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12.1 Introduction

From the earliest embryonic stages through to the complexity of the adult, the ability of
cell populations to adhere to either each other or the surrounding extracellular matrix
(ECM) is of critical importance to the survival of the organism. During embryonic
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development, carefully regulated adhesion plays a fundamental role directing the
various cell populations into the developing organs while maintaining strong adhesive
contacts is essential in preserving the integrity and structure of the adult tissues. The
manifest importance of cellular adhesion is exposed due to its abnormal functioning
in a wide variety of pathological conditions, including malignant cancer growth (e.g.,
[49]) and cardiovascular diseases (e.g., [40]).

Adhesion can generally be classified into two principal forms: cell-cell adhesion
and cell-matrix adhesion. The former defines the direct binding between cells through
the creation of transmembrane protein-protein complexes, the prototype example of
which are the strong contacts maintaining epithelial structures such as the epidermal
skin layer. The latter describes the attachment of cells to the surrounding ECM, the
scaffold support surrounding cells and composed of a variety of molecules including
collagens, fibronectins, and laminins. While the ECM is present in all tissues, its
prevalence in connective tissues such as the dermal skin layer makes cell-matrix ad-
hesion particularly important for stromal populations such as fibroblasts and immune
cells.

The control of cell-cell and cell-matrix adhesion is fundamentally determined
through the expression and regulation of a wide variety of membrane-based proteins,
the cell adhesion molecules (CAMs); for a general review, see [1]. Four principle fam-
ilies of CAMs have been classified: the cadherins (e.g., E-cadherin, N-cadherin); the
immunoglobin superfamily (e.g., NCAM, EpCAM); the integrins; and the selectins.
Members of these families generally consist of transmembrane molecules with an
intracellular domain linking to intracellular signaling pathways and an extracellular
domain connecting to other cells or the matrix. Adhesion is achieved through protein-
protein coupling of the extracellular domain to form either homophilic interactions
(i.e., binding between two proteins of the same type, such as E-cadherin–E-cadherin)
or heterophilic interactions (binding between two molecules of different type).

The cadherins form a large family of transmembrane adhesion molecules widely
recognized for their capacity to mediate direct cell-cell adhesion, although their func-
tion extends to a host of other cellular processes, ranging from apoptosis to signaling
(for reviews on the behavior and function of cadherins, see [36,57]). Classic cadherins
tend to form homophilic interactions in the intermembrane space separating two cells,
although heterophilic interactions can also occur (e.g., E-cadherin–P-cadherin), albeit
with different adhesive intensity [25]. The transmembrane binding fastens cells in a
zipper-like manner, conferring a key role to cadherins in all aspects of an organism’s
lifespan, from coordinating multicellular tissue movements during development to
maintaining the tissue structure of the adult. A wide variety of cadherins have been
identified, distributed across different cell populations. For example, the E-cadherins
are mainly associated with epithelial cell populations, while more migratory, mes-
enchymal cells (e.g., fibroblasts) tend to favor N-cadherins [79].

The integrins form the dominant CAMs regulating adhesion to the extracellular
matrix [10]. The extracellular domain couples the cells to ligands of the ECM to
create various types of cell-matrix adhesion structures that, in turn, modulate the
intracellular component to interact with intracellular signaling. These adhesion struc-
tures have the capacity to recruit additional molecules (e.g., matrix proteases) and
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therefore locally alter the structure of the ECM. Dynamic control cell-matrix adhe-
sion is crucial to the migration of cells in ECM-rich environments, such as connective
tissue, where migration proceeds through a continuous cycle of attachment at the
leading edge, extension and translocation of the cell body, and detachment at the cell
rear (e.g., see Friedl and Wolf [29]). Consequently, the structure of the ECM plays a
significant role in directing migration: certain cells may migrate toward ligand-dense
(i.e., more adhesive) regions of the matrix, a process termed haptotaxis; toward more
rigid regions, called durotaxis [46]; or even along the aligned collagen fibers, called
contact guidance [26].

12.1.1 Cell Adhesion during Pattern Formation and Development

In a series of classical experiments, Townes and Holtfreter [74] demonstrated the
intrinsic capacity for certain embryonic cell populations, when dissociated and ran-
domly mixed, to spontaneously reorganize into their original embryonic relationship,
a process attributed at the time to “tissue-affinity.” The underlying mechanism(s)
governing this “cell-sorting” have been the subject to a significant degree of specula-
tion and experimentation over the years, with the Differential Adhesion Hypothesis
(DAH) of Steinberg (see the reviews [27,68] of Foty and Steinberg) to the fore of
theories. The series of experiments by Steinberg in the 1960s [65–67] demonstrated
that embryonic cell types obey strict rules: Whatever the initial distribution for two
separate populations was, the cells always rearranged into the same configuration,
Figure 12.1a. Furthermore, populations formed hierarchical relationships: If cells of
type B are engulfed by cells of type A and cells of type C are engulfed by cells of
type B, then C will always be engulfed by A; see Figure 12.1b.

Based on these observations, the DAH employs thermodynamic principles, propos-
ing that cell sorting derives from variation in cell surface tensions that, in turn, depend
on the different adhesive properties between the cell types; Cells are assumed to rear-
range in a manner to minimize their free adhesive energy, analogous to the behavior
of two immiscible liquids. Through these arguments, a mixture of two cell popula-
tions, A and B, can be predicted to rearrange into four basic configurations according
to the relative strengths of self-adhesion (i.e., the binding between two cells of the
same type, SAA and SBB) and cross-adhesion (i.e., binding between two cells of dif-
ferent type, CAB): mixing, engulfment, partial engulfment, and complete sorting; see
Figure 12.1c.

Over the past decade or so, a series of thorough experiments have substantiated
the DAH for sorting (see reviews [27,68] for further details). Experiments with two
cell lines expressing different levels of cadherins (and hence varying degrees of ad-
hesiveness) resulted in the population expressing higher cadherin levels aggregating
to the center, with the other line confined to the periphery, consistent with the pre-
dictions of the DAH [25,69]. Recent experiments of Foty and Steinberg, [28] have
directly linked the surface tensions underlying sorting of tissues to differing strengths
of cell-cell adhesion.

The capacity for differential adhesion to spatially sort out different populations im-
plies an important role during the morphogenetic patterning of the embryo; indeed,
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Figure 12.1 Sketches showing the behavior of two adhesive cell populations, as
predicted by the DAH. (a) The same populations always approach the same final
configuration, regardless of initial distribution. Starting from the left, populations of
mixed and dissociated cells coalesce before evolving to a final configuration (shown
here as “engulfment”). Starting from the right, the same two populations, when placed
together as fragments, spread over one another before reaching the same pattern. (b)
Hierarchical relationships in adhesive populations. (c) Two populations, A and B,
evolve into various final configurations according to their self-adhesion SAA, SBB

(between A and A, between B and B) and cross-adhesion CAB (between A and B)
strengths. For two populations, the observed patterns are mixing (in which the popula-
tions are uniformly distributed–requires dominant cross-adhesion CAB >

SAA+SBB
2 ),

engulfment (in which the more cohesive population is engulfed by the less cohesive
population–requires SBB < CAB < SAA or SAA < CAB < SBB); partial engulfment
(for which the cross-adhesion strength is less than both the self-adhesion strengths–
CAB < SAA and CAB < SBB); and complete sorting (for which CAB = 0 and the two
populations form separate aggregations). (Figures adapted from [27].)

examples of spatio-temporally controlled alterations to the adhesive properties of
cells and the matrix include whole-embryo tissue movements during gastrulation,
formation of the boundaries during segmentation of the hindbrain, and the precisely
controlled movements of differentiated cell types during the patterning of the in-
sect compound eye (for these and further examples, see [13,36,44,68,72,73]). In
segmentation, the embryo is subdivided into a number of discrete blocks along the
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anterior–posterior axis, laying a blueprint for future development. For a number of or-
ganisms, including birds, fish, and mammals, this proceeds through somitogenesis, in
which parallel stripes of mesenchymal tissue (the paraxial mesoderm) metamerically
pinch off to form somitic pairs on either side of the developing neural tube. Com-
paction from the mesenchyme into epithelialised somites is thought to arise through
increases to cell adhesion [16], with a number of studies indicating roles for both ma-
trix molecules such as fibronectin (e.g., [24,53]) and cadherins (e.g., [45,71]). Somites
undergo subdivision, first into distinct anterior and posterior portions (e.g., [59]) be-
fore they subsequently sort into further embryonic subpopulations [8]. Differential
cell-cell adhesion has been suggested to pattern somites into their anterior and poste-
rior segments [70], a theory strengthened by the distribution of various cadherins in
the developing somite (e.g., [24,42]).

12.1.2 Cell Adhesion in Cancer Invasion

Understanding the processes that regulate the control of adhesion during tissue devel-
opment and homeostasis is crucial when it comes to determining the factors that lead
to tumor progression. The transition from a benign, compact tumor to an invasive,
spreading tumor capable of forming metastases is a pivotal moment for prognosis,
and it is now widely accepted that modifications to the adhesive properties of the
cells and surrounding ECM correlate with malignant development for a wide range
of different cancer types (e.g., [14,15,17,49]).

For many tumors of epithelial origin, a link between increased malignancy and
progressive loss of function in the cell-cell adhesion molecule E-cadherin has been
observed [17], with forced expression of E-cadherin in cultures resulting in a reversal
from an invasive to benign phenotype (e.g., [11]). In a number of cancers, the loss of E-
cadherin is accompanied by a gain in N-cadherin expression, a “cadherin-switching”
mechanism [79] similar to those seen in various embryonic processes—for example,
ingression of cells through the primitive streak. Such transitions are believed to give
rise to the evolution of a more invasive/migratory form.

To infiltrate surrounding healthy tissue it is necessary for the tumor cells to interact
with the surrounding ECM, a structure that can both provide a substrate through which
cells can move as well as a physical barrier against migration. To migrate, cells must
attach to the matrix through the formation of focal adhesions, mediated through the
integrin family of CAMs. These focal adhesions provide a site for recruiting matrix
proteases (e.g., MMPs) that degrade the ECM and hence provide space for tumor
invasion and expansion to occur [29]. A wide number of in vitro and in vivo studies
have investigated the importance of integrins and MMPs for cancer cell invasion, yet
the precise impact on invasion (e.g., promoting or inhibiting) varies widely according
to cancer origin.

The form of the invasive front is also variable, with different tumors displaying
diverse patterns of invasion, often resulting in an indistinct and diffuse tumor/host
tissue interface [29]. Certain tumors (e.g., lymphomas, glioblastomas) tend to invade
as individual cells, occasionally forming single-file cell chains known as “indian-
chains” (e.g., in breast carcinomas). Other tumor types, particularly those of epithelial
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origin, tend to invade in a collective fashion in which multicellular strands of tumor
cells known as “fingers” protrude into the host tissue or cell clusters migrate out from
the tumor while maintaining close contacts. Once again, these distinct patterns of
invasion correspond to different patterns of CAM expression, with the individual-
cell migration phenotypes, typified by mesenchymal/amoeboid cell types, expressing
high levels of integrins and proteases while collective-cell invasion is characterized
by epithelial cell types with strong cell-cell adhesion.

12.1.3 Chapter Outline

Clearly, cellular adhesion plays a crucial role in many biological processes. While a
wide range of models have incorporated adhesion at the discrete level, the incorpora-
tion into continuous models has received relatively little attention, a fact that can be
attributed primarily to a lack of models able to replicate the characteristic behaviors
of adhesive populations. In this chapter we first explore the history of modeling in this
fundamental process. We proceed to review the derivation of the continuous model
for cell-cell adhesion developed in [6] and show how it captures the fundamental
properties of aggregation and cell-sorting. In Section 12.5 we consider an application
of this model to tumor invasion [33,64]. Finally, we raise a number of biological,
modeling, analytical, and numerical challenges stimulated by these works.

Supplementary material for this chapter, including color figures and simulation
movies, is available online at

http://sim.mathematik.uni-halle.de/gerisch/2009/GerischPainter09/

12.2 Mathematical Modeling of Cell Adhesion

The recognition of cellular adhesion as a major driving force behind various biological
processes has led to the development of a variety of modeling approaches and models.
Naturally, the structure of a model will inevitably depend on the precise biological
question to be addressed. However, it is reasonable to expect that for any model of cell-
cell adhesion, at a population level it should capture core properties, such as an ability
to predict the aggregation/coalescence of a population as the “adhesivity” of the cells
is increased and, when expanded to include multiple populations, the various sorting
properties predicted by the DAH. The mechanism of cell-cell adhesion—a nonlocal
interaction between two cells through transmembrane receptor binding—naturally
suggests the usage of discrete cell (i.e., individual cell or agent-based) approaches,
which retain the finite cell size and permit relatively straightforward incorporation of
the molecular interactions and/or forces that act between the cells. Weighed against
such advantages, however, are the significant computational times required to simulate
large populations and difficulties in obtaining analytical insight. Consequently, it is
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desirable to augment such methodologies with continuous models that capture the
dynamics of population-level behavior.

12.2.1 Discrete Models for Cell Adhesion

The past decade has witnessed the development of a wide variety of discrete mod-
els that incorporate cell adhesion and are of increasing sophistication. Generally,
such models can be classified into two major classes: lattice-based and lattice-free
approaches. We start this section with a brief discussion of a number of discrete lattice-
based models (the book by Deutsch and Dormann [21] reviews these models in greater
detail with a specific focus on cellular adhesion in its Chapter 7) and consider cellular
automata, the discrete-continuum technique, and Cellular Potts models.

In lattice-based approaches, the morphology of a cell is restricted according to
some underlying discretization of space, which can be either regular (e.g., rectangu-
lar or hexagonal in two dimensions) or irregular (e.g., a voronoi tessellation). These
approaches can generally be further subclassified into those for which one cell cor-
relates to one lattice site and spatially extended approaches, with a cell defined by a
connected set of sites. Examples of the former class include many cellular automata
models: for the evolution of cells under the influence of differential adhesion, see, for
example [20]; in [50], a similar approach was employed to demonstrate how different
adhesive properties can generate zebrafish pigmentation stripes. A second example
of the single-site class is the discrete-continuum technique developed by Anderson
and co-workers [2,4]. Here, the discrete cells interact with each other and surround-
ing continuous fields representing extracellular matrix densities and growth factor
concentrations. Movement probabilities are derived from these interactions, which
include adhesion of cells to the extracellular matrix, and drive the reorganization of
the cell pattern in space and time. The primary application of this technique has been
in models of tumor cell invasion.

A prime example of a spatially extended approach is the Cellular Potts Model (or
Glazier-Graner-Hogeweg model). Originating in theoretical physics, it was adapted
and applied to cell populations by Graner and colleagues in the 1990s (see [34,35]).
Here, each (biological) cell is of a certain cell type and represented as a number of sites
(vertices) of a regular lattice. For a given state of the system, a Hamiltonian function
is defined based on the surface energy along the cell boundaries and deviations of
cell sizes from typical values. The evolution of the system is then driven by a Monte-
Carlo-like scheme that aims to reduce the value of the Hamiltonian by changing the
cell association of a randomly chosen lattice site to that of one of its neighboring sites.
The surface energy depends on the cell types on either side of the cell surface and
consequently accounts for self- and cross-adhesive effects. A background medium
(e.g., representing the extracellular matrix) can also be included in the model. The
generic model structure of this Potts model has been elaborated by various authors
to make it suitable for particular application areas, for example, cellular slime mold
morphogenesis [48], vertebrate development [58], epidermal homeostasis [62], solid
tumor growth [75], and angiogenesis [9].
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The artificiality of the imposed grid can be countered through the adoption of a
lattice-free approach in which individual cells are allowed to move freely through
continuous space. In a number of models of this type, cells are given variable, yet
predefined, shapes such as deformable ellipsoids of fixed volume in a model for cell
movement of Dictyostelium discoideum [19,55,56]. Another option, which allows
for cell growth and division, is that the average cell shape at any point in the life
cycle of a cell is predefined while the actual cell shapes are reconstructed from that
by taking neighboring cells into account. This approach, introduced by Drasdo et
al. [23], is followed in models of tumor growth, epidermal homeostasis, and early
development; for a brief review and further references, we refer the reader to [30].
One recent extension of this approach has been the incorporation of intracellular and
transmembrane molecular interactions, courtesy of an ordinary differential equation
system for each cell that describes the regulation of E-cadherin through the �-catenin
signaling pathway [60]. In both these and the deformable ellipsoid model described
above, movement of individual cells is driven by equilibrating forces, including adhe-
sive ones; alternatively, as in [23], movement is governed by a Monte-Carlo algorithm
based on a suitable interaction potential.

A number of further lattice-free models provide even greater flexibility to the man-
ner in which cells refine their shape. The model of Schaller and Meyer-Hermann [63]
adopts a Voronoi-Delaunay method, permitting cells to shift between smoothly spher-
ical and polyhedral with increasing tissue density, thereby providing greater control
over the amount of cell-cell contact. The subcellular element model of Newman [51]
provides additional intracellular structure through subdividing each cell into a set
of continuously deforming elements, giving high malleability to the shape of a cell
according to its interactions with neighbors and the environment. Finally, in the im-
mersed boundary models for individual cells [22,61], each cell is described as a
fluid-elastic structure in which its membrane is represented by a deformable bound-
ary immersed in a fluid. Force balances again are used to represent the adhesive forces
that describe the movement and deformation of cells while channels at the membrane
permit the influx of fluid into the cell required for growth.

12.2.2 Continuous Models Incorporating Cellular Adhesion

While discrete models for cells permit the straightforward incorporation of many
intra-, extra-, and intercellular processes, they also have their drawbacks. Of partic-
ular concern is that the transition from the cellular to the tissue scale can require a
formidable number of cells, which in many models—and certainly for the more de-
tailed ones—is computationally infeasible. In addition, discrete models often resist a
thorough analytical investigation that can shed light on generic properties of the sys-
tem under study. Both of these issues can be relaxed by considering continuum-scale
(PDE) models where cells are represented through their density at the tissue level,
and events at the cellular level are accounted for by the particular choice of terms
and parameter functions in those models. In the following we briefly review some
continuous models that account for cellular adhesion.
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The modeling of cell-extracellular matrix adhesion has been phenomenologically
captured in a number of models through the idea of “haptotactic” migration (e.g., [3]).
Here, cells are assumed to migrate up gradients in the density of an extracellular matrix
through the incorporation of an advective-flux type term qualitatively the same as those
traditionally employed in continuous chemotaxis models (e.g., [39]).

Incorporation of cell-cell adhesion, however, has proved generally problematic
at a continuous level. One approach, adopted in a number of models (e.g., [41])
has been to include cell-cell adhesion through a density-dependent cell diffusion
coefficient. While this phenomenologically captures one aspect of adhesion (i.e., the
restricted movement of cells in regions of high density), its capacity to describe more
complex phenomena such as self-aggregation and sorting of multiple populations is
unknown. Byrne and Chaplain [12] presented a model of cancer growth and invasion
that accounts for cell-cell adhesion through the incorporation of a surface tension
force at the tumor surface controlling the evolution of the tumor shape during growth.
This idea has been taken up and extended in recent models [18,47]. The single-phase
approach in these models has been broadened to multiphase using a diffuse interface
framework in [80]. This model accounts for cell-cell and cell-matrix adhesive effects
by incorporating them into a system energy that drives the system following an energy
variation scheme. The nonlocal energy term is assumed to be sufficiently localized
and the corresponding truncated expansion of that term leads to a fourth-order PDE
model of Cahn-Hilliard type.

The modeling approach of Armstrong et al. [6], which is the focus of this chapter,
also employs nonlocal terms to account for adhesive effects. In contrast to [80], no
expansion of these terms is performed so that the resulting model equations are non-
local or integro PDEs of second order. This approach has been employed to show that
upregulated adhesion can drive both the formation and subsequent anterior-posterior
compartmentalization of somites [7] and, as we expand on below, incorporated into
models for tumor invasion [33,64].

A highly desirable objective is to develop continuous models for cellular adhesion
as the appropriate limit from an underlying individual model for cell movement; in
the case of chemotactic cell movement; this has been studied in detail (see [37] for
a review) and an obvious advantage lies in the determination of the macroscopic
parameters (such as diffusion coefficients and chemotactic sensitivities) in terms of
measurable microscopic parameters (e.g., cell velocities, turning rates). A number of
recent attempts have been made to approach this problem. In [77], a 1-D representation
of a Cellular Potts Model incorporating adhesion was taken, under specific scaling
arguments, to its continuous limit, yet the resulting model is relatively unwieldy and
it has not been shown whether sorting properties can be captured. Another approach
adopted is to consider the evolution of a particle executing one-step jumps on a discrete
lattice (e.g., [5,54]). While these models can capture self-aggregation of a population,
the ill-posed nature of the resultant continuum equations can create singular behavior.
Finally, [52] considers the limit of a Langevin-based individual model. Interestingly,
the resulting continuum model incorporates nonlocal terms similar to those of the
phenomenological model of Armstrong et al. [6], described below.
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12.3 Derivation of a Nonlocal Model for Cell Adhesion

We begin by reviewing and extending the phenomenological derivation for an integro-
partial differential equation model for cell-cell adhesion first developed in [6]. Here,
a mass conservation approach was employed in which the cell density for an adhesive
cell population u(x, t) (x ∈ R

n) was proposed to be governed by:

∂u(x, t)

∂t
= − ∇ · J + h(·) (12.1)

where J represents the cell flux and h(·) describes cell kinetics. A multitude of factors
are known to dictate cell movement in vivo, ranging from long-range chemoattractants
to local cell-cell and cell-ECM interactions, indicating a flux of the form

J = Jrandom + Jadhesion + Jtaxis (12.2)

where Jrandom is the flux due to “random cell movement” (typically modeled as a
Fickian diffusion, Jrandom = −Du∇u, where Du is the cell diffusion coefficient),
Jadhesion is the flux due to adhesion, and Jtaxis is the flux due to long-range substances
such as chemoattractants. For the latter, the classical assumption is to take Jtaxis =
u�(u, c)∇c, where c represents the chemoattractant concentration and the function �
is referred to as the chemotactic sensitivity [39,43].

To model the contribution of adhesion to the cell flux, Jadhesion, we assume that
movement occurs due to the forces generated when cells bind with other cells or
the surrounding matrix, the density of which we denote by m(x, t). For a cell at x,
binding with a cell at x+r will create a local force f in the direction r (equally, the cell
at x + r experiences the opposite force). To describe adhesion-based movement, we
assume that the size of this local force depends on the “adhesivity” of this site, namely
the numbers and types of adhesion molecules. Rather than explicitly modeling the
concentrations of such molecules, the adhesivity is taken to simply depend on the
cell density (indicating the likelihood of forming a cell-cell bond) and the matrix
density (indicating the likelihood of forming a cell-matrix bond) at x + r through the
function g(u(x + r, t), m(x + r, t)). Note that the density of additional cell types can
be included here, allowing for cross-adhesion between cell types. The possibility of a
cell at x forming a bond at x+r is further expected to depend on the distance between
the two sites: cells establish adhesive bonds at the membrane-substrate interface, yet
their capacity to change shape (e.g., become elongated) or extend thin cell protrusions
ranging from shorter range lamellipodia to longer range filopodia (occasionally up
to 100 �m in length, [81]) suggests that the probability of forming bonds may vary
with distance.

Together, these assumptions lead us to propose the local force generated at x via
adhesive binding at x + r to be

f(x, r) = r
|r|�(|r|)g(u(x + r, t), m(x + r, t)) (12.3)
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where the right-hand-side terms break down into the direction of the force (a vector),
the dependence of the force magnitude on the distance at which bonds are formed, �
(a scalar), and the dependence of the force on the adhesivity, g (a scalar). We discuss
various functional forms for these terms below.

The total force exerted at x, F(x), will be the sum of all local forces f(x, r), where
r ranges over a finite volume V indicating the “sensing region”: the space over which
the cell at x can make adhesion bonds. As described above, this V is minimally
determined by the mean cell volume, yet is likely to be significantly larger due to cell
shape change and protrusions. Thus, we compute the total force to be

F(x) =
∫

V

r
|r|�(|r|)g(u(x + r, t), m(x + r, t)) dr (12.4)

To incorporate the above into the mass balance Equation (12.1), we note that at
the low speeds of eukaryotic cell migration (typically 0.1 to 10 �m/min, according
to cell type) we can reasonably expect inertia to be negligible and drag proportional
to velocity and the cell radius R (Stokes law for a ball of radius R in a laminar flow).
The adhesive flux will then be proportional to the cell density and the forces between
them and therefore we take

Jadhesion = �u

R
F (12.5)

where � is a constant of proportionality. Finally, we substitute Equation (12.5) with
F as given in Equation (12.4) into Equation (12.2), and assume Fickian diffusion and
a generic taxis cue c(x, t) to obtain the following cell density evolution equation:

∂u(x, t)

∂t
=

Random movement︷ ︸︸ ︷
Du∇2u −

Taxis movement︷ ︸︸ ︷
∇ · (u�(u, c)∇c)

−

Adhesive movement︷ ︸︸ ︷
∇ ·

[
�u

R

∫
V

r
|r|�(|r|)g(u(x + r, t), m(x + r, t)) dr

]
+

Cell kinetics︷︸︸︷
h(·)

(12.6)

The above forms our basic model for cell adhesion and, when combined with appro-
priate dynamics for matrix and chemical signaling, can be applied to a wide range
of biological processes; a version of the above equation was first considered in [6]
to model the basic properties of an adhesive population and, through the incorpo-
ration of an extra adhesive population, extended to model cell sorting (see Section
12.4). An amalgamation of Equation (12.6) into a chemical signaling system has been
developed to model somite formation during embryonic development (see [7]); and
the incorporation into the modeling of tumor invasion has been considered in [33]
and [64] (see Section 12.5).

12.3.1 Cohesion through Adhesion

A fundamental test for any model for cell-cell adhesion is to determine its capac-
ity to predict the organization of a population of dispersed cells into aggregations:
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Populations of cell lines aggregate rapidly into large and cohesive clumps with in-
creasing cadherin expression (e.g., [28]). To demonstrate the ability of Equation (12.6)
to allow this basic phenomenon, we neglect any effects from cell-matrix adhesion and
chemoattractants and ignore cell kinetics (i.e., cell growth is assumed to be negligible
on the time scale of adhesion-driven movement) to derive:

∂u(x, t)

∂t
= Du∇2u − ∇ ·

[
�u

R

∫
V

r
|r|�(|r|)g(u(x + r, t)) dr

]
(12.7)

It remains to define appropriate functional forms for the various components in the
nonlocal term. In the simulations that follow, we restrict to two spatial dimensions
and therefore take the cell sensing region V to be the circle of radius R. The function
� defines the dependence on the distance from x. The simplest assumption is to
assume that � is constant throughout the sensing region; however, a form in which
� decreases due to the diminished likelihood of forming a bond with distance from
the cell may be more appropriate. For the purposes here, we adopt the simplest form
and take �(|r|) = constant; the impact of other forms has been considered in [64]
for a 1-D version of the model.

For the adhesivity component, with attractive interactions we expect g to (at least
initially) increase with cell density u due to the increased likelihood of forming bonds
within areas of higher cell densities (and hence more adhesion receptors). Yet at
even higher cell densities, it is reasonable to expect the attractive force magnitude
to either saturate (e.g., due to all receptors becoming bound) or even decrease (due
to an impedance against migrating into “crowded” regions). To explore the impact
from different forms of g, we consider respectively a “linear,” a “saturating,” and a
“logistic” form, all depending on an adhesion parameter �:

g(u) = �u, g(u) = �u

K + u
, g(u) = �u max

{
0, 1 − u

Umax

}
(12.8)

We have solved Equation (12.7) for each functional form of g from Equations
(12.8) on a square spatial domain (0, 10)2 ⊂ R

2 with periodic boundary conditions.
The initial cell density u(x, 0) = 0.1 + U(x) is constant with a uniformly distributed
perturbation U(x) ∈ 10−2[−0.5, 0.5]. The sensing region V is a circle of radius one
and the other parameters used are

Du = � = R = 1 , �(|r|) = 1 for |r| ∈ [0, 1] , � = 30 , K = Umax = 2
(12.9)

The numerically computed cell density u(x, t) at three output times t is shown in
Figure 12.2. With the setting described above, we observe aggregation of cells for all
three functional forms of g given in Equations (12.8). With the linear form of g, we
obtain a very fast aggregation process leading to many small cell clusters with large
cell density in the region of up to 20. As time proceeds, some of these clusters coalesce,
leading to a further increase in cell density; see Figure 12.3 (left). The diffusion in the
model prevents a further increase (also the finite grid width contributes to this; on finer



12.3 Derivation of a Nonlocal Model for Cell Adhesion 325

t = 2 t = 8 t = 32

0

5

10

15

20

t = 2 t = 8
 

t = 32

 0

2

4

6

8

10

t = 2 t = 8
 

t = 32

 0

1

2

3

4

Figure 12.2 Simulation results u(x, t) for Equation (12.7) with linear (top row),
saturating (middle row), and logistic (bottom row) form of function g; see Equations
(12.8), at three output time points t. Note the different color scalings for the three
functional forms of g; values of u below 0.1 are suppressed in the plot. (A color
version of this figure can be found in the online supplementary material.)

grids, the maximum solution value becomes even larger). With the saturating form
of function g, the onset of aggregation becomes visible only much later than with the
other two forms. This can be understood from observing that at the low initial cell
densities (≈0.1), the saturating form gives g ∼ �u/2, whereas g ∼ �u for the other
two functional forms; the adhesive pull driving aggregation is therefore much lower.
Once the clusters have formed, a slow but steady increase in the maximum density
occurs, which only flattens off as the density increases above 10 and the impact of
the saturation in g takes hold. Finally, the logistic form for function g leads, like the
linear form, to a quick formation of cell aggregates. However, unlike in the linear
case, the maximum cell density is much smaller here and appears to be bounded by
≈4. This value is larger than the parameter Umax = 2; for the dependence of the
maximum cell density on the value of �, see Figure 12.3 (right). In a reduction of
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Figure 12.3 (Left) The maximum cell density as a function of time for the numerical
experiments shown in Figure 12.2 using � = 30 and a function g that is of linear
(dot-dashed), saturating (dashed), or logistic (solid) type. (Right) The maximum cell
density as a function of time for the numerical experiment shown in Figure 12.2
(bottom), i.e., with logistic type function g, but with different � values: no aggregation
for � = 12 (solid gray line) and aggregation for � = 16 (solid), � = 20 (dotted),
� = 30 (dashed), and � = 40 (dot-dashed).

the 2-D case to a quasi-1-D problem, Sherratt et al. [64] have shown that the density
is bounded by Umax = 2, provided the adhesion parameter � is below some critical
value; consequently, this result appears either not to generalize to the genuinely 2-D
setting or imposes additional constraints on the size of � for boundedness by Umax.

Based on the reasonably fast aggregation and the capacity to bound cell densities
at lower levels, the choice of the logistic form for function g is recommended and
will be considered in the remainder of this chapter.
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12.4 Modeling Cell-Cell Sorting

In this section we aim to demonstrate whether the continuous framework developed in
Section 12.3 can replicate the predictions of the DAH for cell sorting; cf. Figure 12.1.
The prototypical setting here is to consider two cell populations that differ only in
their adhesive properties. Initially, the two cell populations are distributed more or
less arbitrarily and one is interested in the long-term configuration of the system;
see Figure 12.1. We denote the densities of the two cell populations by uA(x, t) and
uB(x, t). It is reasonable to assume that cell proliferation is negligible on the time
scale of cell sorting and we further assume that the random motility coefficient is
approximately the same for each population. Under these simplifications we obtain
the following set of PDEs describing the spatio-temporal evolution of the system:

∂ui(x, t)

∂t
= D∇2ui − ∇ ·

[
�ui

R

∫
V

r
|r|�(|r|)gi(uA(x + r, t), uB(x + r, t)) dr

]
,

i = A, B (12.10)

This system is considered on the 2-D spatial domain (0, 10)2 ⊂ R
2 and complemented

with periodic boundary conditions for both species. We consider two sets of initial
conditions uA(x, 0) and uB(x, 0), corresponding to the left- and right-most frames of
Figure 12.1a: a single pellet of randomly mixed cell types, Figure 12.4 (center row,
left), and a pellet of cell type A juxtaposed to a pellet of cell type B, Figure 12.4
(bottom row, left). The initial masses of cell types A and B are approximately equal
for the initial condition shown in Figure 12.4 (center row, left), whereas there is a
larger initial mass of cell type B in Figure 12.4 (bottom row, left).

The functions gi in the cell adhesion term are parameterized by the self- and cross-
adhesion parameters, SAA, SBB, CAB = SAB = SBA of the two cell types and we
employ a logistic functional form (cf. Section 12.3.1, [6,64]):

gi(uA, uB) := (SiAuA + SiBuB) max

{
0, 1 − uA + uB

Umax

}
, i = A, B (12.11)

The contributions Siiui account for self-adhesion whereas Sijuj with i �= j account
for cross-adhesion. The factor max{0, 1 − uA+uB

Umax
} is employed to limit the density to

which an aggregate can reach; see the effect of the various forms for g in Figure 12.2.
Under this form, the adhesive pull of a region increases at lower cell densities before
decreasing at higher densities. The sensing region V is a circle with radius one and
we use

D = � = R = 1 , �(|r|) = 1 for |r| ∈ [0, 1] , Umax = 1 (12.12)

Our first test is to demonstrate the capacity of Equation (12.10) to predict various
final configurations according to the self- and cross-adhesion parameters, as illus-
trated in Figure 12.1. Accordingly, we start with a random mixture of cells of the
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Figure 12.4 The plots show numerical approximations to the cell density differences
uA(x, t) − uB(x, t) of the cell-cell sorting model (Equation (12.10)). In regions with
cell densities uA < 0.05 and uB < 0.05, the difference value is suppressed in the plots.
(Top Row) The difference is plotted at time t = 100, when a (numerical) steady state
is reached, for four different values of the cross-adhesion parameter CAB and starting
with the initial condition consisting of a single pellet with randomly mixed cell types
(described below); all other parameters are as detailed in the main text. Depending on
the choice of CAB, from left to right, the four final configurations “complete sorting,”
“partial engulfment,” “engulfment,” and “mixing,” cf. Figure 12.1c, are attained.
(Middle and Bottom Rows) The plots show the time courses as solutions evolve to
the steady-state distribution for the fixed cross-adhesion parameter CAB = 7 but for
the two different initial cell distributions; all other parameters are as detailed in the
main text. For the middle row we initially consider a single pellet of radius 2.5 in
the center of the domain with a random mixture of cells of type A and B such that
uA(x, 0) + uB(x, 0) = 0.8 in the pellet’s center and slightly decreasing toward the
periphery; densities are zero outside the pellet. For the bottom row we initially consider
two adjacent cell pellets, of radii 1.25 (type A) and ≈1.87 (type B), containing one
cell type each at a density of ≈0.8; densities are zero outside the pellets. (This figure
together with movies can be found in the online supplementary material.)

two types in a pellet centered in the domain. The self-adhesion coefficients are fixed
at SAA = 30 and SBB = 15 (i.e., population A has stronger self-adhesion), and we
consider the impact of variation in the cross-adhesion strength CAB. The results of
the simulations are represented by plotting the differences of the cell densities uA and
uB at large times (i.e., at numerical steady states), shown in Figure 12.4 (top row).
Depending on the value of CAB, the steady-state distribution attained corresponds
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to that predicted by the DAH based on the relative size of the adhesion coefficients
(cf. Figure 12.1c. In particular, it is noted that the more strongly adhesive cell type
A tends to accumulate in the center of the pellet, except for the case without any
cross-adhesion, CAB = 0, that is, total separation.

As a second exploration, we investigate the relatively insensitive nature of the
final configuration with respect to the initial distribution of the populations (cf.
Figure 12.1a). Here we choose SAA = 30, SBB = 15, and CAB = 7; according
to the DAH this predicts the partial engulfment of A by B at the steady state. Starting
from the two sets of initial conditions described above, the time courses as solu-
tions evolve to the steady-state distribution are plotted in the middle and bottom rows
of Figure 12.4. Clearly, we observe evolution to the same pattern phenotype at the
steady state; the differences in the right-most configurations stem from the smaller
proportion of A used in the bottom row.

As a final test of the continuous cell sorting model, we explore whether Equation
(12.10), when extended to three cell populations, can predict the hierarchical rela-
tionship of adhesive populations, similar to Figure 12.1b. For three populations A, B,
and C obeying the self-adhesion hierarchy SAA > SBB > SCC, simulations predict
that population A becomes engulfed at the center, population C is confined to the
periphery, and population B is sandwiched between A and C; Figure 12.5.

uA – uB uA – uC uB – uC

–0.2

0

0.2

0

0.2

0.4
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Figure 12.5 The plots show numerical solutions of Equation. (12.10) extended to
three cell types A, B, and C. (Top Row) Solutions uA, uB, and uC at time t = 50.
(Bottom Row) Pairwise solution differences at time t = 50. The initial condition is a
randomly mixed pellet of the three cell types. The adhesion parameters are SAA = 45,
SBB = 30, SCC = 15, CAB = 31, CAC = 0, CBC = 16. (This figure together with a
movie can be found in the online supplementary material.)
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12.5 Modeling Adhesion during Cancer Invasion

In this section we demonstrate the applicability of the continuous framework for cel-
lular adhesion by considering a simple and minimalist model of cancer cell invasion
into healthy tissue, (cf. [33]). The model consists of three equations describing the
cancer cell density (c), the extracellular matrix (ECM) density (v), and the concen-
tration of a (generic) matrix degrading enzyme (MDE) (m). The model equations are
given by:

∂c(x, t)

∂t
= D1∇2c − ∇ ·

[
�c

R

∫
V

r
|r|�(|r|)g(c(x + r, t), v(x + r, t)) dr

]

+ �1c(1 − c − v) (12.13a)

∂v(x, t)

∂t
= −�mv + �2(1 − c − v) (12.13b)

∂m(x, t)

∂t
= D3∇2m + �c − �m (12.13c)

For simplicity, we restrict our attention to a 2-D geometry and consider the above
equations on the spatial domain (−1.5, 1.5)2 ⊂ R

2, subject to periodic boundary
conditions. In this model, both the cancer cells and ECM occupy physical space
while the volume occupied by MDE is assumed negligible. The cancer and ECM
density equations above have been normalized such that the total density c + v = 1
characterizes fully occupied physical space.

In this simple model, cancer cell migration is assumed to arise from (1) random
motility (the corresponding coefficient D1 is rather small) and (2) a directed movement
due to adhesive effects of cancer cells with themselves and the surrounding ECM.
The sensing region V for the adhesion term is a circle of radius R = 0.1 and for the
function �(|r|) we select a linearly decaying function

�(|r|) = 3

	R2

(
1 − |r|

R

)
for |r| ∈ [0, R] (12.14)

The linear decay of �(|r|) models a diminishing influence of adhesive bonds toward
the periphery of the sensing region. The leading factor in �(|r|) follows from a
normalization ensuring that the integral of �(|r|) over the sensing region V is equal
to one, stipulating a fixed maximum capacity of cells to form adhesive bonds within
the sensing region independent of its actual size. The magnitude of that capacity is
captured in the (parameters of the) function g, which takes the form

g(c, v) = (Sccc + Scvv) max{0, 1 − (c + v)} (12.15)

This functional form implies that cancer cells adhere to themselves (self-adhesion
parameter Scc) and to the matrix (cross-adhesion parameter Scv). Again, we include
the limiting term such that g becomes zero if the total density c + v approaches the
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value one. In addition to cell migration, cancer cell proliferation is also incorpo-
rated through the employment of a logistic growth type law with growth rate �1 and
“carrying capacity” dependent on the locally available space, 1 − c − v.

The ECM is assumed to be nonmotile and degraded upon contact by MDEs at a
rate �. In the general formulation, a simple ECM production term permits regeneration
of the ECM with rate �2 (note that in the simulations below, it is assumed that �2 = 0).
Finally, MDEs diffuse throughout the tissue (with diffusion constant D3), are produced
by the cells at rate �, and decay at rate �. The following set of parameters is used in
the simulation

D1 = 10−3, D3 = 10−3, �1 = 0.1, �2 = 0, � = 0.1,

� = 10, � = 0.5, R = 0.1, Scc = 0.05, Scv = 0.1
(12.16)

Clearly, the model in Equations (12.13) through (12.16) is highly simplified in its
nature and excludes many pertinent biochemical interactions. However, the focus here
is on the incorporation and effect of the adhesion term in a model of tumor invasion
and, consequently, we wish to retain the simplicity of the model. Crucial questions for
any model of cancer invasion are whether it permits the breakage of cancer cells from
a central tumor mass and how cancer cell migration is affected by a heterogeneous
tumor environment. To address these issues, we consider an initial tumor population
concentrated at the center of the domain (representing the central tumor mass) and
lying within a spatially structured ECM matrix. The initial MDE concentration is
chosen to be proportional to the cell density. Simulations for a striped distribution in
the initial ECM densities are shown in Figures 12.6 and 12.7.

In Figure 12.6 we observe the preferential accumulation and invasion of cancer
cells along stripes of higher ECM density, in concert with degradation of that ECM.
Cell migration obeys the restriction of physical space, that is, cells do not move into
densely packed tissue. Cells at the tumor periphery do not accumulate in regions of
low ECM density, but rather quickly cross these areas to concentrate at the front of
the next ECM barrier. The variation in ECM density also leads to the formation
of protrusions that stretch from the cancer mass into the healthy tissue. Due to the
regular structure of the ECM, these protrusions are also regular. Similar results apply
when cell proliferation is excluded; however, the protrusions now take the form of
high-density tumor clumps extending along the ECM stripes; Figure 12.7.

12.6 Discussion and Outstanding Questions

In this chapter we discussed the critical role played by cellular adhesion during a wide
spectrum of biological processes, highlighting the need for mathematical models to
capture this fundamental phenomenon. A brief review of existing models, discrete
and continuous, has demonstrated their individual strengths and weaknesses. Of par-
ticular note is the lack of continuous models that can replicate the “sorting” behavior
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Figure 12.6 Simulation results for model in Equation (12.13) through (12.16) with
a diagonally striped initial ECM distribution. Shown are the tumor cell density (top
row) and the ECM density (bottom row) in the central part (−1, 1)2 of the spatial
domain at four time points. The MDE concentration displays similar features as the
cell density and is not shown. (A color version of this figure together with a movie
can be found in the online supplementary material.)

of multiple adhesive populations. As far as we are aware, the only continuous model
that has been demonstrated to capture this property is that developed in [6]. Here
we expanded the derivation of this model and corroborated its suitability through an
extended numerical analysis that replicates the wide variety of cell sorting “experi-
ments,” as predicted by the Differential Adhesion Hypothesis (DAH). The ultimate
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Figure 12.7 Simulation results for model in Equations (12.13) through (12.16) as
in Figure 12.6 but without cancer cell proliferation (i.e., �1 = 0). (A color version of
this figure together with a movie can be found in the online supplementary material.)
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success of this approach lies in its capacity for integration with existing continuous
models; as a demonstration of its suitability, we considered its extension into a model
for cancer invasion as originally studied in [33] (see also [64]). A second applica-
tion, considered in [7], has been to the process of chick somitogenesis. There it was
shown that upregulation of cellular adhesion, regulated through an underlying chemi-
cal signaling network, could drive both the epithelialization and subsequent sorting of
pre-somitic cells into somites. The ubiquity of cellular adhesion would allow a catalog
of potential applications to be listed: some typical examples, based on the history of
modeling in these areas, include angiogenesis, wound healing, development of the
slime mold Dictyostelium, and skeletal patterning.

In the continuous adhesion model, the microscopic processes (e.g., receptor bind-
ing) can be accounted for by a suitable choice of cell adhesion parameters. A crucial
extension of this work lies in the development of truly multiscale models of cell
adhesion, in which the sizes of adhesion parameters in the continuous model can
be determined from the processes occurring at a microscopic scale. To achieve this,
it will be necessary to derive models for cell adhesion from a realistic underlying
description of individual cell behavior; as discussed in Section 12.2, a number of
attempts have been made at exploring some of these issues (e.g., see [52,76]).

Mathematically, a striking feature in the modeling approach is that cellular adhe-
sion is accounted for via a nonlocal (integral) advective type term. As such, this fits
coherently into the typical taxis-diffusion-reaction frameworks frequently employed
in the modeling of pattern-formation type phenomena. Similarly, existing simulation
packages for diffusion-reaction systems can be extended in modular fashion to allow
the incorporation of such nonlocal terms. One difficulty, however, is the additional
computational effort required to evaluate the nonlocal term. A suitable solution to this
problem is outlined in the Appendix to this chapter, the scheme in which provides
high-resolution simulations within reasonable computing times (at least for the case
of a rectangular spatial domain with periodic boundary conditions). However, extra
work will be required to extend the numerical techniques to more general situations,
such as irregular geometries or three dimensions.

Analytically, a number of results are available on the properties of solutions. In [64],
the boundedness of solutions was addressed under particular forms of the model.
Specifically, it was shown (in one dimension) that for g(u) = �u max {0, 2 − u},
boundedness of u below 2 is possible under specific restrictions for the size of � and
form of �(|r|). In [38] a related nonlocal model for chemotaxis was derived and global
existence of solutions was proven for all finite sampling radii. A considerable number
of questions, however, remain unanswered. Of particular interest are an extension of
the boundedness results to spatially 2-D settings, the proper incorporation of other
boundary conditions from both an analytical as well as a modeling point of view, and
an analysis of the limiting scenario as the sampling radius R → 0.

The formulation of the model presented here clearly simplifies many crucial com-
ponents regarding the behavior of adhesive populations in vivo. For example, the
dynamics of adhesive binding are assumed to correlate to overall cell/matrix densi-
ties rather than the concentrations of adhesive molecules at the cell membrane, the
dynamics of which can vary both spatially and temporally according to intra- and



334 Mathematical Modeling of Cell Adhesion

extracellular signals. Further, while adhesion is assumed here only to generate forces
resulting in cell migration, the signaling initiated through binding interplays with
many facets of cell behavior, including division and apoptosis. Extending the model
to include some of these complexities will further advance its relevance to under-
standing the role of adhesion in a wide variety of biological processes.

12.7 Appendix: Numerical Method

The models in this chapter are all solved following the Method of Lines (MOL).
The rectangular spatial domain is covered with a uniform grid where each grid cell,
or finite volume, is a square of side length h. In a first step of the MOL, the spatial
derivatives are discretized on that grid and we employ a Finite Volume Method (FVM)
of order 2 (see, e.g., [32]). This transforms the PDE model into a large and, in general,
stiff system of ordinary differential equations (ODEs), the MOL-ODE system:

dU(t)

dt
= F(t, U(t)) , U(0) = U0 (12.17)

As is customary when using the FVM, the components of this ODE system represent
approximations to the averages of the PDE solution in each finite volume. The nu-
merical solution of the MOL-ODE in Equation (12.17) constitutes the second step of
the MOL and an appropriate time integration scheme must be selected. Implicit time
integration schemes can deal efficiently with the inherent stiffness of the MOL-ODE.
We favor the linearly implicit, fourth-order Runge-Kutta method ROWMAP [78].
The multiple Arnoldi process used within this method for the solution of the linear
equation systems in each time step makes this scheme particularly suited for the large
ODE system at hand. Furthermore, the method does not require any computation of
the Jacobian of the MOL-ODE by the user; the required Jacobian-times-vector prod-
ucts are computed automatically by a suitable finite difference approximation using
the right-hand-side F of the MOL-ODE.

The FVM described in [32] has been applied to taxis-diffusion-reaction systems.
There, difficulties arise in regions of strong variation of the solution of the PDE, for
example, near moving fronts. These are due to the taxis term of the model and special
attention was given to ensure that the discretization of that term does not introduce
oscillations or negative solution values in the solution of the MOL-ODE. This goal can
be achieved, while maintaining the order two of the FVM as much as possible, using
a second-order upwind discretization together with a nonlinear limiter function. The
models of this chapter have a nonlocal adhesion term that is similar to the taxis terms
in [32]. So we apply the same discretization to that term, with the added difficulty of
the approximation of the integral. The adhesion term, in general, takes the following
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form for the adhesive species ui of a vector u of concentrations or densities in the
models

−∇ · [ui(x, t)
�

R

∫
V

r
|r|�(|r|)gi(u(x + r, t)) dr

︸ ︷︷ ︸
the adhesive velocity in (x, t)

] (12.18)

The adhesive velocity, and consequently the integral, must be approximated on each
edge of the spatial grid for each evaluation of the right-hand side of the MOL-ODE.
This task constitutes the computational bottleneck of the whole numerical solution
process. If we assume that (1) the sensing region V at each x is the same and time
independent, and (2) that we solve the PDE system on a rectangular domain with
periodic boundary conditions, then the adhesive velocity in Equation (12.18) can be
approximated on all vertical (or all horizontal) edges of the spatial grid simultaneously
by evaluating a matrix-vector product MG. Here, the matrix M ∈ R

N,N, N the number
of grid cells, and each row of M corresponds to the approximation of the nonlocal
term on one edge. We arrive at this by first evaluating function gi at the approximation
U(t) yielding G ∈ R

N; second by reconstructing a function g̃i(x) from that data using
bilinear interpolation; and third, by approximating the integral with g̃i instead of gi.
Thanks to a suitable basis representation of g̃i, the matrix M will be independent of
the data G and can be precomputed before the time integration of Equation (12.17)
commences. Furthermore, the third step can be performed to any desired accuracy so
that the overall accuracy of the nonlocal term evaluation hinges solely on the quality
of the reconstruction of function gi by g̃i, that is, can be controlled by the spatial grid
width h. Typically, the sensing region V is much smaller than the spatial domain of the
PDE model. Consequently, the matrix M contains many zeros. However, in contrast
to the approximation of derivatives, the fraction of non-zero elements of M remains
constant with decreasing spatial grid width h. In that sense, sparse matrix techniques
can only have a limited impact for the efficient evaluation of the matrix-vector product
MG. At this point the periodic boundary conditions become important. These give rise
to a matrix M having the structure of a block-circulant matrix with circulant blocks.
Matrix-vector products with such matrices can be evaluated efficiently with Fast
Fourier Transform (FFT) techniques. This substantially reduces the computational
complexity and hence CPU time requirements for the evaluation of MG. More details
of the integral approximation and evaluation can be found in [31].

In the discussion above we have assumed periodic boundary conditions for the
PDE problem. This is not always suitable from the point of view of modeling. No-
flux boundary conditions are frequently encountered and in the following we describe
how they can be included in the computational framework. For the nonlocal term, the
boundary conditions become only important in points x where the set V, centerd at
x, intersects the boundary of the spatial domain of the PDE. For such x we follow
the approach taken in [7]: that the integral of the nonlocal term is taken only over
those r ∈ V such that x + r is within the spatial domain. This modification implies
that the matrix M changes from a block-circulant matrix with circulant blocks to a
block-Toeplitz matrix with Toeplitz blocks. FFT techniques cannot be applied directly
to such matrices but any such matrix can be embedded into a block-circulant matrix
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M̃ with circulant blocks. The size of M̃ will be larger than the size of M but for our
application the increase will be modest. The vector G must also be padded with zeros
in appropriate places to yield the extended vector G̃. Now, the result vector of the
matrix-vector product MG, which we want to compute, can be extracted from the
result vector of the efficiently to evaluate the extended matrix-vector product M̃G̃.
We illustrate this for the Toeplitz to circulant case (i.e., no block structure), which is
applicable for the simulation of spatially 1-D models. In that case, the matrix M is a
banded Toeplitz matrix with, say, upper bandwidth m and lower bandwidth n

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l0 l1 . . . lm 0 . . . 0

l−1
. . .

. . .
. . .

. . .

...
. . .

l−n

0
. . .

...
. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
N,N (12.19)

The corresponding circulant matrix M̃ then has N + max{n, m} rows and columns
and is defined by its first column

(l0, l−1, . . . , l−n, 0 . . . , lm, lm−1, . . . , l1)
T ∈ R

N+max{n,m} (12.20)

The extended vector G̃ is given by G̃ = (G, 0)T ∈ R
N+max{n,m} and then holds

MG = [
M̃G̃

]
1,...,N (12.21)

That is, only the first N entries of M̃G̃ are used.
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