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Abstract In this paper, we present a two-population continuous integro-differential
model of cell differentiation, using a non-local term to describe the influence of the
local environment on differentiation. We investigate three different versions of the
model, with differentiation being cell autonomous, regulated via a community ef-
fect, or weakly dependent on the local cellular environment. We consider the spa-
tial patterns that such different modes of differentiation produce, and investigate the
formation of both stripes and spots by the model. We show that pattern formation
only occurs when differentiation is regulated by a strong community effect. In this
case, permanent spatial patterns only occur under a precise relationship between the
parameters characterising cell dynamics, although transient patterns can persist for
biologically relevant timescales when this condition is relaxed. In all cases, the long-
lived patterns consist only of stripes, not spots.

Keywords Community effect · Differentiation · Pattern formation · Mathematical
model · Zebrafish · Non-local · Integro-differential equation

1 Introduction

Cellular differentiation describes the development of specialised cells from undevel-
oped precursor cells. This process occurs in nearly all cells but the mechanisms that
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Fig. 1 Schematic of the sandwich experiments originally carried out by Gurdon (1988) to demonstrate
the community effect. Part (a) shows a monolayer of blastula derived animal cells in a vegetal sandwich,
while part (b) shows a solid grouping. Gurdon saw differentiation take place only in the latter case. See
Gurdon (1988) for more details

drive it are not well understood. Further investigation is necessary to increase our
understanding of this fundamental process.

There are many ways that differentiation is induced in cells. For example, it has
been widely hypothesised that a cell may sometimes differentiate according to a
“community effect”. This term was first coined by Gurdon (1988) to explain the phe-
nomenon seen in experiments in which clusters of cells differentiate into a particular
tissue type, but individual cells from the same undifferentiated group do not (Gur-
don 1988). Gurdon postulated that undifferentiated cells, which receive signals from
other undifferentiated cells in the immediate environment, will differentiate together
into the same cell type once a threshold level of these signals is reached. This process
allows cells in the same spatial area to keep the correct gene expression necessary
for the tissue they create. The community effect has since been widely investigated,
with many studies expanding on Gurdon’s original experiment and explanation. In his
original experiments, Gurdon (1988) placed Xenopus ectoderm cells in a sandwich
of endoderm (see Fig. 1). A monolayer of ectodermal cells did not differentiate into
muscle, whereas a solid group of cells did. Gurdon and colleagues went on to explore
other similar experiments in Xenopus, all with the same results (Kato and Gurdon
1993; Gurdon et al. 1993b). Similar experiments with blastula cells of zebrafish and
dorsal ectoderm cells of Drosophila were also carried out (reviewed by Gurdon et al.
1993a). They too showed that groups of cells were needed for the normal differenti-
ation fate of these cells to be achieved.

Weston et al. (1994) explored a different cell group within Xenopus to see if cells
other than those fated to differentiate into muscle were also driven by the community
effect. They studied Xenopus notochord, and through sandwich experiments similar
to those described above, they concluded that a community effect was also necessary
for notochord differentiation. Meanwhile, Cossu et al. (1995) discovered a commu-
nity effect in mouse myoblast differentiation (Cossu et al. 1995). Work on mice con-
tinued, and a community effect was observed at work in the survival of melanoblasts
(Aubin-Houzelstein et al. 1998), and even postulated as a possible explanation for the
correct migration of Purkinje cells in the cerebellar cortex of mice (Yang et al. 2002),
taking the concept of the community effect a long way from its original definition.

Experimental work on a community effect continues, with the latest work looking
at cardiomyonocite cells and heartbeat stabilisation (Kaneko et al. 2007; Kojima et al.
2006), but even though a community effect has been explored for over 20 years there
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are still some fundamental questions that remain unanswered. One of these is how a
community effect is achieved biochemically, and this question has been considered
to some extent both experimentally and theoretically. Kim et al. (1999) postulated
that neuregulin may act as an induction signal for the community effect in myogenic
differentiation in rats, while eFGF protein is suggested as the likely factor in Xeno-
pus (Standley et al. 2001). Various other community factors have been suggested
for different cells and species (see Buckingham 2003 for a review). Meanwhile in his
theoretical paper, Monk (1997) created continuous diffusion-based models to explore
mechanisms for the community effect in Xenopus myogenesis. The biochemical basis
of a community effect remains an important research question, but we do not consider
it further in this paper.

Rather, we focus on what the community effect means for the spatial structure of
tissues; more concretely, what kind of spatial structure does the community effect per-
mit that other forms of differentiation do not? This question has not previously been
explored, with research effort concentrated on the underlying biochemistry. However,
it is an important question, as answering it will give insight into the geometries of tis-
sues that the community effect can construct and, conversely, those that it cannot.
We begin by briefly considering various forms of differentiation, before moving on
to look at the community effect in the context of a specific example.

As mentioned above, cell differentiation is not always regulated by the community
effect. For example, “autonomous differentiation” may occur at a certain stage in the
cell cycle. In this scenario, the local environment of a cell has no effect on its fate;
the cell’s progress is intrinsic (Salazar-Ciudad et al. 2003). An example of this is the
differentiation of mature somites (Buckingham 2003).

Homoiogenetic induction is another method of inducing differentiation. Here,
cells induced to differentiate first self-induce a signal to send to their neighbours,
instructing those cells to do the same. In this way, the signal is passed from cell to
cell, until such time has lapsed that any undifferentiated cells no longer respond. This
process, like the community effect, allows a sharp boundary to be formed between
different tissues; for example, it has been suggested as an explanation for the forma-
tion of spatial patterns seen in the neural plate of amphibians (Nieuwkoop 1997).

However, as we are interested mainly in a community effect, and the influence
it has on the spatial structure of tissue, we focus on that phenomenon here, paying
particular attention to the example of a community effect in zebrafish pigmentation.
While Gurdon et al. (1993a) provides a very precise definition of the community
effect, stating that it is “an interaction among many nearby progenitor cells, as a result
of which these cells activate tissue-specific genes and differentiate coordinately as a
uniform population”, the term has picked up a wider, more general use, as seen in the
literature discussed above. In the case of zebrafish pigmentation, the term has been
used to describe the preference of pigment cells for their own kind.

The stripes on adult zebrafish form during metamorphosis, which begins at
about 14 days post fertilisation (Parichy et al. 2000). The stripes are mainly made
up of two cell types, melanophores (black) and xanthophores (yellow), while
iridiphores (translucent) are found spread across the body. These pigmented cells,
or chromatophores, arise from latent precursors during metamorphosis. These form
black and yellow horizontal stripes across the body of the zebrafish, creating two
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melanophore stripes by 28 days (Parichy et al. 2000). It has been postulated that the
death of melanophores in areas of high xanthophore density is due to a community
effect: melanophores require other melanophores nearby in order to survive, and a
sole melanophore is not viable (Parichy et al. 2000; Buckingham 2003). This sug-
gests that an undifferentiated precursor will be biased into differentiating into the
same type as those differentiated pigment cells surrounding it, as otherwise it will
fail to survive.

It is worth noting that biological experiments such as the sandwich experiments
described above (see Fig. 1) are intrinsically disruptive. In vitro experiments remove
cells from their natural environment, and while the in vivo grafting of cells may pro-
duce useful results, it also alters the natural cellular environment. This leads to poten-
tial discrepancies in the interpretation of experimental results (see Nagai et al. 2005,
for a discussion of this in zebrafish blastoderm transplantation). Therefore, in order
to further understand and isolate the basic process of cell differentiation, we turn to
theoretical models.

We are aware of only one previous theoretical model for the regulation of spa-
tial structure by the community effect, which concerns the zebrafish pigmentation
example. Moreira and Deutsch (2005) created a cellular automata model which com-
bines ideas about a community effect with those of attraction and repulsion be-
tween melanophores and xanthophores. In their model, a cell will differentiate into
a melanophore unless there are more xanthophores in the neighbourhood, in which
case a xanthophore will arise. The model successfully reproduces the stripe patterns
of the zebrafish.

In this paper, we offer an integro-differential equation model to describe cell dif-
ferentiation. In contrast to Moreira and Deutsch (2005), who assume intercellular
adhesion and precursor cell differentiation to be simultaneous drivers for the pattern
formation process, we explore what dynamics can be produced through differentia-
tion alone, without considering any adhesive effects. In this way, we are able to ex-
plore the extent to which the community effect alone is able to produce the patterns
seen in zebrafish patterning.

In Sect. 2, we present the model alongside a comprehensive biological reasoning
for its formulation, basing our ideas on the example of zebrafish pigmentation. From
this model, we create three variations to explore various differentiation scenarios,
looking in particular at a community effect and the strength of the response needed
in order to create patterning. In Sect. 3, we go on to consider the stability of the ho-
mogeneous steady states of the model, and present various mathematical analyses of
them. In Sect. 4, we present the results of numerical simulations, while in Sect. 5
we discuss the outcome of these results. We will show that regulation of differentia-
tion by a strong community effect can generate spatial patterns. The patterns always
consist of stripes rather than spots. De novo pattern formation only occurs for some
initial conditions, showing that regulation of differentiation via a community effect
is not a robust pattern formation mechanism. However, it is an effective mechanism
for pattern maintenance, provided that the death rates of the two cell populations
involved are relatively similar. Note that our model of a community effect assumes
that differentiation is only influenced by the local environment and not by any other
predisposition toward a particular cell type, so that differentiation rates for this case
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are always equal across the two populations. We will show that permanent patterns
require equal death rates, but that long-lived transient patterns occur when the death
rates of the two cell populations are different but relatively close to one another.

2 Modelling Cellular Differentiation: A Continuous Approach

As mentioned in Sect. 1, cell differentiation is a complex process. We build our model
by considering the biological data available. In the development of our model, we
bear in mind the particular example of zebrafish pigmentation, although the model
we produce is general enough to be applied to many other scenarios, some of which
are discussed at the end of this paper. We begin by considering a stem cell popula-
tion that is both constant in space and time, and multi-potent. To explain these two
assumptions, we describe the nature of stem cells, and also cite some evidence that a
community effect has a role in the final cell fate of precursors produced from multi-
potent stem cells. Furthermore, we consider available data regarding the specific case
of zebrafish.

In epithelia, stem cells lie in the basal layer. Unlike other cells, stem cells do
not terminally differentiate, but rather undergo repeated proliferation. After mitosis,
in place of one stem cell, there is typically one stem cell and one undifferentiated
cell, with the latter differentiating and joining the general cell population. Stem cells
have in some cases been shown to be multi-potent, i.e. the precursor cell that a stem
cell produces can have a variety of different fates. These precursors may be multi-
potent themselves, and, in the peripheral nervous system for example, they are seen to
display fate restrictions due to a community effect (Paratore et al. 2002; see also Galli
et al. (2000) for further discussions of multi-potency in stem cells and precursor cells,
and of the role of a community effect in affecting cell fates in neural stem cells). Note
that in the case of zebrafish, it is not known whether the precursors of chromatophores
are stem cells or not, although there has been some recent evidence to suggest that
they are (Hultman and Johnson 2010). Whether the precursors are multi-potent or not
is also unknown, despite speculation on this point (Parichy 2007).

In the creation of a general model then, we first begin with separate stem and pre-
cursor cell populations. We assume that we have a stem cell population that remains
at a constant level due to self-renewal. We further assume that it produces precur-
sor cells at a constant rate, and that each time a precursor cell differentiates, a stem
cell produces a new precursor. In this way, a constant supply of precursor cells is
achieved, leading to the population of precursor cells having a constant density p,
say, independent of both space and time. Note that we assume that the precursor cells
are evenly distributed across the body. In the zebrafish example, although the spatial
distribution of precursors across the fish body has not yet been elucidated, in the fin
they have been shown to be evenly distributed (Rawls and Johnson 2000), and so we
believe this to be a reasonable assumption.

We now look in detail at our terminally differentiated cells: we assume there to be
two populations, similar to the melanophores and xanthophores found in zebrafish.
We call these two differentiated cell populations a(x, t) and b(x, t), with

∂a

∂t
= k1f1

(
a(p), b(p)

) − α̃1a(p),
∂b

∂t
= k2f2

(
a(p), b(p)

) − α̃2b(p). (1)
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Note that the coefficients in the two linear death terms generally differ since the
cell populations A and B are different. Both a and b depend on p, which determines
the rate at which precursor cells differentiate into A or B cells. But from the above
discussion, we have that the rate of differentiation of precursor cells is constant, and
thus

k1f1
(
a(p), b(p)

) + k2f2
(
a(p), b(p)

) = α̃0p, say, a constant. (2)

We now investigate further the differentiation functions f1 and f2 of our model.
As discussed in Sect. 1, the type of cell that the precursor cell differentiates into
may depend very much on the differentiated cells in the local environment, or on
a cell’s predisposition toward a particular cell type. We will explore three options:
autonomous cell differentiation, differentiation according to a community effect, and
a third option, in which the response to the ratio of existing differentiated cell types
in the local environment is strictly linear.

Bearing the above three scenarios in mind, we propose three different forms for
the f1 and f2 functions, all satisfying (2). Since in each case we wish both cell lines A

and B to be produced by the same mode of differentiation, we assume that f1(a, b) =
f2(b, a). We wish to consider the extent to which the surrounding environment affects
the differentiation of precursor cells. We assume that only cells of type A and B affect
the fate decisions of the precursor cells. To consider this effect, we first construct
an integral which calculates the proportion of differentiated A and B cells within
a certain radius R. Such a representation of cell environment via an integral term
has been used previously in many contexts including cell sorting (Armstrong et al.
2006), development (Sekimura et al. 1999; Armstrong et al. 2009; Green et al. 2010;
Bloomfield et al. 2010), chemotaxis (Hillen and Painter 2009) and cancer (Gerisch
and Chaplain 2008; Sherratt et al. 2009; Painter et al. 2010). The cell sensing radius R

of the integral reflects the capacity of a cell to directly sense its environment via, for
example filopodial contact. The amount of contact made is important as it determines
the extracellular signals that a cell receives. For example, Numb is a signalling protein
that is widely expressed during embryogenesis. Numb is thought to inhibit Notch
activity, thereby altering communication between an undifferentiated precursor cell
and other cells in its local environment. This changed level of communication then
allows the precursor cell to choose a different fate to that of a second precursor cell
which may contain a different amount of Numb, and hence experiences a different
level of cell-cell communication (Zhong 2008). We use a function f (I), where I is
our local environment integral, to vary the contact and communication of precursor
cells with differentiated cells.

Our model in one dimension is given by

∂a

∂t
= k1f (Ia) − α̃1a, Ia = 1

area

∫ R

−R

a(x + x0)

a(x + x0) + b(x + x0)
dx0,

∂b

∂t
= k2f (Ib) − α̃2b, Ib = 1

area

∫ R

−R

b(x + x0)

a(x + x0) + b(x + x0)
dx0.

(3)
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Note that in this model, the integrals Ia and Ib ∈ [0,1] since they consider the pro-
portion of A or B cells in the sensing region of a cell; moreover Ia + Ib = 1. The in-
tegral is normalised over the area. Typically, this is simply the length 2R, but near the
edge of the spatial domain being considered, we truncate the integral over the portion
of area which lies within our domain. Equations (3) can be non-dimensionalised:
substituting t = t∗P/α̃0p, a = a∗P , b = b∗P , α̃1 = α1α̃0p/P , α̃2 = α2α̃0p/P ,
k2/k1 = k∗, f (·) = f (·)∗α̃0p/k1, where P is the dimensionalised measure of the
cell population density, and dropping the ∗’s, gives ∂a/∂t = f (Ia) − α1a and
∂b/∂t = kf (Ib) − α2b, with condition (2) becoming

f (Ia) + kf (Ib) = 1. (4)

The dimensionless parameter k reflects a possible predisposition of precursor cells
to differentiate into cells of type A (k < 1) or B (k > 1); except where specifically
stated, we will restrict our attention to the unbiased case k = 1.

Note that the integral I is undefined if a = b = 0. Since we are modelling the dif-
ferentiation of precursor cells into A and B cells from an initial precursor cell layer,
the case a = b = 0 is definitely relevant in applications. A reasonable assumption is
that precursor cells would differentiate into cells of type A and B at equal rates in
this case. Therefore, we could amend the model to cover the case a = b = 0 via a
differentiation function that varied between 1/2 and f (Ia) (for cell type A) as the
overall cell density increased. Such an alteration would be a significant complication
mathematically, and would be important for the transient behaviour of populations
with low initial density. However, it would not affect long term behaviours, and so
we restrict our attention to a model of the form (3).

To more fully represent epithelia, which we model as a monolayer, we extend (3)
to two dimensions. The complete dimensionless equations are then

∂a

∂t
= f (Ia) − α1a,

Ia = 1

area

∫ R

0

∫ 2π

0

a(x + rη)

a(x + rη) + b(x + rη)
r dθ dr

∂b

∂t
= kf (Ib) − α2b,

Ib = 1

area

∫ R

0

∫ 2π

0

b(x + rη)

a(x + rη) + b(x + rη)
r dθ dr.

(5)

Here, a(x, t) and b(x, t) are our populations of cell types A and B, respectively,
at two-dimensional position x and time t ; other cells within Ia and Ib are located
relative to a(x, t) and b(x, t) by reference to both the distance r along the sensing
radius R, and the unit vector η = (cos θ, sin θ); α1 and α2 are our non-dimensional
death rates and k is the non-dimensional differentiation rate; and finally the integral
is normalised over the area of the integration region, which is πR2 at points away
from the boundaries of the domain, and truncated appropriately at points whose dis-
tance from the boundaries is less than R. The function f is different for our three
differentiation scenarios, and we discuss its form below.
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2.1 The Three Models

2.1.1 Model One: Differentiation is Independent of the Local Environment

First, we consider cell autonomous differentiation. In this scenario, differentiation
into A or B cells will simply occur at a constant rate, predetermined by various inter-
nal cell factors such as the presence of different gene regulatory proteins, without ref-
erence to the local environment. Such a mechanism occurs in mature somites which
are differentiating into muscle (see, for example Buckingham 2003). Differentiation
into the two cell types is assumed to occur at different rates, so we allow k �= 1 for
this model. We put f (Ia) = f (Ib) a constant, which must equal 1/(1 + k) to satisfy
condition (4). Then (5) becomes

da(t)

dt
= 1/(1 + k) − α1a(t) and

db(t)

dt
= k/(1 + k) − α2b(t). (6)

We call this our Cell Autonomous Model.

2.1.2 Models Two and Three: Differentiation is Dependent on the Local
Environment

We now turn to modelling a community effect. Unlike in the autonomous case, we
fix k = 1, as we do not wish precursor cells to have a predisposition to differentiate
into one cell type over another, i.e. we wish differentiation to be only affected by
the local environment. The mathematical formulation of f requires only that (i) f is
monotonically increasing, so that a larger proportion of cell type A, say, in the sens-
ing region makes it more likely that a precursor cell will differentiate into A; and
(ii) f (Ia) = 1 − f (Ib), with f (1/2) = 1/2, to avoid any bias between the two cell
types. Condition (4) is then immediately satisfied.

To model a strong community effect, we are interested in an f which, although
continuous, is close to a step function. We choose f as described in Fig. 2(a). This
represents the idea that an undifferentiated precursor cell is strongly biased toward
differentiating into the same type as those in the majority around it, as occurs in
the community effect described in Sect. 1. We call this version of the model the
Community Model, and it is given by

∂a

∂t
= f (Ia) − α1a and

∂b

∂t
= f (Ib) − α2b, (7)

with Ia , Ib and all other details as in Sect. 2, (5).
Another quite distinct case that is also biologically relevant involves f being linear

(Fig. 2(b)). This relates to two different biological scenarios. One of these is that
contact with only one surrounding cell is made, and that contact alone determines
the outcome of differentiation; such behaviour would be more likely when contact
with cells is inhibited, for example due to the presence of Numb as described above.
An alternative scenario is that contact occurs with all neighbouring cells, but that the
resulting effect on differentiation pathways is linear; this would depend on underlying
biochemical details. In either case, the response to the signals produced is linear. We
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Fig. 2 The above figure demonstrates the two chosen f functions for differentiation in our model (7).
Figure (a) shows a smooth continuous function that is close to a step function. This case represents our
community model. Figure (b) shows a linear f , which represents our single cell model

call this version the Single Cell Model; mathematically it is represented as in (7), but
with a linear f .

Note that although our two choices of f for the two local environment models (7)
are not comprehensive, with many other reasonable options, f must be monotonic
to reflect a community effect as described in Sect. 1, and symmetric in the sense
that f (1/2 − x) + f (1/2 + x) = 1, ∀x ∈ (0,1/2). This symmetry ensures that dif-
ferentiation is unbiased toward either of the two cell types. Then our two choices of
f represent two extremes of this understanding of a community effect and should
therefore encompass all types of community effect related behaviour.

We now explore the long term behaviour we can expect from the three models by
carrying out some analysis, looking at the location and stability of spatially homoge-
neous steady states.

3 Analysis of the Three Models

3.1 Analysis of the Autonomous Model

We have that (6) is given by da(t)
dt

= 1/(1 + k) − α1a(t) and db(t)
dt

= k/(1 + k) −
α2b(t). The only steady state of this simple model is given by (1/α1(1+k), (k/α2(1+
k)), with k �= 1. Noting that this is a system of two uncoupled ordinary differential
equations, it is immediately clear that this steady state is globally stable for all posi-
tive constants α1 and α2. This means that this system will always go to, and remain
at, a homogeneous mixing of both cell types, in a proportion that is dictated by the
relative rates of differentiation and apoptosis.

3.2 Analysis of the Community Model

Here, the model (7) is given by ∂a
∂t

= f (Ia) − α1a and ∂b
∂t

= f (Ib) − α2b with all
details as in Sect. 2, (5), and f a continuous approximation to a step function as is
described in Sect. 2.1.2, and illustrated in Fig. 2(a). The question is what homoge-
neous steady states are possible, and what combination of stabilities can occur as
parameters are varied. Knowing this will allow us to see what are the likely long
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term scenarios for the system, and when they might occur. Biologically, this gives us
further insight into the type of differentiation dynamics we can expect in real systems.

3.2.1 Sufficient Condition for only Three Steady States

Let x = a/(a +b). Then 1−x = 1−a/(a +b) = b/(a +b), and so we have uniform
steady states at

a = 1

α1
f (x) and b = 1

α2
f (1 − x). (8)

Since bx = a(1−x), (8) implies that 1
α1

f (x)(1−x) = 1
α2

f (1−x)x at a steady state,
i.e. 0 = F(x) ≡ (1 − x)f (x) − γ xf (1 − x), where γ = α1/α2. Therefore, there are
steady states at x = 0 and x = 1, corresponding to populations composed entirely of
cell type B and cell type A, respectively.1 Coexistence steady states must satisfy

f (x) = γ x

1 − x + γ x
. (9)

We now show that for a large class of functional forms of f there is only one solution
of (9), i.e. there is only one coexistence steady state.

Proposition Let f be a smooth, monotonically increasing function, f : [0,1] −→
[0,1] such that the following hold:

f (x) = 1 − f (1 − x), ∀x ∈ (0,1), (10)

f (x) = x for x = 0,
1

2
,1; f (x) �= x otherwise, (11)

f ′(x) = 0 for x = 0,1; f ′(x) �= 0 otherwise, (12)

f ′′(x) > 16γ (1 − γ )/(γ + 1)3, ∀x ∈
(

0,
1

2

)
when γ ∈ (0,1),

(13)

f ′′(x) < 16γ (1 − γ )/(γ + 1)3, ∀x ∈
(

1

2
,1

)
when γ > 1.

Then (7) have exactly three steady state solutions.

Note that these conditions are sufficient but not necessary. Mathematically, the
restriction on the size of f ′′ prevents multiple steady states on (0,1) by limiting the
curvature of f .

Proof Let γ ∈ (0,1). We begin by defining g(x) = γ x/(1 − x + γ x); then (9)
implies that steady states satisfy f (x) = g(x). Trivially, f (0) = g(0) = 0 and
f (1) = g(1) = 1, giving us our first two solutions. We now just need to prove the
uniqueness of solutions on (0,1) under the above conditions.

1Note that the trivial case (0,0) is also a steady state.
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We have that g′(0) = γ > f ′(0), and g′(1) = 1
γ

> f ′(1). Therefore, f (x) = g(x)

must have at least one solution with x ∈ (0,1). Suppose first that γ ∈ (0,1). Then
straightforward calculation shows that g(x) < x,∀x ∈ (0,1), while (11) and (12) im-
ply that f (x) ≥ x,∀x ∈ [ 1

2 ,1). Therefore, there are no solutions of (9) on [ 1
2 ,1).

Moreover, (13) implies that f ′′(x) > g′′(1/2) > g′′(x),∀x ∈ (0, 1
2 ). This ensures that

g(x) does not meet f (x) more than once for x ∈ (0, 1
2 ) giving us exactly one more

solution to f (x) = g(x) as required. The proof is similar in the γ > 1 case. Note that
for γ = 1 the case is trivial, as here g(x) = x, and so by (11) there are only three
steady states. �

3.2.2 Stabilities of Steady States

Calculation of the stability matrix of (7) shows that the single species steady states are
both stable. We now show that when there are just three homogeneous steady states
of the community model (7), where f satisfies conditions (10)–(13), the (unique)
coexistence steady state is unstable. Define F(x) = (1 − x)f (x) − γ xf (1 − x) as
before. Then by (10),

F ′(x) = f (x)(γ − 1) + f ′(x)(1 − x − γ x) − γ. (14)

Then assuming (11) and (12) hold, F ′(0) = −γ < 0 and F ′(1) = −1 < 0 by direct
substitution into (14). Therefore, by continuity, there must be a point x∗ ∈ (0,1)

with F(x∗) = 0 and through which F increases with x. Since we assume only three
steady states, this must be the unique coexistence steady state. We now calculate the
stability matrix of the spatially uniform version of (7). The equations in question are
∂a
∂t

= f (x) − α1a and ∂b
∂t

= f (x) − α2b. The stability matrix is then

(
f ′(x)b(a + b)−2 − α1 −f ′(x)a(a + b)−2

−f ′(1 − x)b(a + b)−2 f ′(1 − x)a(a + b)−2 − α2

)
,

and the determinant is given by

−α2/(a + b)
(
f ′(x)(1 − x) + γ xf ′(1 − x) − α1(a + b)

)
.

Since at the steady states, f (x) = α1 and f (1 − x) = α2, straightforward calculation
shows that the determinant is −α2F

′(x)/(a + b). Therefore if F ′(x∗) > 0, the steady
state is unstable, so that the only stable homogeneous states consist of populations
composed of only one of the cell types. We have not attempted an investigation of the
behaviour when F ′(x∗) = 0, which would require a calculation of the centre manifold
of the ODE system, but our expectation is that the coexistence steady state will always
be unstable in this case also.

3.3 Analysis of the Single Cell Model

This model (7) is again given by ∂a
∂t

= f (Ia) − α1a and ∂b
∂t

= f (Ib) − α2b, with f

linear as discussed in Sect. 2.1.2 and illustrated in Fig. 2(b). The number of spatially
uniform steady states in the single cell model varies according to whether the death
rate parameters are equal or not, so we investigate the two cases separately.



J.M. Bloomfield et al.

3.3.1 Case 1: α1 = α2

If α1 = α2 = 1/c, say, this model has a continuum of non-trivial spatially uniform
steady states at (a, b) = (as, c − as), 0 ≤ as ≤ c. Linear analysis shows that these
steady states exhibit neutral stability. This means that we expect the system to remain
at whatever population density of each cell type it began with. This is of particular
interest biologically, as it suggests that in this case, there will be a persistence of both
cell types over time. This also occurred in the autonomous model, but is in marked
contrast to the behaviour seen in the community model.

We now explore what happens if, when α1 = α2 = 1/c, a + b �= c initially. Then
we do not begin along the line of neutral stability—our populations must move onto
it. To investigate this, we consider the case of two spatially homogeneous cell popu-
lations. We have

da

dt
= a

[
1/(a + b) − 1/c

]
, (15a)

db

dt
= b

[
1/(a + b) − 1/c

]
(15b)

by simple rearrangement of the spatially homogeneous version of (7), with c =
1/α1 = 1/α2 as stated above. Combining (15a) and (15b) gives da/dt =
(a/b).(db/dt), which leads to

a = b/� (16)

where � is a constant of integration. Equation (16) can then be substituted back into
(15a) to give a single equation for a(t) only:

da

dt
= a

[
1/(a + �a) − 1/c

]
. (17)

Since � is constant, it can be found by looking at the initial values of a and b, i.e.

� = b0/a0, (18)

where a0 and b0 are our initial conditions. Substituting (18) into (8) and (17) implies
that a steady state with a > 0 must satisfy

a = ca0/(a0 + b0), b = cb0/(a0 + b0). (19)

By looking at (17), we can further show that this solution is globally stable: if a is
larger than our positive solution given by (19), then da

dt
< 0, while if a is smaller,

da
dt

> 0.

3.3.2 Case 2: α1 �= α2

For this scenario, we have only the steady states (a, b) = ( 1
α1

,0), (0, 1
α2

), i.e. there
is no coexistence steady state. This suggests that in this case, the system will always
evolve to a single species steady state, suggesting dynamics that will be different to
the autonomous model, but which may have some agreement with the community
model.
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Table 1 A summary of stability of the steady states of the three models

Model type Steady state Type Stability

Community ( 1
α1

,0) or (0, 1
α2

) Single species Stable

(as , bs ) Coexistence Unstable

Autonomous (1/α1(k + 1), k/α2(k + 1)) Coexistence Stable

Single cell (as , bs ) ∈ [0, c], c = 1/α1 = 1/α2 if α1 = α2 Coexistence Neutral

( 1
α1

,0) or (0, 1
α2

) if α1 �= α2 Single species Stable

3.4 Summary

This analysis of the three variations of our model has shown that the way in which
differentiation is regulated by the contact between precursor cells and their local en-
vironment significantly alters the balance of cell types we can expect to see, as sum-
marised in Table 1. This analysis of steady states and their stability provides a firm
foundation for the numerical analysis of the spatiotemporal dynamics that develop
from different initial conditions.

4 Numerical Analysis of the Three Models

While the linear analysis provides some insight into the expected model behaviour,
we carry out a numerical study for further understanding. We first consider a one-
dimensional version of the model, using a simple numerical scheme that discretises
the line integral through space, summing the integral over each point and averaging
over the length. Similarly, our two-dimensional numerical code discretises the circu-
lar domain of the integral, and then sums the integral over each of the grid squares
within the circle. Although some of the area of the circle is lost at the boundaries, the
calculation is fast and, with a fine lattice, it is reasonably accurate; in particular, when
we reduce our lattice in size by a factor of two, our results are qualitatively the same.
For the two-dimensional case, more sophisticated numerical schemes for integro-
differential equations using techniques such as fast Fourier transforms to evaluate
the integral are possible: see in particular Gerisch and Chaplain (2008) and Gerisch
(2010). To solve the resulting system of ODEs, we use a fast and straightforward
Euler method in the simple one dimensional case, while in the more complicated two
dimensional case, we use ROWMAP (Weiner et al. 1997), a method that is particularly
suited to solving stiff ODE initial value problems, and which automatically controls
and adjusts time-step size.

4.1 The One-Dimensional Model Results

We begin by investigating a homogeneous mix of cell populations with noise in order
to explore the patterns created from a randomly mixed group of cells. Such random
mixing is seen, for example in the regeneration of ablated pigment cells in experi-
ments on zebrafish, suggesting that pigment precursor cells in the zebrafish are dis-
tributed randomly (Yamaguchi et al. 2007). We investigate the autonomous, commu-
nity, and single cell models in turn.



J.M. Bloomfield et al.

4.1.1 The Autonomous Model

First, we look at the autonomous model (6). For all α1’s and α2’s, the system moves
quickly to the steady state (1/α1(k+1), k/α2(k+1)), k �= 1 as expected (not shown).
The initial noise rapidly disappears, leaving solutions that are homogeneous across
the domain, demonstrating that the system does not produce patterning.

4.1.2 The Community Model

We now consider the community model (7) with f as in Fig. 2(a). We see that here,
stripes sometimes develop from the random initial conditions, although they are tran-
sient unless α1 = α2—this case is special as only here is the model balanced and
bistable (i.e. there is a symmetry between the basins of attraction of the two stable
steady states). Clearly, stripe formation is not robust, as it is not always seen even if
α1 = α2; also, while stripes persist for longer as α1 approaches α2, they are perma-
nent only if the death rates of the two cell populations are equal (Fig. 3). The width
of the stripes is dependent on the length of the sensing radius used (Fig. 4, upper
panel). This is as expected, since on an infinite domain, changing the sensing radius
is equivalent to rescaling space. Obviously, both the timescale and the stripe width of
interest depends on the biological system we are investigating; we discuss this for the
specific case of pigmentation stripes on zebrafish in Sect. 5.

Finally, simulations with initial conditions consisting of stripes perturbed by a
small amount of random noise indicate that the permanent stripes of the α1 = α2 case
are stable to small perturbations (Fig. 4, lower panel), while when α1 �= α2, this is
not the case even for α1 close to α2 (not shown). This has relevance to the concept of
stripe maintenance, which we again discuss in detail in the context of the zebrafish
example in Sect. 5.

4.1.3 The Single Cell Model

We complete our one dimensional study by considering the single cell model (7),
with f as in Fig. 2(b). When α1 �= α2, the system evolves to a homogeneous steady
state as suggested by the analysis in Sect. 3.3.2 (not shown). However, when α1 = α2,
we see a mix of both cell lines homogeneously across the domain, as suggested by
the results in Sect. 3.3.1, with the long-term steady state being as predicted by (19)
(Fig. 5). Despite this difference in behaviour between the cases α1 �= α2 and α1 = α2,
the key implication is the same in both: we do not see patterning. Therefore, only one
of our three model types produces spatial patterns in one dimension: the community
model, with α1 = α2 a necessary condition for permanent, stable patterns in that case.

We will now go on to investigate simulations on a two-dimensional domain, in
order to more effectively explore the spatial aspects of the models.

4.2 The Two-Dimensional Model Results

We again begin by investigating a homogeneous mix of cell populations with a small
amount of noise, for reasons discussed in Sect. 4.1.
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Fig. 3 Solutions of the community model (7) with f as in Fig. 2(a), in one dimension. We begin from
random initial conditions. We plot the density of cell type A through space at dimensionless times indi-
cated, and vary the death rates (note that the density of B is omitted for clarity). The death rate α2 = 0.5
in all four cases, with α1 = 0.5,0.6,1.0,1.5 (from the upper panel down). When the death rates of the
two populations are equal (upper panel), stripes develop about 70% of the time (706 out of 1000 runs
produced stripes that persisted for long simulation times). However, unequal death rates always eventually
produce dominance of a single species across the domain, with the time taken for one species to domi-
nate decreasing as the difference between the two death rates increases. Note that despite their piecewise
linear appearance at this magnification scale, the solutions are in fact smooth. All other numerical details
are as described in Sect. 4. Initially, random values between 0 and 0.02 are chosen for a and b at each
numerical grid point, from a uniform distribution. The domain is of length 200 dimensionless space units.
The function f is given by f (I) = 0.5 tanh(tan(Iπ − 0.5π)) + 0.5, a continuous approximation to a step
function. The dimensionless parameter value R = 10. The space discretisation is 	x = 0.5, and the time
discretisation is 	t = 0.01

4.2.1 The Autonomous Model

In this model, we see each cell population evolving to the steady state suggested in
Sect. 3.1, spread homogeneously across the domain (not shown). These states are sta-
ble over time, and show that cell autonomous differentiation results in the persistence
of both cell types. For our zebrafish example, this suggests that autonomous differ-
entiation can not be the sole process behind the differentiation of chromatophore
precursors, since such a mode of differentiation will always fail to produce pattern-
ing.
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Fig. 4 Upper panel: Solutions of the community model (7) with f as in Fig. 2(a) in one dimension at
time t = 10, demonstrating that different sizes of sensing radii produce differently sized stripes. We set
α1 = α2 = 1, and adjust R as indicated. We see that decreasing R produces a decrease in stripe width.
We set 	x = 0.2. All other numerical details are as in Fig. 3. Lower panel: A solution of the commu-
nity model (7) with f as in Fig. 2(a) in one dimension at times t = 0, t = 0.5, t = 10 and t = 100,
with initial conditions of stripes, perturbed by random noise. This shows that stripes are stable over time.
The initial conditions are a = 0.0 for x ∈ (0,49.5) and x ∈ (100.5,149.5), a = 1 for x ∈ (50.5,99.5)

and x ∈ (150.5,200), and a = 0.5 + n1/50, b = 0.5 + n2/50 for x ∈ (49.5,50.5), x ∈ (99.5,100.5) and
x ∈ (149.5,150.5), where both n1 and n2 are random numbers between 0 and 1, chosen from a uniform
distribution, calculated at each numerical grid point. We set α1 = α2 = 1, with all other numerical details
as in Fig. 3

Fig. 5 Solutions of the single cell model (7) with f as in Fig. 2(b) in one dimension, beginning from
random initial conditions, and with equal death rates. We again plot the density of cell type A through
space at dimensionless times indicated. We see that the system evolves to a homogeneous steady state,
as expected from (19) and the analysis of Sect. 3.3.1. In 1000 simulations, we never saw stripes. We set
f (I) = I and α1 = α2 = 1, with all other numerical details as in Fig. 3

4.2.2 The Community Model

We look at two separate cases, as suggested by our one-dimensional results in
Sect. 4.1.2. We first consider the case where α1 �= α2, i.e. the death rates of the two
cell populations are distinct. We ran simulations with a variety of different α1 �= α2

pairs, and a variety of different seeds for the noise in the initial conditions, for
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a 10 × 10 domain. In this case, the system always moves rapidly to a steady state, at
which only the cell type with the smaller death rate is present, even when α1 is close to
α2 (including, for example, α1 = 0.99, α2 = 1.01). In contrast to the one-dimensional
case, where transient stripes form when death rates are sufficiently close, here pat-
terning is not seen across the domain. This could be to do with the size of our domain
as well as the death rates, since the time-consuming nature of the simulations requires
us to use a domain that is too small to show stripes of the wavenumber seen in the
one-dimensional simulations in Sect. 4.1.2. Note that in a one-dimensional simulation
on a domain of length 10 (which is the side-length of our two-dimensional domain)
with equal death rates, we do not see multiple stripes as in Fig. 3, but rather a single
stripe (not shown). We discuss this in more detail below.

We now turn to the case α1 = α2. The death rates are then the same for the two
populations, suggesting that they are of very similar type. Again we consider only
a 10×10 square spatial domain. The system moves directly to a single species steady
state in 15 out of 20 runs, and to a split domain in the other 5 runs (see Fig. 6),

Fig. 6 A solution to the community model (7) with f as in Fig. 2(a) and with random initial conditions as
described below. All numerical details are as described in Sect. 4. We plot the proportion of cells of type A

in space at dimensionless times t = 1, t = 15, t = 20 and t = 40. The upper two panels show dominance of
a single species across the grid. The lower panel shows dominance by neither cell type, which held for long
times (solutions were found to be stable in runs up to t = 108; not shown). Out of 20 runs, A dominated
7 times, B 8, and neither 5. We begin with initial conditions of a = 0.5 + 0.02 × n where n is chosen
randomly between 0 and 1 from a uniform distribution at each numerical grid point. The dimensionless
parameter values are R = 1.0, α1 = α2 = 0.75. The domain is of length 10 dimensionless space units. We
set the absolute error tolerance in the ROWMAP scheme to 10−6
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showing the capability of the model to produce distinct boundaries between the two
populations, in a manner consistent with the formation of stripes. The proportion
5/20 is much lower than that in the one-dimensional case, which saw full stripes in
70% of cases. As mentioned above, this difference in proportions makes sense, since
the one-dimensional geometry encourages stripes and, moreover, the domain is suffi-
ciently long to see stripes of various wavenumbers. In contrast, the two-dimensional
10×10 domain is too small to see such complete stripes form. The improved compu-
tational method for the integral described by Gerisch (2010) would greatly facilitate
us in a search for stripes in two dimensions, and implementation of this is a natural
area for future work. In cases where we do not see a split domain, the final single
species steady state is dependent on the initial conditions, with whichever cell type
has the greater initial density being dominant.

4.2.3 The Single Cell Model

Again, we first consider the case α1 �= α2, i.e. the death rates for the two populations
are distinct. As in the community model, the system goes to a single species steady
state, as suggested by our stability analysis in Sect. 3.3.2 (not shown). It is again the
cell type with the smaller death rate to which the system evolves.

Next, we let α1 = α2 = 1/c, where c is a constant as in Sect. 3.3.1. Here, stability
analysis suggests that we will see a merging of the two initial populations into one
spatially uniform population spread across the domain, with the two individual cell
types being in the same proportion as they were at the beginning of the simulation,
although now spread homogeneously. This is indeed what we see (Fig. 7). This be-
haviour contrasts with that in the community model, but is similar to the results of our

Fig. 7 Time evolution plots of the two dimensional single cell model (7). The domain is initially an even
mix of the cell populations A and B , as described in Fig. 6. We plot the density of cell type A across space
in the x direction for y = 2 at various times t , until t = 6. We see the density of A increasing quickly, with
the spatial variation in the initial density rapidly smoothing out, and with the density of A approaching 2/3
everywhere, as expected from (19). All parameter values and numerical details are as in Fig. 6, although
with f = I as stipulated by this model (see Fig. 2(b))



How Does Cellular Contact Affect Differentiation Mediated Pattern

Fig. 8 The solid line shows the solution to (19) with c = 2, so that α1 = α2 = 1/2 and b0 = 1.5. Equation
(19) gives estimated steady state values in the solution of (7) for a when a+b �= c initially. We fix b0 = 1.5,
and plot the steady state a as a function of a0, where both b = b0 and a = a0 initially. Spots indicate the
actual numerical steady state values of (7) given by the initial conditions indicated. Note the near identical
match between the integro-differential equation and ODE solutions. In the numerical simulations of (7),
initial conditions are set to b = 1.5 across the domain, and a = a0 + 0.02 ×n, where n is chosen randomly
from a uniform distribution between 0 and 1 at each numerical grid point and values of a0 chosen are 0,
1, 2, 3, 4, and 5. All other parameter values and numerical details are as in Fig. 7

autonomous model. When a + b �= c initially, the two cell types go to the densities
suggested in Sect. 3.3.1, (19) (Fig. 8).

4.3 Extending the Two-Dimensional Model Results

We now consider three other initial conditions, in order to further explore some of the
behaviours discussed above. In Sect. 4.2.2, the community model in the case α1 = α2
sometimes resulted in a split domain with different cell types present in the two parts.
In order to investigate this phenomenon further, we repeat our experiments, this time
starting with split conditions similar to those seen in the lower panel of Fig. 6 at time
t = 40. With these split initial conditions, the interface between the two species does
not move over long times, suggesting that we are indeed at a steady state (not shown).
Furthermore, we repeat our experiments with a curved interface (see Fig. 9) in order
to discover whether the speed of propagation depends on curvature. We observe a
flattening of the interface (Fig. 9), but no further movement. This coincides with the
previous result, and suggests that a coexistence steady state in the community model
will typically display a flat interface between the two species.

Finally, we investigate “island” initial conditions (see Fig. 10, first column), in or-
der to explore the dynamics of a localised group of cells. As in the previous result,
we find that movement is fastest where curvature is greatest, with the motion roughly
proportional to the mean curvature of the wavefront. This leads to the “island” shrink-
ing until it disappears in nearly all cases (see Fig. 10, upper panel), explaining both
why we sometimes see the dominance of a single species in the community model,
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Fig. 9 Solutions to the two-dimensional community model (7) with curved initial conditions. We plot the
density of B cells in space at t = 1, t = 10, and t = 40. Neither cell type dominates over long times. All
numerical details and parameter values are as in Fig. 6

Fig. 10 Solution of both the two-dimensional community model and single cell model (7) with island ini-
tial conditions. The domain is initially split with type A the “sea”, and B the “island”. We plot the density
of cell type A in space at the dimensionless times indicated. Community model (upper panel): A domi-
nates across the domain. The dimensionless parameter values are α1 = 0.75, α2 = 1.5. All other parameter
values and numerical details are as in Fig. 6. Single cell model (lower panel): With equal death rates, the
initially localised population of cell type B spreads across the domain, merging with the population of cell
type A and eventually becoming homogeneous. The dimensionless parameter values are α1 = 0.75 = α2.
All other parameter values and numerical details are as in Fig. 6, although with a different f as stipulated
by this model

and why we do not see stable spotted patterns, as each small group of cells is en-
gulfed by the larger local population. However, if the death rate of the “island” is
sufficiently small in comparison to the death rate of the other cell population, then
an “island” will grow and dominate the domain (see Fig. 11 for details of this for
circular islands).
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Fig. 11 Plot of island radius versus death rate for a circular island, showing the parameter regions in
which the island will shrink or grow. We set the second cell population to have a death rate of 1.5. We see
that as the island increases in size, a higher death rate of the island cell population is required in order for
the island to shrink. Critical values were calculated by reducing the problem to one dimension, making
use of the circular symmetry; this makes numerical solutions very much faster than the corresponding
two-dimensional simulations—see the Appendix for more details. Initially, random values between 0 and
0.02 are chosen for a from a uniform distribution at each numerical grid point if x ≤ the island radius
being investigated, while b = 1 − a. The island radii chosen are R = 3, 4, 5, 6 and 7. Various death rates
for the island population are investigated in order to find the critical value to 4 significant figures. The
domain is of length 100 dimensionless space units, the dimensionless parameter value R = 1, and the
space discretisation is 	x = 0.1. All other numerical details are as in Fig. 3

We now consider the same “island” initial conditions for the single cell model in
order to see how a small group of cells evolves over time under this differentiation
rule. When α1 �= α2, we find a direct relationship between the death rates of the two
populations and the final steady state for all sizes of “island”, with the population with
the smaller death rate dominating across the domain, and having a density of either
a = 1/α1 or b = 1/α2 (not shown). However, when α1 = α2, our analysis in Sect. 3.3
suggests we will see a merging of the two cell populations across the domain, as is
seen in Fig. 7. This is indeed what we find in our simulations, with the overall ratio of
cell densities remaining constant (Fig. 10, lower panel). From a biological viewpoint,
this suggests that even a small initial population of cells will persist over time under
this differentiation scenario.

4.4 Summary of Two-Dimensional Results

These results suggest that only the community model (7), which represents a strong
community effect, has the ability to generate spatial patterns consisting of two distinct
groups of cells through differentiation alone. These stripes exist permanently only if
the death rates of the two cell populations are equal. The requirement of a non-linear
function f means that patterning requires a markedly non-linear response to the local
environment, i.e. we need our function f to be of the form shown in Fig. 2(a) rather
than that shown in Fig. 2(b). Without this non-linear response, no patterns will be
seen for any death rates. One simple implication of this result is that a community
effect may be in play in scenarios where we do not see patterning.
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5 Discussion

Our results demonstrate that patterning can only be obtained in the model via a non-
linear response to the local environment: the fate of a differentiating cell must be
strongly biased by the ratio of cell types in its local environment. This is the only way
to achieve patterning through a local environment-dependent differentiation process
alone; the community model, which follows this non-linear process, does produce
patterns in some cases, but neither the cell autonomous or the single cell model do.
Even with a strong effect, the formation of stripes depends on initial conditions and
is therefore not robust: a small bias toward stripe formation in the initial conditions
is required for stripes to form. We also note that, significantly, for permanent stripes
to form it is necessary that the two death rates are equal. However, transient stripes
are seen for distinct death rates (see Fig. 3 and Sect. 4.1.2). This shows that on a
short timescale, a community effect can produce patterns with unequal death rates.
Obviously, the timescale of interest varies according to the biological system being
investigated, and we discuss timescales in relation to the zebrafish example below.

In investigating the relevance of the model to zebrafish stripe formation, we first
consider the width of the stripes seen in our simulations; these should match real-
istic zebrafish stripe widths if our model is to be relevant. The typical width of a
melanophore stripe is 6 cells, while a xanthophore stripe is typically wider once fully
formed (Moreira and Deutsch 2005). If we assume that the sensing radius of a cell is
equal to its physical radius, then the stripes formed in Fig. 3 are not sufficiently wide
to be realistic melanophore stripes. Therefore, although our system is clearly able
to produce patterning for other systems which contain narrower stripes, we conclude
that a community effect is insufficient in itself as a mechanism for creating stripes and
other patterns in zebrafish; permanent and accurate stripe formation requires coupling
with a stronger mechanism such as homotypic cellular attraction (Caicedo-Carvajal
and Shinbrot 2008; Maderspacher and Nusslein-Volhard 2003), intercellular adhesion
(Moreira and Deutsch 2005), or indeed, perhaps something entirely different such as
a reaction-diffusion system (see Kondo et al. 2009 for a review).

We now look to see whether a strong community effect is sufficient for stripe
maintenance in zebrafish. We begin our simulation on a rectangular domain with a
central stripe running parallel to the long edge. Over long times, the stripe remains if
α1 = α2 (not shown), and widens or shrinks if the two death rates vary (Fig. 12). To
make our observations specific to zebrafish, we carry out further simulations again
with a realistic stripe width, fixed in comparison to the sensing radius: we again
assume that the sensing radius of a cell is equal to its physical radius, and impose
stripe widths of 6 cells for melanophores and 9 cells for xanthophores (Moreira and
Deutsch 2005). These stripes are wider than those formed transiently in Fig. 3. We
now define maintenance to occur if the stripe width changes by less than 25%, with
a density of no less than 75% of the original stripe density. With the stripe initial
conditions stated, we vary the death rates and find that for various values we see
stripe maintenance over a finite period of time.

In order to understand the extent to which these transient dynamics are relevant
to zebrafish pigmentation patterns, we estimate the dimensional time over which pat-
terns develop, as implied by the model (7). Note that this means the dimensional
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Fig. 12 A simulation of stripe maintenance. We plot the density of A at the time points indicated. We
begin with a striped domain, and see the stripe alter over time. When the death rate of A is greater than
that of B , the stripe width decreases (top two panels), while stripe width increase is seen in the converse
case (lower two panels). We see that the system is able to maintain stripes for a finite period of time. Note
that the stripe width and density do not change over time when death rates are equal (not shown). We
use α1 = 0.75, α2 = 0.55 in the upper panel, and α1 = 0.75, α2 = 0.95 in the lower panel. The initial
conditions are a = 1, b = 0.02 × n for y ∈ [3,5], a = 0.02 × n, b = 1 otherwise, where n is a random
number chosen from a uniform distribution ∈ (0,1) generated at each point. The domain is of size 8 × 80
dimensionless space points. All other details are as in Fig. 6

half-life value is implicitly related to the dimensional death rate of the cells. As a
somewhat arbitrary estimate for the half-life of a zebrafish melanophore (population
A in our model, say), we use 5 days, so that

ln 2/α1 × P/α̃0p = 5 days,

following the non-dimensionalisation in Sect. 2. In Fig. 3, say, we used a dimen-
sionless melanophore death rate of α1 = 1 in the third panel, and see two stripes at



J.M. Bloomfield et al.

Table 2 Simulation results on the ability of the community model (7) to main-
tain stripes; the function f is as in Fig. 2(a). We fix our melanohphore half-
life, and vary our xanthophore half-life by the percentages shown. We see that
a stripe is maintained over the course of a year for a wide variety of half-lives.
We set the melanophore death rate at α1 = 0.75 and, from left to right, we
set α2 = 0.68, 0.83, 0.63, 0.94, 0.58, 1.07. The initial conditions for the one-
dimensional simulations used for this table are a = 1, b = 0 + 0.02 × n for
x ∈ [18,30], a = 0 + 0.02 × n, b = 0 otherwise, where n is a random number
chosen from a uniform distribution ∈ (0,1) generated at each point. The domain
is of size 48 dimensionless space points. All other details are as in Fig. 3

dimensionless t = 10. The corresponding dimensional time is then

10 × P/α̃0p = 10 × 1/ ln 2 × 5 days ≈ 72 days.

In the absence of data on the half-life of a melanophore, we present the results
for different possible values (Table 2). If the half-life of a melanophore is 5 days,
then stripes are maintained for at least 1 year even if the half-life of the xan-
thophores is 30% more than that of melanophores, or 20% less. The asymmetry
between increased and decreased half-lives is due to the absolute difference in val-
ues of the associated death rates of the two populations. Whilst this difference is
present in all cases, it is greatest in this 30% variation case. Here, while in the
+30% case the death rate of xanthophores is 0.17 less than that of melanophores,
in the −30% case it is 0.32 greater than that of melanophores, leading to the
fast spreading of the melanophore stripe and hence a lack of stripe maintenance.
If we decrease the half-life of melanophores to 2.5 days, stripes are still main-
tained for at least one year when the difference between the half-lives of the
two populations is 10%, showing that stripes are maintained under the community
model over a wide range of half-lives. Therefore, although we do not know ex-
act half-life values, we conclude that a strong community effect is plausible as a
mechanism for stripe maintenance in zebrafish. A possible future extension would
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be to explore the capacity of the model to replicate pattern regeneration follow-
ing experimental ablation of the pigmentation stripes (Rawls and Johnson 2000;
Yamaguchi et al. 2007).

We now move away from the zebrafish example, and return to more general impli-
cations of our model. We began our model construction in Sect. 2 by assuming that
stem cells produce precursor cells at a constant rate, and also self-renew as they do so.
However, another possible outcome of stem cell mitosis is the production of two pre-
cursors, and no stem cells, or two stem cells and no precursors (see Watt et al. 2006,
for a discussion of this in the epidermis). One could model both of these scenarios
and see what effect they had on the final outcome of the model, and since so little is
known about stem cells and precursor cells in many systems, the mathematical mod-
elling of such scenarios would provide insight into plausible possibilities for different
systems. Note also that our two choices of f for the two local environment models
are not comprehensive, and there are many other options that one may consider. Fur-
ther work could reconsider our interpretation of a community effect (Sect. 2.1.2) to
see how our results would be affected by a different f .

Further note that in the model we use an integral term to measure the density of
cell types in the local environment, and hence to calculate which cell type is in the
majority. This calculation depends on the size of the sensing radius R, representing
the effective reach of cells. This means that through varying the size of R we could
examine the effects of different sensing methods on the model results, and so con-
sider both direct cell-cell contact generated ‘decision making’ such as that mediated
by juxtacrine signalling (small R), and also chemical-based methods such as quorum
sensing in bacteria (Atkinson and Williams 2009), where we can make R larger to
suggest a diffusive chemical. In this second scenario, the presence of more cells of
one type is directly associated with more inductive chemicals of that type. We would
use our non-linear function f as in Fig. 2(a) to describe the threshold level of chem-
ical necessary for a change in bacterial activity to take place.

The model (5) could be further extended and altered to look at various other phe-
nomena in which a community effect may be implicated. For example, we could
use it to explore Gurdon’s work on myogenesis in Xenopus (Gurdon 1988; Gurdon
et al. 1993a). In these experiments, Gurdon took a small collection of undifferenti-
ated animal cells and observed them collectively differentiating into muscle. Gurdon
hypothesised that fully differentiated cells have no effect on the differentiating cells,
but rather the cells differentiate when the number of undifferentiated cells reaches
a threshold value. Denoting undifferentiated precursors by P , differentiating cells
by A, differentiated cells by Ã, a suitable model would be

∂p

∂t
= −kpf (Ip),

∂a

∂t
= kpf (Ip) − αa,

Ip = 1

πR2

∫ R

0

∫ 2π

0

p(x + rη)

a(x + rη) + p(x + rη) + ã(x + rη)
r dθ dr,

∂ã

∂t
= αa. (20)
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Here, a(x, t), p(x, t), ã(x, t) are the densities of the cell types A, P, and Ã, respec-
tively, at two-dimensional position x and time t , α is the rate at which differentiating
cells a become differentiated cells ã, f is as described in Fig. 2(a) and k is a positive
constant.

We could again vary our contact function f to explore which contact scenario
produces the results witnessed by Gurdon, and hence which is most likely to be the
method adopted by Xenopus during myogenesis. More specifically, there is experi-
mental data regarding the size of the initial precursor population that is necessary for
differentiation via the community effect to take place (see Gurdon et al. 1993a), and
the time it takes to occur. The model could use this data to obtain estimates of the
distances over which these cells can sense their local cellular environment. Note that
in this experiment the population of undifferentiated precursor cells is not constant.
Therefore, our differentiation term in (20) is proportional to the varying population P ,
and this is an important difference from the corresponding term in (5). Note also that
our integral term Ip calculates the proportion of undifferentiated precursor cells out
of all cells present, including fully differentiated cells Ã. Thus, the true proportion
of P cells within the sensing radius is considered: this is essential to create Gurdon’s
threshold effect.

We could also use the model to explore homoiogenetic induction, as discussed in
Sect. 1 (see also Nieuwkoop 1997; Gurdon et al. 1993b). Here, we would simply have
two cell populations: the precursors P and the differentiated cells A. The appropriate
model would have a very similar form to that discussed for Gurdon’s experiments
above, but without the equation for ã. The main difference would be in the integral
term: Ip would be replaced with the term Ia , as homoiogenetic induction is brought
about by the presence of differentiated cells, not by a precursor threshold. Using such
a model would again allow us to uncover in more detail the relationships between
various components of the process, as discussed above.

Other future work could involve analysing heterogeneous steady states to explore
the structure and scale of patterns. This would enable us to investigate more fully
the spatial aspects of zebrafish pigmentation stripes and in other examples, allowing
us to look at the sharpness of the interface between stripes. Extending the model to
three dimensions would allow better comparisons with experimental work, as would
considering the corresponding model on a growing domain. Since fish are indeed
three-dimensional and—in development—grow quite rapidly, we would expect such
a model to more closely represent the in vivo scenario, and one could explore how
stripe formation is affected by the stretching of the domain as the fish grows and
changes shape. Again, we could adjust parameter values to explore their effect on the
outcomes: for example altering the cell sensing radius may affect the width of stripes
on a growing, curved domain. Furthermore, for better direct comparisons with exper-
imental data, one could attempt a continuous model that is more closely derived from
a discrete framework, allowing for the direct application of experimentally derived
parameter values. Considering the effects of other cellular processes such as cellular
attraction is also a possibility for a more complete model of cellular differentiation.
Since our model’s very generality means that it can be adjusted to fit numerous bio-
logical scenarios as demonstrated above, we hope it will be used to provide further
insight into cell differentiation dynamics.
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Appendix

In Fig. 11, we present results on the dynamics that arise when a circular “island” of
one cell type is introduced into a “sea” of another type. The number of simulations
required for this figure made two-dimensional simulations unfeasible. Therefore, we
considered the case of the “island” being in the centre of a circular domain. The
circular symmetry then makes the problem one-dimensional. However, the reduction
to one dimension is somewhat involved, and we outline the details here.

We define x as a radial co-ordinate measured from the centre of the domain, and
we denote by C(x) the circle, radius R, centred at x. We begin by considering the
case x > R. We wish to calculate

I =
∫ ∫

C(x)

F (x),

where F(x) is the integrand in question. So, in the calculation of Fig. 11, F(x) =
a(x)/(a(x) + b(x)) for our population of A cells. Then

I =
∫ r=x+R

r=x−R

L(r)F (r) dr

where L(r) is the length of the arc L(r) contained within C(x) of the circle centred
at the origin, with radius r ; we refer to this circle as A. Then the end points of L(r)

are (r cos θ, r sin θ) and (r cos θ,−r sin θ), the intersection points with C (Fig. 13(a)).
Thus, L = 2θr , where

θ = arccos
(
1 − (

R2 − (r − x)2)/2xr
)

⇒ I = 2
∫ r=x+R

r=x−R

arccos

(
1 − R2 − (r − x)2

2xr

)
rF (r) dr.

Note that the size of ‘island’ in the initial conditions does not affect this calculation
at all: all arc lengths are centred at the origin and calculated appropriately according
to the size of R, with the largest A marking the boundary of our original domain; the
cell types present within the integral are considered purely in F , and their presence
or otherwise should not be confused with the integration described. In particular the
circle A, which is used to calculate arc lengths, should not be confused with ‘island’
size.

The arguments above only apply if x > R. If x ≤ R, the origin x = 0 lies inside C ,
and for sufficiently small r the entire circle A lies inside C . At the transition point



J.M. Bloomfield et al.

Fig. 13 Figure (a): Geometry of integral computation when x −R is large. See text for details. Figure (b):
Geometry of integral computation near to the origin 0, shown large to allow more detail. If x − R ≤ 0,
the arcs L(r) of A, three of which are shown (and each of which are distance r away from the origin),
eventually form a circle. At the transition point between arcs and circumferences, C and A touch, and the
radius is given by R − x. See text for further details

between arcs and circumferences, C and A touch, and the radius is given by R − x

(Fig. 13(b)). Then

I = 2
∫ r=R−x

r=0
πrF(r) dr + 2

∫ r=x+R

r=R−x

arccos

(
1 − R2 − (r − x)2

2xr

)
rF (r) dr.

A simple test of the formulae above is given by considering F = 1, in which case
I = πR2. For R = 1, we find that in order for the one-dimensional formulae to give
the answer π correct to 3 significant figures, we must set the spatial discretisation to
δx = 0.01. The computational speed-up arising from the one-dimensional formulae
is considerable. A typical simulation required for Fig. 11 takes several hours in two
dimensions but only 1 to 2 minutes in one dimension at the same accuracy level (for
a 3.2 GHz processor with 4096 megabytes of memory).
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