fronts but not increasing fronts,
or vice versa.

Exercise 11: Think about:
• when convection is present, do you think that whether or not an equation is linearly determinate

(for increasing or decreasing fronts, or both) is independent of the diffusion coefficient d, as in the
convection-less case, or not?//

• can you use the ‘min-max’ formula (11) with different choices of test functions to derive some
alternative speed estimates?
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It is also possible to derive sufficient conditions for an equation not to be linearly determinate. The most
famous of these conditions, which is discussed in Berestycki-Nirenberg ‘92, is that c∗ > c̄ if√

2
∫ 1

0
f (u) du > 2

√
f ′(0).

Similar ideas can be used to to derive sufficient conditions for the equation (10) with convection.

Section 3: Linear determinacy for systems

Section 3 of the Al Kiffai-Crooks ‘16 article discusses linear-determinacy for reaction-diffusion-(convection)
systems. The key ingredient that allows arguments that work in the scalar case to be extended in a relatively
straightforward way to systems is to have a comparison principle - see Theorem 3.1 of Al Kiffai-Crooks
‘16. This enables sub- and super-solution arguments to be used to estimate solutions of the system. Such
a principle can be proved under the condition that the term f in the system is co-operative (sometimes also
called quasi-monotone).

A function f : RN → RN is said to be co-operative if

∂ fi
∂u j

(u) ≥ 0, if i , j.

Comparison principles are typically proved by applying a maximum principle. - see, for instance, the book
of Volpert, Volpert and Volpert ‘94. To see why co-operativity is important, let v : [0, L] × [0,T ] → RN be
such that

v(x, t) ≥ 0 for all (x, t) ∈ [0, L] × [0, t0],

vi(x0, t0) = 0 for some x0 ∈ (0, L), t0 > 0,

and

(13) L[v] := vt − A(x, t)vxx − B(x, t)vx −C(x, t)v > 0 for all (x, t) ∈ (0, L) × (0, t0),

where A is a positive definite diagonal matrix, B is a diagonal matrix, the N × N matrix satisfies Ci j ≥ 0 if
i , j, and inequalities are understood componentwise. Then the i-th component of (13) gives

(14) (vi)t − Aii(vi)xx − Bii(vi)x −

N∑
j=1

Ci jv j > 0,

but at (x0, t0), we know that

(15) (vi)t(x0, t0) ≤ 0, (vi)x(x0, t0) = 0, (vi)xx(x0, t0) ≥ 0,

and
N∑

j=1

Ci jv j =

N∑
j=1, j,i

Ci jv j ≥ 0 since Ci j ≥ 0, i , j,

which contradicts (15).
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Exercise 12: Consider the system

ut = uxx − v
vt = vxx,

for (x, t) ∈ (0, 1) × (0, 5).

(i) Why is this not a co-operative system?

(ii) Construct pairs of functions (u, v), (u, v), such that for all (x, t) ∈ (0, 1) × (0, 5),

ut ≤ uxx − v, vt ≤ vxx,

ut ≥ uxx − v, vt ≥ vxx,

and for each (x, t) ∈ ([0, 1] × {0}) ∪ ({0, 1} × [0, 5]),

u ≤ u, v ≤ v,

but there exists (x0, t0) ∈ (0, 1) × (0, 5) such that

(u, v)(x0, t0) � (u, v)(x0, t0).

[Hint: play around with constants, linear functions, and the function (x, t) 7→ t(x − x2).]

This shows that a comparison principle does not hold for this system. Similar ideas can be used to show
that a comparison principle does not necessarily hold if the dependence on (ux, vx) is not diagonal, e.g., if
the u equation depends on vx.

In the convection-less case, the sufficient condition (9) for linear determinacy can be extended to co-
operatives systems - see the references Lui ‘89 and Weinberger, Lewis, and Li ‘02. Sufficient conditions
for linear determinacy for co-operative systems with convection are discussed in Al Kiffai-Crooks ‘16.
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