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Abstract

The nonuniform growth of certain forms of cancer can present significant complications for their
treatment, a particularly acute problem in gliomas. A number of experimental results have sug-
gested that invasion is facilitated by the directed movement of cells along the aligned neural fiber
tracts that form a large component of the white matter. Diffusion tensor imaging (DTI) provides
a window for visualising this anisotropy and gaining insight on the potential invasive pathways. In
this paper we develop a mesoscopic model for glioma invasion based on the individual migration
pathways of invading cells along the fiber tracts. Via scaling we obtain a macroscopic model that
allows us to explore the overall growth of a tumour. To connect DTI data to parameters in the
macroscopic model we assume that directional guidance along fiber tracts is described by a bimodal
von Mises-Fisher distribution (a normal distribution on a unit sphere) and parametrised according
to the directionality and degree of anisotropy in the diffusion tensors. We demonstrate the results
in a simple model for glioma growth, exploiting both synthetic and genuine DTI datasets to reveal
the potentially crucial role of anisotropic structure on invasion.

Keywords: Tumour invasion, Anisotropic diffusion, Multiscale modelling, Diffusion tensor
imaging

1. Introduction

Gliomas — tumours arising from the glial cells of the central nervous system (CNS) — form an
often invasive class of tumours with poor prognosis following their anaplastic transformation. A
severe impediment to their treatment is the diffuse and heterogeneous rate of invasion that leads to
an “invisible” outer tumour, undetectable under current imaging resolution. This heterogeneous
pattern of spread has, partly, been attributed to the anisotropic invasion of glioma cells along
aligned structures in the brain, such as the bundled neural fiber tracts characteristic of white
matter [9, 8, 4, 2, 24, 20].

Diffusion tensor imaging (DTT), discussed in Section 2, is an imaging technique which measures
the anisotropic diffusion of water molecules in a tissue. The alignment in highly structured tissues,
such as the brain, muscles and bones, is revealed in the anisotropy of these diffusion tensors and,
in the context of the brain, DTI can therefore map the pathways of neural fiber tracts and help
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construct an atlas of the brain’s white matter architecture [1]. Given the hypothesised invasion of
glioma cells along fiber tracts, DTI therefore has the potential to predict tumour expansion and
guide therapy.

Mathematical /computational modelling provides one approach for forecasting these invasive
pathways and a number of macroscopic models have been developed which employ DTI data
to inform the white matter architecture and simulate the nonuniform growth of a glioma, e.g.
[4, 20, 5, 24, 29]. Unexplored questions within this modelling, however, include (1) connecting
the DTT data/local tissue architecture to an individual-level model for the invasive pathway of the
cancer cell, and (2) how to then scale this model into a macroscopic model for tumour growth.
In this paper we present a method for exploring these questions by first formulating a transport
equation and then employing scaling arguments to derive the corresponding macroscopic model.
Transport equations are fundamentally based on the characteristic pathways of individual cell
movement, parametrised according to “measurable” properties such as velocities, turning rates
and turning angles. Scaling leads to macroscopic equations in the form of anisotropic reaction-
diffusion equations and we apply these models to artificial and genuine DTT data sets to show the
utility of this approach.

1.1. Modelling anisotropic invasion

Predicting the rate and pattern of spread of an invasive cancer as it infiltrates healthy tissue
is fundamental for delivering an effective and targeted treatment. Paramount to this goal is
uncovering the various navigational cues that govern the migratory pathways of cells. One such
determinant can be found in the structure of the environment (or substrate) through (or on) which
the cells are moving: the directional movement of cells in response to anisotropy in the environment,
termed contact guidance [6, 10]. Aligned migration of cells is a common characteristic, found in
processes ranging from embryonic development to immune cell guidance, wound healing, and, of
course, cancer invasion [12, 40, 39]. Environmental anisotropy is a widespread feature of tissues,
stemming from the ordered alignment of collagen fibers in connective tissues, the network structure
of the blood vasculature and lymphatic system and the bundling of nerve fiber tracts in the white
matter of the central nervous system.

Mathematical modelling of cell migration and tumour invasion has developed significantly over
recent years and a range of models have been specifically developed with glioma growth and
treatment in mind, e.g. see the reviews of [35, 13, 26]. A significant number of these studies
have concentrated on the macroscopic process of glioma expansion, employing relatively simple
equations of reaction-diffusion type to model the evolving density of glioma cells, ¢(x, ), where x
describes the position in the CNS and ¢ denotes time:

¢t = V(De(x,t)Ve) + f(e,x,t). (1)

Terms on the right hand side respectively model the spatial expansion or invasion of the tumour and
cell proliferation. While earlier models assumed isotropic and homogeneous growth, setting D¢ to
be a scalar and constant diffusion coeflicient, later models have taken into account an impact from
the complex tissue structure on invasion. For example, Swanson and colleagues [36] considered
a spatially heterogeneous diffusion coefficient, setting D¢ to be significantly higher in white over
grey matter to describe the faster invasion observed in these regions. Critically, modelling was
matched to clinical data to optimise parameter selection and extensions have included exploring
radiation and chemotherapy treatments, glioma classification, glioma evolution and tumour-host
interactions (e.g. [35, 13]).

Other models have expanded further on the form of the invasion term in (1). A mathematical-
mechanical model for glioma invasion has been developed in [4, 2, 24], dividing the tumour extent
into two parts. One portion describes the main tumour mass, including the solid tumour core, and



is modelled as a viscoelastic tissue which grows and pushes on the surrounding medium, leading to
its deformation. The second component includes the invasive region, along with the invisible outer
tumour extent, and is modelled by a reaction-diffusion equation of the form (1). However D¢ (x,t)
is taken here to be an anisotropic diffusion tensor informed by DTI, with the anisotropy in D¢ (x, t)
at x modelling the preferred invasion of cells along the white matter tracts. In these studies D¢
is simply taken to be directly proportional to the measured water diffusion tensor obtained by
DTI, yet it is acknowledged that there is no sound biological justification for such a relationship,
stating on p.1339 of [4] that “the comparison of the influence of anisotropy on the diffusion of
water molecules versus tumour cells has not been studied yet’. The above authors use brain atlas
and real patient data to show the usefulness of their model. In particular, new treatment margins
are suggested based on their mathematical model [24].

Jbabdi et al. [20] have also utilised DTI data within anisotropic diffusion models to predict
glioma spread. The authors do not include mass effects, as in [4], however do propose a more
elaborate geometric argument to connect the water diffusion tensor measured by DTI, Dy, with
the tumour cell diffusion tensor in a model of the form (1). By measuring the shape and degree
of anisotropy in Dp; the authors suggest a tumour diffusion tensor with its same orientation but
parametrised by a tuning parameter which enhances or reduces the anisotropy of Dr;. Matching
to clinical data indicated that enhancement was required, yet key questions remain: how can this
be more formally connected via an individual tumour cell’s response to anisotropy and what form
should the corresponding macroscopic model take?

Cobzas and Mosayebi et al. [5, 29] propose using the DTI tensor to define a new metric on
the brain domain, based on geometrical constructions of Lenglet et al. [25] and O’Donnell et al.
[30] for connective white matter tissue. In normal treatment practice a 2 cm margin surrounding
the visible lesion defines the treatment volume, mathematically corresponding to a 2 cm margin
in the Euclidean metric. Cobzas et al. [5, 29] suggest a new metric G based on DTI data and
compute the corresponding “2 ¢cm” margin according to this new metric, which will extend or
shorten the Euclidean distance according to the local DTI data. Aided by mathematical mod-
elling, early explorations indicate that the new volume could potentially outperform the normal
practice, although further analysis is undoubtedly required. For example, “More robust methods
for TDT extraction are required’ (where TDT is our D¢), see page 371 of [29)].

1.2. Outline

In each of the above studies a clear need for realistic and transparent connections between
water diffusion, brain geometry and tumour cell invasion is indicated. Our aim is to present a sys-
tematic approach for these connections, based on transport equations for cell movement, scaling
limits and the von Mises-Fisher distribution. In recent work [15, 32, 17] we developed transport
equations as models for cell movement in aligned tissues. The transport equation formalism allows
a detailed, microscopic description for the interactions of cells with the tissue fibers, as well as
changes in their arrangement. The model was first developed in the context of mesenchymal cell
migration in collagen networks, however has been developed further in both mathematical theories
(e.g. [16]) and various applications (e.g. [23, 17]). To obtain macroscopic models in the form of
reaction-advection-diffusion equations, scaling limits can be applied [17]. A key feature is that the
microscopic properties of the cell-tissue interaction can be instantly translated into macroscopic
parameters; in the present case we can connect a proposed model for cell invasion along the fiber
tracts into an anisotropic diffusion tensor for the macroscopic cell density. Figure 1 illustrates the
modelling workflow.

In the next section we briefly review some salient mathematical facts concerning anisotropic
diffusion, diffusion tensors and DTI. Section 3 reviews essential details concerning the transport



Figure 1: Schematic for the translation between DTI data and a macroscopic model of glioma invasion; more
information provided in the indicated sections. (a) DTI provides a spatial map for the anisotropic diffusion of
water molecules (Section 2). Anisotropy plotted in terms of fractional anisotropy, from isotropic (white) to highly
anisotropic (black). (b) Local anisotropy in a water diffusion tensor, Dy, is represented by its anisotropy ellipsoid,
examples shown correspond to almost isotropic and anisotropic tensors (Section 2). (c) Local fiber tract architecture
implied by these diffusion tensors. (d) We specify the cell turning function, g, for an individual-level model according
to Dy measures (e.g. fractional anisotropy, eigenvectors), see Sections 3, 4. Note that the model directly translates
Dy into g, rather than explicitly defining a fiber structure. (e) Scaling the individual-model generates a macroscopic
model of invasion, with the spatially-varying cell diffusion tensor Do depending on ¢ (and hence Dry), see Sections
3, 4. (f) Simulations of the model predict anisotropic invasion (Section 5).

model of [15] and their scaling limits. In Section 4 we propose some specific algorithms that connect
the data derived from DTI to the inputs for the invasion model. We directly apply these ideas in
Section 5 to glioma invasion, using both artificial and real DTI datasets to illustrate the potential
role of anisotropy on the invasive spread of tumours. We conclude with a brief discussion and
description of future extensions.

2. Diffusion tensor imaging

2.1. Anisotropic diffusion and diffusion tensors

Anisotropic diffusion is typically expressed through the anisotropic diffusion equation
ci(x,t) = V- (DVe(x,1)) (2)

where D € R™*" is a given symmetric and positive definite matrix, or diffusion tensor. Example
numerical solutions to (2) under various D are plotted in Figure 2. The fundamental solution of
(2) in n dimensions is given by

1
—XTD_1X> .

1
c(X,1) = —F—————=¢€Xx
(1) \/detD(4xt)" p( 4t

The density c¢(x,t) describes the probability density for finding a random walker (starting at
location 0, time 0) at location x, time ¢ and forms an n-dimensional normal distribution with
mean zero and variance-covariance matrix = 2tD. The mean squared displacement in a given
direction 6 € S*~! (where S"~! is the (n — 1)-dimensional unit sphere) is o7 = 2t 07 D6 and the
apparent diffusion coefficient in direction 6 is defined as (see [1]):

0_2
ADCy = sz =67 De.
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Figure 2: Representations of anisotropic diffusion tensors and solutions of (2). In each row we plot (from left to right)
the anisotropy ellipse, the anisotropy peanut and solutions to (2) at the times indicated. Top row: isotropic case,
D = diag(0.5,0.5). Ellipses and peanuts both form circles and solutions to equation (2) reveal isotropic diffusion.
Middle and bottom rows: anisotropic cases, D = diag(0.75,0.25) and diag(0.9,0.1), respectively. With increasing
anisotropy the ellipses/peanuts become increasingly elongated/pinched. Solutions to (2) now show anisotropic
spread, with equal density contours proportional to the anisotropy ellipse. Simulations of (2) are performed on the
2D domain of dimensions 10 x 10, with ¢(x,t) represented through the colour-coded density map (¢ = 0, black;
¢ > 0.1, white) and augmented by contours at ¢ = 0.001 (dashed line) and ¢ = 0.01 (solid). Numerical method
described in Appendix B.

These formulae suggest two ways of visualising a diffusion tensor. Firstly, the level sets of the
probability density function ¢(x,t) are given by

xT D~ 'x = const. (3)

which define n-dimensional ellipsoids, i.e. the areas of equal probability for finding the random
walker are ellipsoids. For example, taking the diagonal matrix D = diag(\1,...,\,) with eigen-
values A\; > -+ > A, > 0, equation (3) yields

2 2
L1 Tn
— +---+ — = const.
)\1 )\n

which is an n-dimensional ellipsoid with semi-axes aligned along the coordinate directions and with
their lengths proportional to v/A1,...,vA,. In Figure 2 we plot examples of anisotropy ellipsoids
(in 2D).

Secondly, the apparent diffusion coefficient ADCjy in the specific direction 6 defines a map

S"! 5 R, 0 — 607 Do



Measure 2D 3D

Ratio of anisotropy  (RA) /A\—; sup {:\\—;, i—;}

[A1—=X2] \/()\1—A2)2+()\2—)\3)2+(k1—>\3)2
VAT V20T 23)

Fractional anisotropy  (FA)

Table 1: Anisotropy measures in two and three dimensions. \; denote the eigenvalues of a diffusion tensor D in
which A1 > 0 and (ZD) A1 > A2 >0, (3D) A1 > A2 > A3 >0.

and the graph of this map over S”~! resembles a peanut. The peanut is aligned with directions
of high diffusivity and pinched in directions of small diffusivity. Example peanuts are shown in
Figure 2.

These examples illustrate how distinct diffusion tensors generate ellipsoids and peanuts of vary-
ing shape, with their eigenvalues and eigenvectors determining their elongation and directionality
respectively. A variety of formulae based on the eigenvalues have been proposed to measure the
anisotropy, two common ones being the ratio of anisotropy (RA) and fractional anisotropy (FA). Ta-
ble 1 gives these measures for two and three dimensions. Fractional anisotropy is normalised to at-
tain values in [0, 1], with FA(D) = 0 corresponding to the isotropic case (e.g. D = diag(1,1,1)) and
FA(D) = 1 denoting a completely anisotropic case (e.g. a degenerate scenario, D = diag(1,0,0),
with diffusion occurring in only one dimension). The anisotropy ratio can have values between 1
and oo, where RA(D) = 1 corresponds to the isotropic case and RA(D) = oo is a degenerate case
with at least one zero eigenvalue.

More detailed information about the shape of the diffusion tensor/ellipsoid can be obtained by
computing the linear (a;), planar (a,) and spherical (a;) indices (e.g. see [20]). Assuming a (3D)
diffusion tensor D with eigenvalues A\; > Ay > A3, these are defined as

A1 — A2 2(A2 — A3) 33
W= = 6=l
where tr denotes the trace of D. These indices satisfy a; + a, + as = 1 and provide information
on the shape of the corresponding diffusion ellipsoid: if a; ~ 1 then the ellipsoid is “linear” shaped
(like a long, thin cigar), if a, ~ 1 it is disk shaped and if as ~ 1 it is spherical.

2.2. DTI

Magnetic resonance (MR) and DTI measurements are based on the magnetisation of water
molecule dipoles in tissue. In MR measurements a strong external magnetic field aligns the spins
in a plane perpendicular to the magnetic field and the relaxation to the original state is measured
by a reduction in the overall magnetic moment (attenuation). Through applying specific excitation-
relaxation sequences under spatial gradients of the magnetic fields it is possible to measure the
diffusion tensor for the water molecules (see [1, 34]). This water diffusion tensor, which from here
on we denote by Dy, is a symmetric 3 x 3 matrix with six independent parameters, thus requiring
at least six independent measurements. Typically, measurements in more than six directions are
obtained, to reduce the measurement error.

The capacity of DTT to determine the anisotropic diffusion tensors of water molecules provides
the means to identify and visualise aligned structures, for example the white matter neural tracts
of the CNS. Enhanced diffusion in a specific direction indicates greater freedom of movement and
the local alignment of structures. Scanning the full CNS provides a set of values for Dy(x), where
x represents the spatial coordinates for locations at which the diffusion tensor is measured, and
connecting the anisotropy at one point with that at its neighbours provides a basic algorithm for



computing the arrangement and alignment of fibers, a method known as tractography [1]. We do
not specifically consider tractography here, rather we will directly utilise the raw diffusion tensor
data generated from DTI to inform our modelling.

3. Cell movement in anisotropic environments

The capacity of glioma cells to align with the neural fiber tracts suggests a transport equation
approach in which a cell population is parametrised by time, space and velocity. An advantage
is that logical rules can be proposed for the direction/velocity of cell movement according to the
local environment, with a clear path for connecting measurable data (environment structure, cell
speeds and turning distributions) to model inputs.

While this model operates at the mesoscopic scale of individual cell movement, our eventual
scale of interest (glioma spread) is macroscopic and we will use parabolic scaling methods to
generate a form of anisotropic diffusion equation, similar but distinct to that in (1). We note that
the basic model was first derived in [15] in the context of contact guided migration along collagen
fibres and further analysed in [32, 16, 17].

We assume that the cells are represented by their density p(t,x,v), where ¢ denotes time,
x is the position in space and v is the cell velocity. Generally we can expect the domain in
which cells move to be a three-dimensional bounded domain — the CNS in the context of glioma
invasion — however here we simply state x € R” for n < 3. We assume a closed set of cell
velocities v € V = [s1, 53] x S"~!, where the minimum (s;) and maximum (ss) cell speeds obey
0<s51 <59 <00.

The time evolution for p(t,x,v) is then described by the transport equation

pe(t,x,v) +v-Vp(t,x,v) = Lp(t,x,v), (4)

where L is the turning operator that describes the velocity changes of the individual cells. The
above states that migration can be described as a sequence of “running” and “turning” events, with
the operator £ determining the frequency of a turn and the new velocity choice. More precisely,
we set

Lp(t,%,v) = —up(t, %, v) + / a6, %, v, v)p(t, x, V')V, (5)
1%

where the two right hand side terms respectively describe turning away and into velocity v. The
parameter p denotes the turning rate (1/p is the mean run time). The function q(t,x,v,v’)
describes the cell turning distribution: the distribution for the probability of a cell choosing new
velocity v given previous velocity v’. Note that mass conservation requires

/Vq(t,x,v,v')dv’ =1. (6)

The relevant model parameters of (4) and (5) are the turning rate x4 and the integral kernel ¢
for the turning angle distribution. For the turning rate we assume it is constant (u = const.) and
hence we assume a mean turning time of 1/u. To link DTI data into our model we will (Section
4) take a direct route by assuming the turning distribution depends on the anisotropy indicated
by the diffusion tensors from DTI: effectively, the links between a given diffusion tensor and the
local orientation of fiber tracts and the cell response to that architecture will be compressed into
a single statement. Setting the model requires assumptions for the cell turning response to their
surrounding environment and, in the absence of precise data, we make a number of simplifying
assumptions that present the model in a clear manner and facilitate its mathematical treatment.
Additional data will allow us to revise these assumptions at a later stage. Note that in the



following we will specifically use “fibers” to describe the aligned underlying structure, although we
acknowledge that other aligned structures, such as blood capillaries, can also contribute to guided
movement.

We assume that the new velocity v is independent of the prior velocity v': ¢(t,x,v,v') =
q(t,x,v). Thus, no persistence of migration is built explicitly into the cell turning distribution,
inertia is neglected and directional guidance from the underlying fiber structure is assumed to be
the dominating effect on cell turning. This convenient assumption allows us to immediately rewrite
equations (4-5) in the simpler form

pi(t,x,v) +v - Vp(t,x,v) = —up(t,x,v) + uq(t, x, v)c(t, x) , (7)

where we have defined the macroscopic cell density

c(t,x)z/vp(t,xv)dv.

We further assume that the speed of the cells is constant and independent of the underlying
structure, i.e. we choose for simplicity V = s x S"~! where s is the average cell speed. It is
straightforward to generalise this model for varying speed (e.g. see [15]) but we see no necessity
to include this aspect at this stage. The constant speed assumption is certainly a simplification
and ignores the hypothesis that cells can switch between a stationary, proliferative and migratory,
non-proliferative phenotype (“go-or-grow”, e.g. see [33] and references therein): speed here would
therefore most appropriately refer to a population-averaged rate, also including non-migratory
cells. An expansion of the framework to explicitly model the impact of a dichotomy between
proliferation and migration will be considered in future extensions.
With cell velocity parametrised for v € V', we can write

qA(t7 x, 9)
Sn—l

q(ta X, V) = : (8)
The new cell turning distribution ¢ now describes the probability of turning into a direction 6,

with the property
/ 4(t,x,0)do = 1.
Snfl

Assuming that cells tend to migrate along the orientated neural fiber tracts, for example, [9, 8, 4,
2, 24, 20], and that the alignment of the latter is reflected through DTT derived datasets, we will
later use the measured DTI tensors to define this turning kernel §(¢, z,0). We will also assume that
the geometry of the brain is unchanged on the time-scale of the model, i.e. ¢ = §(z,0). Again,
while it is straightforward to consider evolving geometries and hence time-dependent § (e.g. see
[15]) we currently omit this.

We finally note that the symmetric properties of DTI diffusion tensors imply that the kernel §
must also be symmetric as well, i.e.

4(x,—0) = 4(x,0), forallfeS"'. (9)

The above symmetry essentially imposes that cells do not choose a specific direction: an “up” or
“down” direction will be chosen with equal probability. The exact form of ¢ requires some further
insights into the movement of cells and their statistics and will be discussed in Section 4.

One further observation is that rather than taking the direct route of stating ¢ from the DTI
data, we could first model the tissue architecture implied by DTT and then specify the cell turning
distribution according to the tissue network. For example, by defining a fiber distribution m(t, z, 6)



which gives the distribution of fiber directions at time ¢ and location x, then a simple and logical
model for contact guidance would be §(¢,x,6) = m(t,x,0), i.e. a cell directly chooses its direction
according to the local fiber distribution. In fact, this approach was originally taken in [15, 32]. For
the current purposes, however, this is overly ornate and rather we directly postulate the cell turn-
ing distribution ¢ according to information encoded in the DTI data, and only implicitly assume
a fiber structure of the brain.

Summarising, equation (7) describes a process of oriented cell migration in which cells move
with a constant average speed s and turn at a rate . The cell turning distribution ¢ will translate
alignment of the fibers as measured through DTI to contact guided movement of cells. While
simple in nature, we note that the framework can be extended, for example providing an explicit
description of an evolving CNS architecture.

3.1. Parabolic scaling to a macroscopic model

The transport model (7) is a mesoscopic scale description of migration: although continuous,
it is an individual-level description of movement and parametrised accordingly. Thus, within the
transport model, length scales will be of the order of microns, with time scales on the order of
minutes. Glioma growth, on the other hand, where tumours grow over months to years and extend
over centimetres, is a macroscopic process and we now summarise the bridging of these scales.

Scalings can be motivated in a variety of ways, for example by considering quick turning and fast
cell speed relative to the time frame of observation, or scaling space and time from the microscopic
to the macroscopic: see [17] for a detailed discussion. As an example, even though a cell may
turn infrequently (on a timescale of minutes), over the course of glioma growth a large number
of reorientations are likely to take place. Working within this much longer timescale allows the
introduction of small parameters which can be exploited through formal expansions. Specifically,
under the symmetry constraint (9), we can apply the parabolic scaling (see [17] for the details)
and derive the following leading order approximation for the macroscopic cell density c(t,x):

ct(t,x) = VV(De (x)c(t, x)) , (10)

with macroscopic diffusion tensor

De(x) = — 067 g(x,0)do . (11)
B Jsn—1

We use the index C' on D¢ as an indication of the cell-diffusion tensor, which is our primary
application at this point. Superficially similar to the standard anisotropic diffusion equation (2),
we note the distinct positioning of the diffusion tensor in (10). This difference can have far-reaching
consequences, as equation (10) does not satisfy a maximum principle and it can lead to aggregations
and even blow-up, as shown in [19]. We further remark that D¢ is positive-definite when §(z, .) is
a regular probability distribution and, in this case, equation (10) will be uniformly parabolic with
all the existence and uniqueness theorems of parabolic equations applying (e.g. [7]).

4. Connecting DTI and cell diffusion tensors

Above we have explained the capacity for DTI to encode information on the anisotropy of white
matter in the CNS and derived both mesoscopic and macroscopic models for cell migration/invasion
in response to this anisotropy. In this section, we propose the mapping of the DTI dataset to the
cell turning distribution ¢ and, via (11), to a cell diffusion tensor D¢ (z) for the macroscopic model
(10).



First we consider some trivial scaling arguments to aid our intuition. We neglect the physical
mechanisms that attach and orient migrating glioma cells along the myelinated fiber tracts and
simply reflect on the restricted diffusion of molecule and cell sized objects amongst them. Water
molecules are comparatively tiny and we would still expect a degree of diffusion into directions
orthogonal to the fiber tract orientation. A cell-sized object, on the other hand, would find itself
in a tightly restricted space with limited freedom of movement. Consequently, we expect it would
experience greater anisotropy than a molecule and the straight identification De = Dpy would be
rather naive, stating cells move exactly as water molecules.

To develop a more realistic relation between Dy and Do we use the above transport equation
framework. We infer the geometry on the neural fibers from the DTI measurements, stating a
suitable turning distribution ¢ from which we compute the cell diffusion tensor D¢ as given in

(11).

4.1. Using the peanut of Dpy

Earlier we noted that the apparent diffusion coefficient in a given direction, ADCy = 07 D10,
is an important indicator of anisotropy: a very simple assumption is to assume cell turning is
directly correlated. While we later find that this is an inappropriate choice, we quickly discuss this
case as an illustration of the need for due consideration of §. Thus we take the cell turning into

angle 6 to be
n

i(x,0) = —————— 0TD 6. 12
In the above, tr Dp; denotes the trace of Dy and the term in front of ADCy is the normalisation
coefficient. Substituting (12) into (11) we compute (see Lemma 1 in Appendix A) the following

macroscopic cell diffusion tensor

82

2
D¢ (x) = w2t <]1 + tI‘DT](X)DTI(X)> ; (13)

where I denotes the identity matrix. The above reveals a direct relationship between the DTI
diffusion tensor Dy and the macroscopic diffusion tensor D¢, the latter consisting of an isotropic
component (the I-term) and a term proportional to Dr;. We observe that Dp; and D¢ have
equivalent eigenvectors, indicating that their corresponding ellipsoids are parallel and cell diffusion
is enhanced in the same direction as the DTI dataset.

We further note that the isotropic component of D¢ is completely independent of Dpj, in-
dicating that there will always be an element of isotropic cell diffusion, even when Dypj itself is
completely anisotropic. Computing the anisotropies of Dp; and D¢ using the measures FA and
RA from Table 1, we find (see Lemma 2 in Appendix A) that the anisotropy of the cell tensor is
bounded and always lower than that of Dp;. In Lemma 2 of Appendix A we also compute the
linear, planar, and spherical indices of D¢ and find that D¢ given by (13) is more spherical than
Dy;. This counteracts both our intuitive expectations as well as the findings (by clinical matching)
of [20], suggesting our first choice is inappropriate.

4.2. Using the eigenvectors and fractional anisotropy of Dy

Our next approach is to follow a natural path in which cell turning takes the form of a normal
distribution on the unit sphere, called a von Mises or Fisher distribution [27]. We briefly note that
Dr(x) (assumed positive definite and symmetric) can be represented as

n

Dri(x) = ZM(X)%(X)%(X)T, (14)

i=1

10



for eigenvalues A1 > ... >\, > 0 and their corresponding (orthogonal and normalised) eigenvectors
©1(X) ... on(x). p1(x) indicates the axis of dominating anisotropy and the sizes of the eigenvalues
determines the degree of anisotropy. We exploit this information to determine ¢, aiming for a
transparent connection that incorporates the main idea.

4.2.1. Two-dimensional case

To facilitate the presentation our main attention is focused on a two-dimensional slice of tis-
sue, although we note that the results can be extended to three dimensions (see below). In two
dimensions, the water diffusion tensor is given by (14) with eigenvalues A;(x) > Aa(x) > 0 and
eigenvectors o1 (), @2(x).

We begin by introducing the von Mises distribution:

P(6) = No(k)ekr?. (15)

where, in 2D, 6 = (cos a, sina) for a € [0,27). In the above, v € S* and k € R respectively define
the dominating direction and parameter of concentration. The coefficient

1
No(k) = ———
2(k) 21 (k)
acts as a normalisation coefficient, where we use I; to denote the modified Bessel function of
first kind of order j. The distribution (15) generates a single peak in direction =y, increasingly
concentrated with k, and defines a normal distribution on a circle. Extended to bimodal form,

ek’y‘e + e—k’yﬂ
2 )
we obtain two equal maxima in the directions v and —+ respectively.
Our proposition is to specify ¢ according to the above, using the measures of Dp; to determine

k and v respectively. A natural choice is to assume turning is concentrated in the direction of the
dominating D anisotropy and we take

Pg(0) = Na(k)

5 ek(x)p1(x)-0 4 o—k(x)p1(x)-0
j(x,0) = — 4+ (1 —0)Na(k ,
A(x,0) = 5= + (1= ) Na(k(x)) .
where the constant parameter § € [0, 1] specifies an inherent degree of randomised turning. The
function k(x) describes the level of concentration around the dominant direction: intuitively, cells
should become increasingly aligned with greater anisotropy of the environment (i.e. of Dpy) and
hence it is chosen to be proportional to the fractional anisotropy (Table 1)

k(x) := k FA(Dr1(x)), (17)

(16)

where > 0 is a proportionality constant which denotes the sensitivity of the cells to the directional
information in the environment. In the isotropic case, FA(D) = k(x) = 0 and the von-Mises
distribution becomes a uniform distribution. For the maximum anisotropy of FA = 1 we have
k(x) = k.

Computing the diffusion tensor D¢ from (11) using (16) involves computing the second moment
of a bimodal von-Mises distribution. This was done in [17] and here we simply cite the result:

Do) = (540 -5) (1= ZEDV p o )0 o ) g
2p Io(k(x)) Io(k(x))

Once again, D¢ is split into isotropic (the I term) and anisotropic components, with the anisotropy
pointing in the directions +¢1(x). The relative sizes of these terms is determined by § and the
function k(x).
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Figure 3: Converting Dp; to D¢ through (16)-(18). (a) We set Dp; = diag(0.75,0.25) and plot the anisotropy
ellipse. (b) Calculation of § from (16)-(17) with 6 = 0 and k = 0 (dotted line), kK = 1 (dot-dash), k = 10 (dashed) and
k = 100 (solid). For k = 0, anisotropy is ignored and the corresponding ¢ is uniform. For positive k cells become
more likely to turn into directions corresponding to the anisotropy of Drj, with turning becoming increasingly
restricted as k increases. Here we plot ¢ as a function of 8 = (cosa,sina) for a € [0,27). (c¢) Corresponding
anisotropy in D¢ is highly tunable. In all calculations, we set s2/u = 2.

To evaluate the utility of (18), we note that ﬁgg = 0 when £ = 0 and ﬁg:g — las k —
oo. Hence, for either an isotropic Dr; (A = A2) or a cell population that does not respond to
environmental anisotropy (x = 0), we have k = 0 in (17) and D¢ is correspondingly isotropic. As
we move towards a degenerate Dy (A > 0, A2 — 0) we have k — k. Thus, choosing cell turning
according to (16)-(17) permits enhanced anisotropy, which is only bounded by the choices of §,
(see Lemma 3 in Appendix A). In Figure 3 (a)-(c) we illustrate the translation between Dpr and
D¢ as described above, demonstrating how the parameter x tightens or loosens the range of cell
turning in response to the anisotropy in Dpj, with a corresponding increase or decrease in the
anisotropy of D¢.

4.2.2. Three-dimensional case

We do not consider in detail the three-dimensional situation, however we do briefly present a
natural extension of the above and the corresponding translation to a 3D tumour diffusion tensor.
We employ the 3D version of the von Mises-Fisher distribution [27] and again combine it with a
uniform distribution, with parameter § € [0, 1] reflecting the predominance of random over oriented
turning. The distribution for turning into direction 8 € S? is proposed as

k(x)

q<x,9>5+<15>47rsimﬂ(k<x>)

cosh(k(x)p1(x) - 0). (19)
dr
Once again, ¢;(x) € S? denotes the dominating direction of anisotropy in Dr; at a given point
and the concentration parameter k(x) can be taken proportional to the fractional anisotropy.

In this case the tumour diffusion tensor of §(x, ) is given as (see [27, 18])

Dc(x):?‘i[(Ha—a) (COZM—]:Q»HQ—(S) <1—3C‘:hk+;) golgoﬂ . (20)

Note that we have omitted the x dependence in the RHS functions k and ¢;. The derivation of
this formula is quite technical and exceeds the intentions of the present paper and will be presented
in [18].
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5. Simulating glioma invasion

We directly apply the above analysis in a simple two-dimensional model for glioma growth. We
stress that the results are currently illustrative and the model remains intentionally simple to focus
on how imaging data can be mapped to investigate invasive spread. Specifically, we assume the
tumour to be dominated by a homogeneous cell type, defining ¢(x,t) to be the density of cancerous
cells at position x € €. ) defines a bounded region that marks the extent of the central nervous
system (CNS). We neglect all tumour-host interactions beyond the directional spread of cells along
the alignment inferred from DTT data and simply augment the macroscopic model (10) with a
proliferation term, f(c):

¢t = VV(De(x)e) + f(c), (21)

where D¢ (x) defines the macroscopic glioma cell diffusion tensor. For f(c) we employ the standard
logistic form f(c¢) = rc(1 — ¢/c), where r defines the cell proliferation rate and ¢, describes a
tissue “carrying capacity”. While undoubtedly naive, this facilitates comparison with standard
results for the classical Fisher equation: in 1D with Do (z) = D (constant) we expect travelling
waves with wavespeed 2v/rD.

While three-dimensional studies are certainly feasible (at increased computational expense),
a two-dimensional analysis, representing a slice of tissue, suffices for the present purposes. We
therefore set x = (z,y) € Q C R?, assume zero flux (no gain/loss) conditions on the boundary
08 and a given set of initial conditions ¢(x,y,0) = co(x,y). The numerical method is described in
Appendix B.

At this point we also note the phenomenological model previously proposed by [20], a natural
point for comparison with (21):

er(t,%) = V(De(x)Velt, x)) + f(c). (22)

where D¢ (x) also represents a diffusion tensor determined according to DTI data. While similar
in nature, we remark on two key differences: (1) the model here, equation (21), has been derived
from an explicit description of cell movement, with the macroscopic parameters (i.e. the macro-
scopic diffusion tensor) directly derived from the microscopic inputs such as cell speeds and cell
turning distributions; (2) the distinct position of the diffusion tensor in (21) gives rise to additional
advective-type terms, the impact of which will be demonstrated below.

5.1. Artificial data sets

5.1.1. Case (i): Quasi—one-dimensional scenario

We first consider a quasi—one-dimensional scenario in which initial cell densities and DTT data
only vary along the z-axis of a rectangular strip of tissue Q = [0, L] x [0, L, ] with non-flux boundary
conditions. Initially we place the tumour front at the edge of the strip, setting co(z,y) = 0.16’12,
and refer to Figure 4 (a) for a schematic of the initial configuration. We propose that the synthetic
data set Dpy varies along the x-axis according to

0.5 —d(zx) 0
Dri() = ( 0 0.5 4 d(x) ) ’ (23)

where d(x) € [-0.5,0.5] for all z. The above defines a dataset in which the dominating anisotropy of
the fiber tracts is either orthogonal (for d(z) > 0) or parallel (for d(x) < 0) to the z-axis: d(z) >0
and d(z) < 0 therefore correspond to either decreased or increased rates of diffusion along the -
axis (reversed along the y-axis). Here we explicitly set d(z) = 0.25(e~0-025(z=50)* _ o =0.005(x~120)*)
defining a tissue with regions of orthogonal and parallel tracts centered about z = 50 and x = 120

respectively in an otherwise isotropic field. Taking advantage of the quasi—one-dimensional set-up,
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Figure 4: (a) Schematic showing the initial set-up for a quasi-1D scenario. (b) Comparison of fractional anisotropies
for Dy (thick solid line) and D¢ under k = 0 (dotted), 1 (dot-dash), 10 (dashed), 100 (thin solid). (c) Space-time
maps show the evolving cell density: colormap scales from black (¢(z,t) = 0) to white (c¢(x,t) > 1) and vertical dash
lines indicate the centres of the aligned regions. Left to right figures show the results for x = 0,1, 10 and 100. For
x = 0 the interface is a straight line, corresponding to a constant invasion rate. For x > 0 the interface becomes
jagged, indicating a variable rate of invasion with position. (d) Profiles showing cell densities at ¢ = 25 (dotted),
50 (dot-dash), 75 (dashed) and 100 (solid). Top to bottom panels plot the cell density profiles for x = 0, 1, 10, 100.
Note the nonuniform cell density profiles when £ > 0. (e) Relative progression of the wavefront. For each simulation
we track the position z*(¢) such that c¢(z*,¢) = ¢, /2. Simulations solve equation (21) with D¢ obtained from Dy
(defined in the text) through (16)—(18) for § = 0, s2/u = 2 and varying . Other parameters are set at r = ¢, = 1,
Lz =200 and Ly = 5. Numerical method as described in Appendix B, with Az = Ay = 0.1 and At = 10~4.
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we ignore the (uniform) data in the y-direction and plot the variation with the z-axis only in Figure
4.

We first illustrate the translation between Dp; and D¢ through comparing their fractional
anisotropies, exploiting (16)-(18) to connect DTI data to cell turning. As expected we observe
that anisotropy of D¢ is highly tunable, Figure 4 (b), lower or above that of D according to the
size of k. Note that for k = 0, the fractional anisotropy is 0.

We proceed to explore the impact of an anisotropic environment on the invasive spread of a
cancer population in which cells have differing capability to align through simulating (21) under
varying . In the “control” scenario (x = 0), any environmental anisotropy is ignored by cells: the
model (21) effectively reduces to a Fisher equation and invasion occurs in the form of a travelling
wave with a constant rate of invasion, given by 24/rs?/2u. Increasing « from zero introduces the
impact from environmental anisotropy on cell turning, with consequent repercussions on the rate
and form of invasion (Figure 4 (c)-(d)). As the invasive front moves into the region of orthogonally
aligned fiber tracts, turning into this orientation acts to retard progression of the wave. On
the other hand, a region of parallel fiber tracts acts as a cellular highway and accelerates the
wavefront. Increases in x enhances the impact of anisotropy on cell turning, with correspondingly
greater slowing or acceleration of the wavefront in anisotropic regions. To illustrate this we track
the position of the wavefront (relative to the control case) as a function of time (Figure 4 (e)):
invasion becomes increasingly delayed with the size of k as the front enters the orthogonal tract
region, but recovers ground on reaching the parallel tracts.

The environment is therefore a significant factor in altering the rate of invasion. Further, it
can also impact on the spatial cell density that emerges behind the wavefront, specifically at the
interfaces between regions of varying anisotropy. Cell density profiles in Figure 4 (d) reveal an
emerging pattern of troughs and peaks in cell density, enhanced under increasing . To investigate
this phenomenon further, we explore the extent to which the cell density varies for three hypothet-
ical tumour classes: high proliferation/low motility-, medium/medium- and low/high-phenotypes.
Specifically, we compare the tumour profile as the relative ratio of diffusive to proliferative terms
is altered. Note that these terms are varied such that invasion would occur at the same rate (i.e.
with the same travelling wavespeed) in an isotropic environment.

Simulation results are plotted in Figure 5. For a high proliferation/low motility phenotype, we
observe a compact tumour front with the invasive rate varying according to the local anisotropy.
Little spatial variation can be observed in the tumour cell density emerging behind the wave. As
we progress towards a low proliferation/high motility phenotype, however, we observe increasing
variation in the cell density profile. We note that this pattern arises due to the specific form of (21).
Local maxima arise near the transition regions from random to aligned tissue and, in the extreme
case of sudden transitions, sharp peaks and even singularities might form, as analysed in [19]. In
contrast, the phenomenological model of (22) predicts a similar rate of invasion at the cell front
but a uniform cell density distribution following passage of the wave under the same form of f(c)
(Figure 5 (c)). For the model derived from the transport equation it is the additional advective-
type terms in (21) that act to direct cell movement in regions of spatially varying anisotropy,
aggregating cell populations accordingly.

5.1.2. Case (ii) Anisotropy in two-dimensional invasion

In the above we focused on a quasi—one-dimensional scenario, providing detailed insight on
the capacity for environmental alignment to alter the rate and profile of an invading tumour. We
next turn our attention to a similar two dimensional study. A schematic of the set-up employed
in this section is illustrated in Figure 6 (a). Specifically, we consider a square slice (z,y) € Q =
[0,100] % [0, 100] with non-flux boundary conditions and populated with an initially circular cancer
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Figure 5: Heterogeneity of the wave profile for invasion in anisotropic environments under a varying relative strength
of motility:proliferation terms. (a) Space-time maps plotting the cell density: black, c¢(z,t) = 0; white, c¢(z,t) > 1.
From left to right we consider a high:low-, medium:medium- and low:high-proliferative:motility ratio. (b) Corre-
sponding plots showing the variation in cell density profiles. In each panel we plot the wave profile for the same
three tumour classes at t = 25,50, 75 and 100. Moving from high:low to low:high proliferation:motility generates an
increasingly diffuse and (spatially) heterogeneous tumour. (c) For comparison, we show the corresponding simula-
tions for model (22) using the same parameters as in (b). We clearly see the homogeneous distribution in the wake
of the invasion front. In all simulations we choose D¢ calculated from (16)—(18) with § = 0.1, k = 100 and Dy as
for Figure 4. The different phenotypes were modelled by setting: s2/u = 0.1, r = 5 (high:low); s2/u = 0.5, r = 1
(medium:medium); s2/u = 2.5, r = 0.2 (low:high). Other parameters and numerical details as in Figure 4.

population centred on the point (35,35):
co(z,y) = 0.1e~(®35)% = (u=35)

We begin by imposing a synthetic DTT data set, considering a generally isotropic environ-
ment that contains a pair of orthogonal fiber tracts (of distinct widths) that run vertically and
horizontally and cross at the centre, see Figure 6 (a). We therefore set our synthetic Dry as

Dri(z,y) = < 0.5_(6)1(33’11) 0.5+(21(:c,y) ) ’ (24)

where d(z,y) € [~0.5,0.5] is given as
d(z,y) = 0.256~005@=50)7 _ () 95,=0.5(y=50)*

To illustrate the anisotropy in Dp; we plot the Fractional Anisotropy in Figure 6 (b), using a
colour-coded map to illustrate the distinct directions of the anisotropy. Filtering D7y to Do in
(21) via (16)—(18) under varying x once again allows us to simulate populations with distinct
capacities to align with the environment.

Simulations of (21) for kK = 0 are shown in Figure 6 (c): DTI/environmental anisotropy is
ignored by the cells, growth is uniform and the tumour remains circular. Increasing x, however,
introduces an impact due to environmental anisotropy on the preferential spread of cells and the
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invasion becomes increasingly nonuniform: alignment of cells enhances invasion in the direction
of the fibre tracts while retarding invasion in orthogonal directions, see Figure 6 (¢) middle and
bottom rows for examples with k = 10 and 100. Consistent with the one-dimensional case, increas-
ing k magnifies this and we also observe an increasingly heterogeneous form for the cell density
distribution in the wake of the wave, with ridges and valleys of cell density emerging in regions of
highly-variable anisotropy.

5.2. Genuine DTI datasets

Finally we address genuine imaging data, utilising software (DTIstudio, [21]) and anonymous
data available at https://www.mristudio.org/ to generate a DTT diffusion matrix Dp;. Figure
7 (a) demonstrates output from a typical data set, plotting the spatially varying DTI anisotropy.

In line with previous sections our current focus is purely illustrative and we will restrict attention
to a two-dimensional scenario: a fully predictive model would certainly require a three-dimensional
analysis due to the potentially critical projection of fiber tracts into the ignored dimension. Here
we consider the transverse (or horizontal) plane illustrated in Figure 7 (b) and discard diffusion
tensor data in the vertical projection: in other words, we employ the 2 x 2 submatrix Dry(z,y)
formed from the relevant rows and columns of the imaging data tensor matrix, with (z,y) denoting
position in the plane.

From Dr(x,y) we extract the eigenvalues A1 2(x,y) and corresponding (orthogonal and nor-
malised) eigenvectors o1 2(x,y). Note that anomalies in the data or noise introduced during pro-
cessing can generate negative eigenvalues in the diffusion tensor matrix: these are removed through
setting to zero. The imaging data stored in Dy is then translated to a cell diffusion tensor matrix
using equations (16)—(18): see Figure 7 (b) for a comparison of the fractional anisotropy in D
and D¢ for varying values of k.

Equation (21) is solved on a domain 2 describing a transverse slice of the CNS for an initially
symmetric (circular) tumour:

co(w,y) = 0.1@7(‘”*10)26*@*%)2

where (g, yo) defines its initial centre. We note that while the numerical simulations are performed
on a rectangular grid we have imposed internal zero-flux boundaries to provide a (crude) description
of a realistic brain geometry.

Figure 7 (c) plots the tumour evolution under varying values of k: k = 0 (i.e. the isotropic
case), k = 5,10 and 20. In the isotropic case, tumour growth is uniform in all directions and only
bounded by the finite extent of the simulated domain. Consistent with our analyses using synthetic
data sets, for kK > 0 we observe anisotropic spread of the tumour, with increasingly nonuniform
growth as k is increased. In particular, we observe a much more variable spread in regions of higher
anisotropy, such as the corpus callosum. The variation between the isotropic and anisotropic cases
is revealed more clearly in Figure 8 through comparing contours at distinct times.

6. Discussion

An accurate prediction of glioma extent and a confident suggestion for the treatment volume
are of huge importance in their eradication, yet providing answers is greatly complicated by their
phenotypic diversity and physical/chemical interactions with the surrounding environment. While
a model that integrates all important factors presents a formidable mathematical and computa-
tional challenge, it is now possible to employ modelling to explore in depth the impact of specific
interactions. In this paper we have focused on the role of the white matter fiber tracts on facili-
tating invasive spread. From previous research [4, 2, 24, 20, 5, 29] we have identified a need for a
model that translates measured DTI information into the inputs for a predictive and macroscopic
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Figure 6: Invasion for a synthetic 2D data set. (a) Schematic showing the initial set-up and environment. (b-c)
Comparison of fractional anisotropy in (b) Dz and (¢) D¢ under various k: colormap indicates regions of vertical
(black) and horizontal (white) alignment, with orange denoting isotropy. (f) Tumour growth evolution. In each
row we show the evolving cell density for varying s, plotting c(z,y,t*) at t* = 0,5, 10, 15, 20 as represented by the
colormap. All simulations solve equation (21) with D¢ obtained from Dz (described in the text) according to

(16)—(18) with § = 0.05, s =1, u = 0.5,7 = ¢ = 1 and varying k. Numerical method as described in Appendix B
with Az = Ay = 0.25 and At = 1074
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Figure 7: Simulations of glioma growth using genuine DTI data. (a) 3D Anisotropy plot. (b) We use the 2D
transverse slice shown for our simulations: its fractional anisotropy (black = low, isotropic; white = high, anisotropic)
is shown for the Dy data set and the computed cell diffusion tensor D¢ at the values of k shown. (c) Numerical
solutions showing the solution of (21) at the times indicated (in months) for distinct values of k. As we increase the
strength with which cells align with the DTI anisotropy, we observe a more heterogeneous form of growth. Dashed
light blue contour indicates c(z,y) = 0.0001. Parameters are set at § = 0.05, s2/mu = 1.25 x 10~* cm?/day,
r = 0.025/day, ¢, = 1 and varying x. Numerical method as described in Appendix B, with Az = Ay = 0.09375cm.
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Figure 8: Contour comparison showing impact of anisotropy on invasion. We compare anisotropic (x > 0 ) simula-
tions from Figure 7 with the isotropic case (k = 0) for (top row) x = 5 and (bottom row) x = 20. Contours mark
the equal density lines for ¢(z,y) = 0.001 (i.e. 0.1% of the maximum density) for the isotropic (dashed blue line)
and anisotropic (solid red line) simulations at the times (months) indicated above the top panel. Underlying grid
lines mark 1 cm. Numerical details as for Figure 7.

model for tumour growth. Our modelling workflow is to parametrise the turning characteristics of
an individual-level model according to standard anisotropy measurements (eigenvectors, fractional
anisotropy) and employ scaling methods to derive the corresponding continuum model. We have
demonstrated the utility of the approach through simulations on both artificial and genuine DTI
data sets, echoing the findings of others by revealing how the environmental anisotropy inferred
from DTI datasets can significantly impact on the invasive profile of the tumour.
Phenomenological reaction-diffusion based models, parametrised by clinical data, have proved
highly accurate at predicting the form and rate glioma growth/invasion (for example, see the
review of [11] and references therein). While the model here, derived from an explicit individual-
level model, appears close in form to previously proposed anisotropic-diffusion based models (e.g.
[4, 20, 5, 29]), we remark on some key distinctions. Firstly, the framework here bridges local and
global scales: we first proposed a mesoscopic scale model based on the individual-level migration
response of a cell within some complex tissue architecture, and then employed scaling techniques
to derive the corresponding macroscopic model for invasion of the tumour. Thus, the inputs for
the macroscopic model parameters can be directly linked to explicit parameters, such as cell speeds
and turning angle distributions. Secondly, the form of the macroscopic anisotropic-diffusion model
is augmented by additional advective-type terms which can generate spatially varying cell density
distributions as anisotropy in the environment varies. More generally, it is firmly established that
the precise local (microscopic) rules imposed for how a cell chooses directions can have a huge
bearing on the form of the macroscopic model (e.g. [31]). The current framework offers a pathway
for deriving and comparing distinct forms of macroscopic models for glioma growth, according to
distinct hypotheses for how a cell responds to the local information or structure of the environment.
The work here strips the fundamental equations down to their bare bones: we have aimed for
the most transparent demonstration of the key ideas, rather than obscuring these details within
a more sophisticated model. However, the framework is significantly more flexible and a number
of important extensions can be considered in future iterations. For example, employing ideas
from tractography may allow a connection from the DTT (and other imaging) data sets to an
imposed tissue structure, with the cell movement directed according to features of this network
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(e.g. density and orientation of fiber tracts). Further, given the distortion to the CNS tissue
network as the tumour expands, a time-evolving tissue architecture can also be imposed. Further
areas for exploration include the switching of the behaviour of cells between a migratory/non-
proliferative and stationary/proliferative, e.g. [33], the growing genetic instability of the tumour,
or incorporating the impact of cell interactions/volume considerations on the movement dynamics
of cells [3, 37].

The modelling framework itself is independent of the spatial dimension, however we have gen-
erally concentrated on two dimensions for clarity. The numerical extension to three dimensions
is algorithmically straightforward, however the additional numerical cost is high and the imple-
mentation of more efficient numerical algorithms would be advantageous for larger scale numerical
studies. We briefly considered a trivial extension of the cell turning function for the three dimen-
sional case, however closer scrutiny is demanded. In three dimensions, anisotropy of a diffusion
tensor is represented by an ellipsoid, with its shape determined by the lengths of its principal
axes. Utilising only the eigenvector corresponding to the principal direction of anisotropy omits
possibly crucial information on the projection into other directions. Solutions would be to con-
sider the superposition of multiple von-Mises—Fisher distributions, with their dominating directions
aligned according to the three principal axes of the ellipsoid and weighted by their lengths, or more
complicated distributions such as a Kent distribution [22].

Our principal aim at this stage has been to suggest a modelling framework which can subse-
quently be tailored and adapted as required. Consequently, the results presented should be taken to
be illustrative of the methodology, rather than predictive. The next level of modelling, where more
precise predictions are formulated, will necessarily demand a more robust and careful validation
of the model through dedicated application and matching to clinical data.
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Appendix A. Proofs
Case 1: Peanut

Lemma 1. Assume G is given by (12). Then the macroscopic diffusion tensor (11) is given by
(13)
Proof. To compute the macroscopic diffusion tensor D7 (z), we use index notation and summation
convention. We also omit space dependence for clarity.

2

Dy = = 067 §(0)do ,
,LL §n—1
n52
R b — 0670 Dr;60d6 .
,[L‘Sn71| trDpy _/S\nfl 1
Hence in coordinates we have
2
pi—__" _ p 0*0'067 d .
T /J/|S"_1| tI‘DTI " sn—1

In an earlier paper [14] an explicit general formula for arbitrary velocity moments has been calcu-
lated. From Lemma 2.2 in [14] we have that
s

/ 0%0'0°07 do =
gn—1 n(2+n)

(6%16 4 g¥16" + 6M ") .
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Dy ij (6M6% + 6%6Y 4 586

Hence we find
Dl — ns?|S" |
T n(2 + n)p|S*1| trDpy
2
s
= —————— (6" trDy; + Dfy + D) .
/J(Q + n) tI‘DT] ( tHrr + TI + TI)
Since Dpy is symmetric, we obtain
82 2DT[
Do — Al
T a2+ n) < tTDTI) A1

where I denotes the identity matrix. ¢
Lemma 2. Consider spatial dimensions n =2 and n = 3. Assume Dry is a given DTI measure-

ment and D¢ is given by (13). Then
(a‘) RA(DC)<37 (AQ)
If ai,ap,as denote the linear, planar and spherical indices of Drr, respectively and a;,ap,as are
those of D¢, then
- 2 _ 2 _ 2
a = §al’ a]g:§ap7 aszl—l—gas.
Hence the resulting ellipsoid is less anisotropic and more spherical shaped.
Proof. We prove the above statements for spatial dimension n = 3; the results for n = 2 are
very similar. Let \; > Ay > A3 denote the eigenvalues of Dy and we abbreviate tr := A1 + Ao+ A3

with ¢r > 0. Then the eigenvalues of D¢ are given by

~ 52 2\
A= —— (1424, i =1,2,3.
g u(2+n)< tr) !

To prove statement (a) we write for j # 1
1+ 2 gryor—230 0N
PV . i
1+ =22 tr+ 2\

T2\ Ttr+2)

ks

< 3,
if all A; > 0. The anisotropy can only equal 3, if A; = 0 for all j > 1. To show the first statement

of (b), we reformulate the above formula slightly:
Mot/ 20 /)

)

/\j - t’l“/)\j +2
which is less than Ay /A; for Ay > A;. For the second formula of item (b), we compute the fractional
anisotropy of D¢ as
AL —A2)2 4+ (A1 — A3)2 4+ (A2 — A3)?
FA(D¢) = VL= 22?1+ 01— A)? + (o — g) < FA(Dry).
V2I(tr/24 M) + (tr/2 + X2)? + (tr/2 + A3)?]
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To compute the shape indices a;, ap, s, we need the trace of D¢:

3s2

tri=—.
" 1 2)

Then the above formulae follow directly from the definition of the indices:

M-de 20— )

“w= " tr

3\
y Qs = —&=.

tr tr

O
Case 2: Bimodal von-Mises distribution

Lemma 3. Assume Dp; denotes a measured water diffusion tensor in two dimensions and Do is
defined by (18). Let A1, Ao denote the eigenvalues of Dy and A\, Az those of Do. Then

(4) e (1+(1—5)12<k))

2 To(k)
- (-0-0it)
Ly (k)
0 -t
(©) PA(De) = ——2L =0
¢2 +2(1—0)2 (ﬁgg)Q
(D) al=(1—5)§zgg, iy =1—a

Proof. It should be noted that eigenvectors (1, w2 of Dry are also eigenvectors of D¢. Since
they are orthogonal the above formulae follow through straightforward computations from (18). O

Remarks:

1. The ratio of modified Bessel functions I5(k)/Io(k) is a monotonically increasing function with
2. The anisotropy of D¢ depends on the choices of § and k and in the limit of § — 0 and & — oo
we obtain ~ R
)\1—>52/,u, /\2—>0,

and
RA(Dc) — +00, FA(Dc) — 1.

Hence there is no limit in the anisotropy of Dc¢.

Appendix B. Numerical method

Simulations have been performed for 2D domains, however the scheme trivially extends to 3D
(albeit at increased computational expense). To solve equation (21) we employ a Method of Lines
approach, discretising in space with a suitable finite-difference approximation (below) to obtain a
system of time-dependent ODEs. We consider the 2D regular domain (z,y) € Q = [0, L] % [0, L]
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Ay
A A A 2 > 2
1= 55y = 32y coyn = Ly — F¢ for Ay = L, /M, A, = L,/N. In 2D, assuming the (positive
definite and symmetric) tensor matrix takes the form

Dot = G0 DY

and discretise it into a regular lattice with grid coordinates at 1 = Bo po=30e  g=[ —

Blz,y) ~(z,
we observe that spatial terms on the right-hand side of (21) can be expanded as follows
VWV (Dee(z,y)) = (a(z,y)ca)e + (B2, y)ca)y + (B(z,y)cy ) + (V(@,y)cy)y

+ (a(x, y)wc)w + (ﬁ(mv y)yc)w + (6(3’5, y)wc)y + (,Y(‘/E) y)yc>y :

This reveals a combination of diffusive (first line) and advective (second line) type-terms, with the
diffusive terms in the first line identical to those generated for standard anisotropic diffusion (2).

It is important to note that the choice for the finite-difference discretisation of the diffusive terms
is crucial: naive discretisations can potentially generate numerical instability through negative
B, see [28]. To account for this, we employ the finite discretisation method of Weickert [38§],
where approximations of the derivatives are calculated not only in the “standard” directions, but
combined with those calculated in an appropriately chosen new direction. For the advective terms
we discretise in conservative form, employing a first-order upwinding scheme.

We implement zero-flux boundary conditions: for the simulations using genuine DTI data,
these are imposed on the internal boundaries that approximate the brain geometry. All numerical
simulations presented employ a simple forward Euler method for the time discretisation of the ODE
system with a suitably small time-step At, although more sophisticated algorithms (e.g. implicit,
variable time-stepping) have also been employed with equivalent behaviour observed. To verify the
numerical method, simulations have been performed for varying time-step and mesh-discretisations.
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