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A single-cell-based model of multicellular growth using the

immersed boundary method

Robert Dillon, Markus Owen, and Kevin Painter

Abstract. We present a single-cell based model for the growth and division of
eucaryotic cells. The fluid-elastic structure of the cells and extracellular matrix
are represented within the framework of the immersed boundary method. This
is coupled with equations representing the diffusion and consumption of a
nutrient. Numerical simulations of the model in the context of solid tumor
growth and ductal carcinoma are presented.

1. Introduction

The growth processes of multicellular organisms and collections of cells such
as bacterial colonies, though diverse, share the common features of individual cell
growth and division. A variety of approaches have been taken to model multicel-
lular growth, from continuum partial differential equation models for multicellular
spheroids growth in vitro to a range of individual based approaches. PDE models
have been used for many years to explore the coupled dynamics of cellular popula-
tions and biochemical substrates and regulators of proliferation and cell death. This
includes relatively simple models for nutrient consumption in a tumor spheroid [18],
and more complex models with mechanical effects [7], multiple interacting popu-
lations [36], and pattern formation on growing domains [23]. These approaches
neglect the details of individual cell growth and movement. Perhaps the simplest
individual based model is a cellular automaton in which each cell is represented by
a single automaton location, and cell division and/or movement is determined by
simple rules. Examples include their application to the migration of contact inhib-
ited cells [22], and to cancer growth and its interaction with the immune system
[29]. More advanced models include the so-called lattice-gas automata [8]. Other
extensions to this approach include models that incorporate extracellular diffusible
substances (e.g. nutrients), intracellular dynamics, such as for the cell cycle, via
systems of ODEs that model the relevant regulatory networks, and coupling to
other model layers such as a vascular network [1, 5, 24] or the extracellular matrix
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(which can mediate haptotaxis and invasion) [2, 3]. Probably the closest model in
spirit to the immersed boundary model that we outline below is the Monte Carlo
approach of Drasdo and co-workers, which treats cells as elastic sticky spheres with
a hard center. This approach has been applied to a range of systems including
monolayer and spheroid cultures [13, 14], and liver regeneration [19]. However,
this approach does not explicitly include the fluid uptake that is required for cell
growth. Rather, cell growth is dependent on the degree of cell packing, with no
restriction if cells are not touching [13]. A hybrid model is presented in [21] in
which the cells in the proliferating region of a tumor are represented by discrete
deformable ellipsoidal cells while the remainder of the tumor is represented as a
continuum. Again, the model for the growth of individual cells does not explicitly
include fluid uptake. A multiscale model for avascular tumor growth is presented
in [20] in which the cellular dynamics of proliferation and adhesion are described
by means of a Monte Carlo model on a lattice (single cells are represented by a
set of lattice sites), intracellular dynamics by means of a Boolean network that
regulates the cell cycle, with reaction diffusion equations representing the chemical
dynamics on the extracellular level. Here, cell growth and death do require uptake
and release of volume: proliferating cells grow by invading lattice sites previously
occupied by medium, and cell death is accompanied by a corresponding addition
to the volume of the necrotic core.

We present here an immersed boundary model for multicellular growth in an-
imal tissues. This model incorporates essential aspects of the mechanical forces
involved in growth and cell division of individual cells, and in particular explicitly
includes the fluid sources required for cellular volume changes. This is a significant
advantage in this type of model since cell growth requires the uptake of both nu-
trients and fluid from the nearby extracellular space. Additionally, this approach
provides the pressure and force distribution within the tissue and can be used for
testing the influence of stress on cell proliferation and death.

The immersed boundary method, originally developed by Peskin for modeling
the fluid mechanics of the heart [25, 27], provides a framework for coupling the
dynamics of flexible boundaries with a viscous incompressible fluid. The method
has been used to model a variety of phenomena involving fluid-structure interaction
including aquatic animal locomotion [16], sperm and cilia motility [10, 9], platelet
aggregation in the blood’s clotting response [17], and three-dimensional blood flow
in the heart [28, 26].

The immersed boundary method has been employed in the context of tissue
growth in vertebrate limb development [12] and in the development of the villous
trophoblast in the placenta [33]. In Section 2 we describe a cells-based immersed
boundary model for tumor growth. An earlier version of this model without nutrient
transport was briefly described in [32]. We shall refer to our model as (DOP).
Rejniak [30, 31] has also developed a cells-based immersed boundary model for
tumor growth which we shall refer to as (Rejniak). Although the two models
(DOP) and (Rejniak) are similar in concept, there are important differences in the
model details. In [32], the (DOP) and (Rejniak) models were both used in a study
of ductal carcinoma and the differences between the two models were described
in detail. In comparison with (Rejniak), the full (DOP) model presented in this
work provides a more detailed description of the cell membrane and of the fluid
channels that move fluid into the cell and provides a more accurate description of
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the extracellular fluid transport. Both models include a simplified description of
the extracellular matrix (ECM). The ECM mediates cell-cell adhesion. A second
role in our model ECM is to maintain separation between cells. In a 2D model,
separation between cells allows fluid transport in the extracellular space. In the
(DOP) model we also incorporate a means for coupling the fluid/elastic equations
with an advection, diffusion, reaction equation for nutrients in the extracellular
space.

In the following sections, we present the mathematical framework for the im-
mersed boundary model, a description of the numerical methods, as well as several
simulations depicting solid tumor growth as well as the development of ductal car-
cinoma.

2. Mathematical model

The schematic of a model cell is shown in Figure 1(a). Each cell is modeled

(a) (b)

Figure 1. (a) Schematic of model cell. The cell wall is represented
as a mesh of linear elastic forces. The transport of fluid from the
exterior to the interior is facilitated via discrete channels modeled
as source (o) and sink (+) pairs. The contractile force links for cell
division extend across the cell. (b) Simulation detail of cell to cell
link structure.

as a viscous fluid with additional elastic forces representing the cell membrane. In
this simplified model, the cell’s interior has no additional structure other than that
provided by the fluid viscosity. The material properties of the cell wall are modeled
via a network of linear elastic springs. During the growth process, additional fluid
is introduced into the cell’s interior via discrete fluid channels located around the
circumference of the cell. Each channel is modeled as a discrete source and sink.
In animal cells a contractile ring of actin and myosin filaments contracts during
during cleavage to form the two daughter cells. In our two-dimensional model, this
process is modeled via elastic links which extend from a region on the cell wall to the
opposite side of the cell. These links contract and create a “cleavage furrow”. After
this contraction, the cell is split into two daughter cells. The model incorporates
a simplified representation of an extracellular matrix that consists of additional

3



elastic links between neighboring cells. These links mediate cell-cell adhesion and
can also maintain a minimal separation distance between cells.
Mathematical Representation

We assume that the fluid density is constant, but since there is growth, the
continuity equation takes the form

(1) ∇ · u = S(c,x, t),

wherein u is the local fluid velocity. The fluid is regarded as incompressible. How-
ever, the growth of individual cells is regulated via a system of discrete source and
sink pairs located near the cell walls. The contributions of these discrete source
and sink pairs are included in the source term S. The growth term S may also
depend on a nutrient or oxygen c. We assume that the fluid motion is described
by the Navier-Stokes equations with source S (see [4]) given by Equation 2

(2) ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p + µ(∇2u +

1

3
∇S) + F,

together with Equation 1. Here ρ is the fluid density, p is the pressure, and µ is
the fluid viscosity. The term F is the force density (force per unit area in two
dimensions) that the cells and links exert on the fluid. The force density F,

(3) F =
∑

i

Fcell(i) + +
∑

j

Flink(j) +
∑

k

Fcontractile(k),

is comprised of forces representing the elastic properties of cell membranes, cell-cell
links and the contractile forces of cell division.
Cell model

The kth cell wall at time t is modeled as a ring of elastic material with finite
thickness represented by Xk(r, s, t) where r, s are curvilinear coordinates. A force
per unit area fcell(k)(r, s, t) is defined at each point on the ring. This immersed
boundary force is transmitted directly to the fluid and gives a contribution to F

which we call Fcell(k),

(4) Fcell(k)(x, t) =

∫

fcell(k)(r, s, t)δ(x −Xk(r, s, t))drds,

where δ(x) is the two-dimensional Dirac delta function and the integration is over
the cell membrane. The Eulerian force densities Flink and Fcontractile are obtained
via similar integrations with the Lagrangian force densities flink and fcontractile

defined on the cells Xk. In addition, we require that the cells Xk move at the local
fluid velocity via the equation

(5)
∂Xk(r, s, t)

∂t
= u(Xk(r, s, t), t) =

∫

u(x, t)δ(x −Xk(r, s, t))dx.

Here, the integration is over the fluid domain.
As shown in Figure 1, the discretized cell wall consists of an inner and outer

ring of equally spaced immersed boundary points, Xi,j . Here i = 1 (i = 2) is the
index of the outer (inner) ring and j = 1, . . .N is the index of the points on each
ring. Force densities fi,j are defined at each point Xi,j on the cell wall. The force
density at index (i, j) consists of forces between adjacent points on the inner and
outer ring, forces between neighboring points on the inner and outer ring, as well
as forces between points on the outer ring and nearby points on the inner ring .
For any neighboring immersed boundary points with indices given by q = (i1, j1)
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and r = (i2, j2), the force fqr at the immersed boundary point Xq due to the elastic
link with the immersed boundary point Xr is given by Hooke’s Law

(6) fqr = Scell(||Xr −Xq|| − DL)
Xr −Xq

||Xr −Xq ||
,

where Scell is the spring force constant and DL is the spring resting length. We set
DL = H/2 where H is the fluid grid size. The force at Xr due to the link with Xq

is given by frq = −fqr. The force density fq is the sum of link forces between Xq

and its neighbors Xr as described above. The total force fcell = (fq). The Eulerian
force Fcell is assembled via a discrete version of Equation 4 using an approximate
Dirac delta function shown below.
Cell growth

Cell growth is driven by the transport of fluid via the source/sink pairs shown
in Figure 1. These consist of an inner ring of sources balanced with an outer ring of
sinks. In each source/sink pair, the fluid introduced via the interior source is equal
to the fluid lost in the external sink. Thus the source term S in Equation (1) has
the form

(7) S =
∑

ij

(S+
ij − S−

ij ).

Here, Ss
ij is the contribution of the jth source (s = +) or sink (s = −) for the ith

cell and has the form

(8) Ss
ij(x, t) =

∑

Sijδ(x −Xs
ij).

Sij is the growth rate constant of the (ij)th source and sink located at Xs
ij . The

growth rate of the ith cell is determined by the size of Sij , as well as the number
of source/sink pairs associated with the cell. In our numerical implementation, a
source/sink pair is associated with each of the immersed boundary points in the
cell’s outer ring. Each source/sink pair lies on a line that is approximately normal to
the cell membrane. Each source (sink) is located at a distance 0.5H from the inner
(outer) ring, where H is the fluid grid size. Since the sink-to-membrane distance is
much less than the resting length of the cell-cell links, the sinks usually fall in the
extracellular space between cells. When cells are closely packed, there may be an
overlap between the sinks of neighboring cells and a reduction in the effectiveness
of the source/sink channel.

The source strength Sij may depend upon the cell state and very small or zero
in a quiescent cell, or large in a rapidly growing cell. Moreover, the growth rate
constant may depend on the local nutrient or oxygen concentration level as well as
the local cell-cell link configuration.

As a cell expands in the growth phase, the cell wall must also increase in
length. This is accomplished in the numerical method, by periodically remeshing
the boundary – a process that typically requires additional new immersed boundary
points and the remeshing of the cell wall.
Cell division

After sufficient growth, a model cell begins the process of cell division by acti-
vating the contractile links of the cortical ring. Each contractile link is represented
by an equation similar to Equation 6 with a zero resting length and spring force
constant Scontractile. As shown in Figure 2, the contraction of these links causes
the cell to pinch. When the contractile links reach a prescribed length, the cell is
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split into two daughter cells. See the sequence in Figure 2. Here, we use a simple

(a) (b) (c) (d)

Figure 2. Simulation of cell division at the beginning (a), middle
(b) , and end (c) of the division process. The two daughter cells
are shown in (d).

model of the cell cycle in which cells begin the division process after reaching a
prescribed size. The cells are split into two daughter cells when the length of the
contractile links falls below a minimum length Lmin. In our model implementation,
the cell cycle may include additional phases such as a quiescent phase. However,
in the simulations shown here, we eliminate the quiescent phase so that cells are
either in a process of growth or cell division.
Cell-cell adhesion

Cell-cell and cell-wall adhesion are modeled by the creation of elastic springs
or ’links’ between immersed boundary points on the outer rings of the adherent
cells with link stiffness Slink. The model for the formation and breakage of links
is adapted from that used in [15, 17, 11] to model blood platelet and bacterial
adhesion and aggregation. If the distance between immersed boundary points on
different cells is less than a prescribed cohesion distance Dcohesion, an elastic link
may be created between the two points to link the two cells. Detachment of cells is
modeled by allowing the links to break when they are stretched beyond a prescribed
length Dbreak. The link resting length Lresting is also prescribed. Links between
a cell and an immersed boundary wall such as the basal membrane included in
simulations of ductal carcinoma (shown later) are created via a similar mechanism.
The functional form of the cell-cell and cell-wall link forces is similar to the force
shown above in Equation 6. In Figure 1(b) we show a detail of the cell and link
structure. Additional details of the cell-cell and contractile links are given in [32].
Substrate kinetics and transport

Adding chemical dynamics to the model for cellular growth requires a solution
to a system of reaction-diffusion-advection equations on an appropriate domain.
Here we consider only extracellular chemicals (for example, nutrients or extracellu-
lar signaling molecules such as morphogens) and the regions inside cells are ignored.
We denote by ΩE the extracellular space.

To alleviate the numerical burden it is assumed that chemical dynamics are
rapid on the timescale of cellular growth and that the contribution from advection
due to fluid displacement is negligible. Therefore, at intervals much larger than the
time step ∆t required for solution of the Navier Stokes equations, we solve

(9) 0 = Dc∇
2c + f(·)

on the domain ΩE . Boundary conditions will depend on the nature of the biological
problem; for example, cells may either deplete a nutrient through uptake across
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their membrane or secrete a signaling molecule into the extracellular space. To
obtain a solution to the above equation, at each time step n we define ΩE using the
outer ring of the points for the cells (i.e. X1,q) . The triangle scheme of Shewchuk
[34, 35] is used to perform Delaunay triangulation of the chemical grid. The nodes
of the triangulation define the centers of tiles that form a Voronoi tessellation of ΩE

(see Figure 3). Each Voronoi tile Vi defines a control volume in a finite-volume-type

Vi
Vj

di,j

li,j

(a) (b)

Figure 3. (a) Illustration of Delaunay triangulation (dashed tri-
angles) and the corresponding Voronoi tessellation (solid lines).
(b) Detail of immersed boundary model showing two cells and the
Delaunay triangulation.

scheme to approximate Equation (9) based on the method outlined in Bottino ([6]).
Briefly, the Laplacian is approximated for each Voronoi tile Vi through summation
of the fluxes across the faces partitioning Vi from each of its Delaunay neighbors,

∇2ci ≈
1

Ai

∑

j∈Ni

cj − ci

di,j

li,j

where ci is the average concentration in Vi, Ai is the area of Vi, di,j is the distance
between the centers of Vi and Vj and li,j is the length of the common edge between
Vi and Vj . We obtain a solution to the steady-state Equation 9 by integrating the
time dependent version of the spatially discretized equations forward in time until
a steady state distribution is achieved to a sufficient degree of accuracy. Here we
use a second order Runge-Kutta scheme for the reaction kinetics.

In our current numerical experiments, we assume the extracellular chemical is
a nutrient. The feedback to the immersed boundary model for cellular growth is
achieved by measuring the nutrient available to each cell. This is calculated here
through surface integrals of the chemical concentration along each cell’s membrane.
Numerical algorithm

The incompressible Navier-Stokes equations are solved in a domain of fluid
within which the neutrally buoyant cells are immersed. Fluid quantities are rep-
resented on a grid (Eulerian description). Cell walls and links are modeled by
discrete collections of moving points (Lagrangian description) connected by elastic
links. The external force of an elastic object on the fluid is represented as a delta-
function layer of force supported only by the region of fluid which coincides with
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material points of the object as described in Equations 3; away from these points
the external force is zero. The strength of this delta-function force is determined
at each instant by the local configuration of the cells and links. The chemical con-
centration field is represented on a grid generated with a Delaunay triangulation.
The size of the time step ∆t required for the solution of the immersed boundary
equations (1), (2), (4), and (5) is very small. Because of this, we solve for the
steady state solution of the nutrient concentrations in Equation (9) less frequently
and after every cell division.

The algorithm for the numerical solution of the model system may be summa-
rized as follows: at the beginning of each time step n, we have the fluid velocity
field un, the configuration of the elastic boundaries Xn, links, and the chemical
concentration field cn. In order to update these values we:

1. Calculate the force density fcell from the cell configuration Xn.
2. Update the cell-cell link structure.
3. Calculate the forces fn

link imposed on the fluid by each link.
4. Calculate the forces fn

contractile due to cells that are in the process of
dividing.

5. Spread the force densities to the grid to determine the Eulerian force F

on the fluid.
6. Spread the fluid source densities to the grid to determine the source

strength S.
7. Solve the Navier-Stokes Equations 1 and 2 for un+1.
8. Move the cells at the local fluid velocity in Equation 5 to obtain Xn+1.
9. If a cell has completed the cell division process, solve Equation 9 for cn+1.

A central feature of the immersed boundary method is that the immersed cells are
not computational boundaries in the Navier-Stokes solver; they contribute a singu-
lar force field that alters the driving force in the fluid dynamic equations. We are
therefore able to use a fluid solver designed for a regular grid with simple boundary
conditions. For step (6) we use a method described in [12] for an incompressible
fluid with distributed source and periodic boundary conditions. In steps (5), (6),
and (8), we use a grid function to communicate information between the grid and
the immersed objects. This is based on an approximate delta function of the form
δh(x) = d(x)d(y) where h is mesh width and

(10) d(r) =

{

1

4h

(

1 + cos
πr

2h

)

| r |< 2h

0 | r |≥ 2h.

We refer the reader to [25] for details. In the simulations shown below, the term
f(·) in Equation 9 has the form

(11) f(c) = −αc

on the boundary of a cell. Away from the boundary, f(c) = 0.
In Figure 4 we show snapshots from a simulation of cell growth in order to

illustrate the Delaunay triangulation and chemical concentration field. The dimen-
sionless concentration scale is shown to the right of each panel. In these simulations,
we use Dirichlet boundary conditions for the nutrient with c = 1 on the top and
bottom and zero flux boundary conditions on the left and right edges of the domain.
As shown in Figure 4 (left), two cells are placed in the center of the computational
domain with the nutrient concentration field obtained by Equation 9. After each
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Figure 4. Cell growth simulation with chemistry.

cell division, we update the nutrient field concentration. The end of the simulation
is shown in Figure 4 (right).

3. Numerical Simulations

In this section we present a preliminary set of numerical simulations for solid
tumor growth, tumor growth with necrosis, and tumor growth in DCIS (ductal
carcinoma in situ). In each simulation, the orientation of cell division is chosen
to be approximately orthogonal to the cell’s longest axis. The domain size for the
tumor growth simulations is 0.04 x 0.04 cm2. We use a 256 x 256 computational
grid with a step size ∆t = 0.0012s. For the solid tumor growth and tumor growth
with necrosis simulations Dcohesion and Dbreak are set to 0.00025 cm. In all cases,
the link resting length Dresting = Dcohesion. We use a diffusion rate Dc = 2× 10−5

cm2/s, fluid density ρ = 1g/cm3, fluid viscosity µ = 1000g/(cm s), source strength
Sij = 3 × 10−5 g/cm, cell link stiffness Scell = 8 × 104 g/(cm s2), cell-cell link
stiffness Slink = 5 × 105 g/(cm s2), contractile force Scontractile = 8 × 105 g/(cm
s2).

In the DCIS simulation the domain size is 0.02 x 0.02 cm2 with a 256 x 256
computational grid. We use the same fluid density and viscosity as above with a
step size ∆t = 0.0024s, Dcohesion and Dbreak set to 0.00025 cm, source strength
Sij = 2 × 10−5 g/cm, cell link stiffness Scell = 8 × 104 g/(cm s2), cell-cell link
stiffness Slink = 5 × 104 g/(cm s2), contractile force Scontractile = 4 × 105 g/(cm
s2).
Solid tumor growth

In our model, the cell growth rate depends on the strength of the source strength
Sij in Equation 8. Here we consider three forms for the source strength equation

(12) Sij = S0,

(13) Sij = S0 cij ,
9



(14) Sij = max(S0 cij , .05 S0),

where S0 is the uptake rate constant and cij is the local nutrient concentration at
Xi,j . In simulations governed by Equation 12, we do not solve Equation 9 since
cell growth does not depend on nutrient concentration. According to Equation
11, nutrient depletion is due entirely to consumption by the individual cells. In
this case, a key parameter in the reaction diffusion equation is the nutrient uptake
or degradation rate parameter α seen in Equation 11. As seen in the simulations
shown in Figure 4, a high nutrient uptake rate and increasing cell density can lead
to a decrease in nutrient concentration c in the vicinity of the cells. Low nutrient
concentration results in a slower cell growth rate via Equation 13.

In Figure 5 we compare the results of simulations with source given by Equation
14 and a (a) low nutrient uptake rate α = 0.001, or (b) high nutrient uptake rate
α = 0.01. For comparison, we show in Figure 5(c) a simulation with source term
given by Equation 12. We employ Dirichlet boundary conditions for Equation 9.
The panels on the bottom row show a time/distance scatter plot of the cell division
data. Time is shown on the x-axis and distance from the cell cluster centroid on
the y-axis. In the simulations shown here, cell number increases with time and
the maximum size is obtained at the end of the simulation. In the low nutrient
uptake simulation in (a), the cell cluster reaches its maximum size after 56 days,
whereas in the high uptake simulation in (b), the maximum size occurs after 183
days. In (c) the maximum size occurs at 129 days. The time scales shown in the
scatter plots are adjusted so that the time on the right corresponds to the time
at the end of the simulation. We use the term “day” as suggestive of the scaled
time interval between consecutive frames. In simulations (a) and (b) there is a
higher cell proliferation rate nearer the edge of the growing cell cluster. The cell
proliferation rate in the more slowly growing cell cluster is relatively higher in the
center of the cell cluster in comparison with the more rapidly growing cluster. The
cell proliferation rate depends linearly on the local nutrient concentration. However,
when the local nutrient concentration falls below a prescribed threshold, the cells
maintain a constant growth rate. Different patterns (not shown) are obtained when
the growth rates are governed by Equation 13. In that case, the cells furthest from
the rim undergo very slow growth rates. Although the cell growth rates in (c) are
independent of nutrient concentration, we still see a higher proliferation rate near
the rim of the growing cell cluster.
Necrosis

In Figure 6 we show results from a set of simulations with “cell death”. In this
model of necrosis, a cell loses viability if the dimensionless average concentration
of nutrient c at the cell boundary drops below a prescribed level cmin. In the
simulations shown here, a cell is removed if the local cell concentration falls below
cmin. We use Dirichlet boundary conditions for the nutrient in Equation 9 and, as
a result, see some fingering develop as the rim of the cell cluster approaches the
boundary. Since the dead cells are removed from the simulations, we are only seeing
the viable proliferating cells. The width of this band of proliferating cells becomes
narrower as the necrosis threshold level cmin is increased.
DCIS

In this section we show a pair of simulations representing the development
of ductal carcinoma in situ or DCIS. Similar simulations of DCIS were presented
in Rejniak and Dillon [32]. In each simulation, an outer ring representing the
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(a) (b) (c)

Figure 5. Top Row: Numerical Simulations of cell spheroid with
nutrient uptake rate (a) 0.001 (785) (b) 0.01 (502) (c) uniform
growth (793). The number of cells is shown in parentheses. Bot-
tom Row: Scatter plots. The dots indicate the time (x-axis) and
distance (y-axis) from the cell cluster centroid .

(a) (b) (c) (d)

Figure 6. Simulations with necrosis at threshold levels cmin (at
times) (a) 0.0 (166 days) (b) 0.00001 (166 days) (c) 0.0015 (180
days) (d) 0.05 (171 days). Here, the nutrient uptake rate is set to
0.01.

duct’s basal membrane is represented as a set of immersed boundary points. The
membrane’s immersed boundary points are connected with elastic links and also
tethered via stiff elastic links to fixed points in space . Initially, a ring of model cells
is placed inside the duct and adjacent to the basal membrane. These cells represent
the epithelial cells that line the duct. Normally, the growth and orientation of the
epithelial cells is tightly regulated. However, in DCIS, a variety of growth patterns
are seen. In Figure 7(top row) we show a cribiform pattern and in Figure 7 (bottom
row), a solid pattern. In the solid pattern, a single cell and its daughter cells
grow and divide in an unregulated fashion. The axis of cell division is determined
randomly. In the cribiform pattern, a small number of epithelial cells are allowed
to grow and divide. In this case, the axes of cell division are oriented radially so
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that the cells form finger-like structures. In Figure 8 we show the completed solid

Figure 7. Tufting (top) and solid (bottom) patterns in DCIS

DCIS pattern.

Figure 8. Solid pattern in DCIS

4. Discussion

In this paper we have presented a computational framework for the simulation
of the growth and division of populations of biological cells using the immersed
boundary method. A significant advantage of this approach is the explicit inclu-
sion of the fluid contents of cells and the transport of fluid through the extracel-
lular space. In order for cells to grow they must take up nutrients and fluid from
the nearby extracellular space through specialized channels, which are modeled as
source/sink pairs. A further advantage of this approach is the direct availability of
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the pressure field and forces in the tissue, which would allow the testing of ideas
about the influence of stress on cell proliferation and death. We have shown that
this modeling framework is a natural way to consider individual cells in a growing
tissue, and our simulations demonstrate the effects of nutrient depletion in growing
clusters of cells, and a variety of morphologies that are consistent with those seen
in ductal carcinomas.

We have included the dynamics of nutrients that diffuse in the extracellular
medium by considering a quasi-steady reaction-diffusion equation at each time
step. This assumes that the reaction and diffusion terms dominate over advec-
tion, although the uptake of fluid by growing cells results in an extracellular fluid
flow which could in principle perturb the nutrient distribution. Therefore it is of
interest to extend the nutrient calculations to include advection terms.

As well as animal tissues, this approach may have applications to plant cells.
Here the details of cell growth are thought to include a balance between the turgor
pressure in the vacuole of the cell and the mechanical properties of the cell wall.
Here it may be important to be able to include different fluid properties in different
regions, and osmotic effects. Addressing these issues would have further widespread
applicability. Other model extensions could include ligand-receptor interactions at
the cell-surface and subcellular signal processing. For example, a cell cycle module
could be implemented as a set of ODEs associated with each cell, so that the spatial
extent of the cell is neglected for simplicity. More detailed accounting for subcellular
spatial structure is in principle straightforward, but would represent a significant
computational challenge. Finally we note that these techniques carry over to three
space dimensions, but with the obvious significant increases in computation time.
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