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Abstract A common feature of many living organisms is the ability to move
and navigate in heterogeneous environments. While models for spatial spread of
populations are often based on the diffusion equation, here we aim to advertise the
use of transport models; in particular in cases where data from individual tracking
are available. Rather than developing a full general theory of transport models, we
focus on the specific case of animal movement in oriented habitats. The orientations
can be given by magnetic cues, elevation profiles, food sources, or disturbances such
as seismic lines or roads. In this case we are able to present and contrast the three
most common scaling limits, (i) the parabolic scaling, (ii) the hyperbolic scaling,
and (iii) the moment closure method. We clearly state the underlying assumptions
and guide the reader to an understanding of which scaling method is used in what
kind of situations. One interesting result is that the macroscopic drift velocity is
given by the mean direction of the underlying linear features, and the diffusion
is given by the variance-covariance matrix of the underlying oriented habitat. We
illustrate our findings with specific applications to wolf movement in habitats with
seismic lines.
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1 Introduction

1.1 Biological Motivation

Successful navigation through a complicated and evolving environment is a funda-
mental task carried out by an enormous range of organisms. Migration paths can be
staggering in their length and intricacy: at the microscopic scale, nematode worms
can determine the shortest path through the intricate maze-like structure of the soil to
locate plant roots [38] while at the macroscopic scale salmon return from the ocean
upstream through bifurcating rivers and streams to spawn at their original birth site
[25]. Selecting a path requires the detection, processing and integration of a myriad
of cues drawn from the surrounding environment. In many instances the intrinsic
orientation of the environment provides a valuable navigational aid. The earth’s
magnetic field provides one such example: species such as turtles and whales use
an inbuilt compass to navigate to breeding or feeding grounds [25], while butterflies
and other insects fly up slopes to local peaks in a mate locating strategy known as
“hilltopping” [36]. Pigeons [24] and cane toads [6] have been shown to fly or hop
in the direction of roads, while caribou and wolves move along the seismic lines cut
into forests by oil exploration companies [29]. An aligned environment also plays
a fundamental role in the migration of individual cells: many cell types, including
immune cells, fibroblasts and certain types of cancer cells migrate in alignment with
the fibre network constituting the surrounding extracellular matrix (ECM).

The above examples provide the motivation for the present paper where we focus
on mathematical models for movement in oriented habitats and their scaling limits.
The aim is to clarify some of the tools of the trade, allowing the reader to adapt the
methods to any given specific situation, such as those outlined above. In the case of
the present paper we shall use cell movement in collagen tissues to derive the model
equations, before demonstrating their adaption to wolf movement on seismic lines
and the motion of organisms in a stream. We note that these should be considered
illustrative examples rather than indepth studies, although we note that a detailed
application to glioma growth will be covered in a forthcoming paper [35].

1.2 Mathematical Modelling

Transport models (often referred to as kinetic models) form a powerful tool in
the analysis and modelling of animal and cell movement. Modern experimental
methods allow us to track an individual’s movement in intricate detail, whether
by GPS tracking of mammals [29, 39] or through confocal microscopy of cells in
tissues [13, 14]. The wealth of data generated can be employed to extract precise
information on mean travel speeds, velocities, the distribution of turning angles, the
“choice” of new velocities amongst others. Within this context the transport model
fits naturally, relying on particle speed and turning distributions as key inputs.
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Transport models have a long history in continuum mechanics. For example,
the theory of dilute gases is entirely based on the kinetic Boltzmann equation
of interacting gas particles [8]. Over the last few decades this theory has been
transferred to the modelling of living entities, with the obvious advantage of
shipping previously developed methodologies with it [4,9, 18,32,33,37]. However,
wholesale removal from the shelf of continuum mechanics is inadvisable: methods
must be carefully adjusted to reflect the biological situation.

A highly utilized tool in the study of transport models is a consideration of
scaling limits, thus allowing approximation to a reduced (and typically simpler)
model such as a diffusion- or drift-dominated partial differential equation. A
variety of scaling limits have been considered, found under the general headings
of parabolic limit, diffusion limit, hyperbolic limit, Chapman-Enskog expansions,
Hilbert expansions, and moment closures [9, 10, 16, 18] (with, most likely, many
further terminologies dispersed throughout the literature).

In the hope that we can make transport equations more broadly accessible for
ecological and cellular processes, in this chapter we explore such systems as a means
of modelling migration. We will open the following section with a presentation of
the transport equation approach, as well as a specific formulation that incorporates
guided movement due to a fixed and oriented environment. This relatively simple
model will be used to motivate and illustrate the various scalings. Here, with our
attention fixed on ecological applications, we restrict attention to the three most
commonly used methods: (i) the parabolic scaling, (ii) the hyperbolic scaling, and
(iii) the moment closure. We will not attempt to present the most abstract and general
theory, rather we focus on a nontrivial and interesting case which retains enough
simplicity to directly apply each of the scaling limits above. In particular, we will
attempt to answer the following questions:

 Is there a better method among those three methods?

* How and when do we employ hyperbolic scaling, parabolic scaling or moment
closure?

* What are the specific assumptions behind these three methods and how do they
differ?

* In which cases do these scalings lead to the same results?

While all methods have been discussed individually, as far as we are aware there
has not been a study which directly compares these methods in the ecological
context. We find that each of the methods (i), (ii) and (iii) have their own range
of applicability and there are situations when one is favourable over the other. As it
turns out, the parabolic limit (i) plays a central role, as special cases of (ii) and (iii)
both lead back to (i). To illustrate the findings and methodologies in a transparent
manner we will explore some simple case studies and consider specific applications,
including the movement of wolves and caribou along seismic lines in Western
Canada. Finally, we will provide a brief discussion of the findings.
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2 Transport Equations

The application of transport equations to biological processes grew from seminal
work of the 1980s (see [1,33]) as an approach for modelling biological movement,
whether by cells or organisms. Transport equations typically refer to mathematical
models in which the particles of interest are structured by their position in space,
time and velocity. Here we will use p(¢, x, v) to describe the population density of
cells/organisms at time ¢t > 0, location x € £2 C R” and velocityv € V C R". We
will generally consider an unbounded spatial domain £2 = R” to avoid specifying
boundary conditions and, given that we consider biological movement, the set of
possible velocities V' is taken to be compact. It is worth noting that this is a key
distinction from the kinetic theory of gas molecules, where V' = R”" permits (at
least theoretically) individual molecules to acquire infinite momentum. Here we
shall typically consider V' = [sy, s2] X S*1 with 0 < 51 < 55 < o0.
The time evolution of p(t, x, v) is described by the transport equation

pi(t,x,v)+v-Vpt,x,v) =ZLp, x,v), (1)

where the index ¢ denotes the partial time derivative and .Z is the turning operator:
a mathematical representation for modelling the velocity changes of the particles.
In many instances .Z could be described by a nonlinear interaction operator
incorporating changes in velocity due to interactions between individuals. For
example, the coherence of a fish school is maintained through an individual altering
velocity in response to that of an immediate neighbour, while certain populations of
cells migrate as a cohort by forming strong adhesive bonds with their neighbours.
Here we will ignore such scenarios, thus allowing us to focus our attention on the
simpler case of linear operators .Z.
Typically, .Z is defined via an integral operator representation

LoW) = —p) + /V T(eov)p()dV | @)

where the first term on the right hand side gives the rate at which particles switch
away from velocity v and the second term denotes the switching into velocity v
from all other velocities. The parameter u is the turning rate, with 1/p the mean
run time between individual turns. The kernel 7'(x,v,V") denotes the probability
density of switching velocity from V' to v, given that a turn occurs at location x.
The mathematical properties of 7" set the stage for much of the theory that follows
and it is certainly possible to set down a general theory for transport equations (see
for example [7, 18, 23, 37]). However, the resulting burden of advanced functional
analysis would overwhelm the aims of the present paper. Rather, we focus on a
simple yet non-trivial case which allows us to present the scaling methods in a
transparent manner. Specifically, we restrict to the case in which the turning operator
does not depend on the incoming velocity v':
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T(x,v,v) =q(x,v)

where ¢ satisfies ¢ > 0. This assumption limits the applicability, since animals as
well as cells have a tendency to maintain a particular direction (persistence) such
that the incoming and outgoing velocities show a strong correlation. Here we ignore
this form of persistence, and we assume that the dominating directional cue is given
by the oriented environment. As mentioned already, a general treatment is possible,
but it would deter from our purpose to present the theory in a relatively transparent
way.

2.1 Movement in an Oriented Environment

Here we present a dedicated and simple model based on the transport equation (1)
with turning operator (2) to describe movement in an oriented environment. We
follow the modelling approach developed by Hillen [17] and extended in [34]
to describe contact-guided movement of cells within a network, for example
an extracellular matrix (ECM) predominantly composed of collagen fibres. We
motivate the model by briefly describing its derivation in relation to cell movement,
as in the above articles, while noting that the model itself is quite general and can
easily be adapted to model the movement of organisms in an oriented landscape, as
shown in later sections.

The ECM imparts orienteering cues to cells through their tendency to follow
fibres, a process known as contact guidance [12, 15]. More generally, contact
guidance describes the oriented motility response of cells to anisotropy in the
environment, whether it arises from collagen fibres, muscle fibres, neuronal axons,
arteries and so forth. Contact guidance is believed to play important roles in tissue
development, homeostasis and repair, from patterning of the pectoral fin bud of the
teleost embryo [43] to immune cell guidance [41,42] and fibroblast-mediated tissue
repair following injury [15]. Particular interest in contact-guided migration of cells
further stems from its influence in directing the pathways of invasive cancer cells
[13,14].

Following the approach in [17] and [34], we represent the oriented structure of
the environment by defining a directional distribution g (x, 8) for # € S"~!, with
g > 0and fsn—l G(x,0)d8 = 1.1In the case of cell migration, the fibres along which
cells migrate do not provide a particular direction to movement (i.e. there is no
“up” or “down” a collagen fibre) and in such instances we would assume symmetry
G(x,—0) = G(x,0) for all § € S"~!. For more on distinct forms for the directional
distribution, see below.

To model contact-guided migration, we assume that cells choose their new
direction according to the given fibre network, hence ¢(x,v) ~ §(x,V), where
v = v/||v|| denotes the corresponding unit vector. Note that this assumes that cells
only take guidance information from the directional distribution: there is no explicit
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component for random migration or orientation to chemical signalling cues built
directly into the turning operator, although these can be built into the directional
distribution as we demonstrate later. Since ¢ is a probability distribution on V', and
G a probability distribution on S"~!, we need to scale appropriately:

7 B 1een _ on
q(x,v) = _q(x,v)’ with o = / G(x,v)dv = "(f% si) forsy <
w v s” fors; =52 = s.

For this choice of turning kernel, (2) simplifies to

Lo0) = p@x)G — o). with §:= /V o).

We make one final simplification, which is to assume individuals have a fixed

speed s, i.e. V = sS"~!. While the extension to V' = [s1,s2] x S"~! is trivial, it

introduces some cumbersome integration constants that blur the analytical details.
To summarise, the transport model we study in this paper is given by

pi(t,x,v) +v-Vp(t,x,v) = pu(q(x,v)p(t,x) — p(t,x,v)) 3)

on R" x s§"~!, where ¢(x, v) is the direction distribution that represents the external
network structure.

It is worth noting that different cell types adopt distinct migration strategies,
with correspondingly variable degrees of interaction with the surrounding network.
For individually migrating cells the two principle migration strategies are amoeboid
and mesenchymal. While the former is characterised by fleeting contact between
cells and the ECM, and correspondingly minimal distortion of the network [42],
the latter involves extensive structural modification of the ECM via a processes of
cell-mediated proteolytic degradation. Consequently the stand-alone equation (3)
is more appropriately a model for amoeboid rather than mesenchymal migration.
The latter would require augmentation of (3) with an evolution equation for
varying g (¢, x, v) due to cell-matrix interactions: while such extensions have been
extensively considered in detail in [17] and [34], we do not consider this further
here.

As mentioned earlier, while originally developed in the context of cell migration
the above transport equation can easily be adapted to ecological applications. For
example, to model the population movements of hilltopping butterflies we would
reinterpret p as the density of butterflies, ¢ as a spatially varying directional
distribution with a maximum corresponding to the local direction of increasing
slope, with parameters s and p for butterfly speed and frequency of turns to be
estimated from tracking of individual flights.



Anisotropic Diffusion 183
2.2 Environmental Distributions

Representing anisotropy of the environment through the directional distribution ¢
provides the means to describe a wide range of oriented landscapes. Here we briefly
consider some potential forms for g.

Strictly-Aligned Environments

A strictly aligned environment with local direction y € S"~! can be modelled by
choosing the singular g-distribution:

1
q(x,v) = ;&)(ﬁ -7).

The above effectively forces an individual to choose y as a movement direction
following a turn. A full mathematical solution theory of (3) for such g requires a
notion of measure valued solutions, which was developed in [20]. We discuss this
case in connection to applications in Sect.7.3.

Regularly-Aligned Environments

For many landscapes, while oriented structures provide a directional cue, the
individuals will typically move over a wide range of directions. For example,
while wolves preferentially follow the seismic lines cut into forested areas they
also move off the lines and into surrounding forest. Similarly, butterflies do not
take the steepest route during hilltopping, rather their flight pattern fluctuates [36].
Such behaviours can be accounted for by allowing g to take the form of a regular
probability distribution over V.
In summary, we assume that ¢ has the general form

g(x,.) e L2(V), q(x,v) >0, /q(x,v)dv =1. 4)
|4

With the above assumptions in place it is noteworthy to mention two statistical
quantities later revealed to be of importance, the expectation and the variance-
covariance matrix:

Ey(x) = /Vvq(x,v)dv, Vy(x) = /V(V—Eq(x))(v—Eq(x))Tq(x,v)dv.

The product v’ denotes the dyade product of two vectors and it defines a matrix.
Other authors prefer to use tensorial notation such as wl =vy®v[9,10].
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Furthermore, we consider potential restrictions on ¢ that could result from
distinct forms of environmental anisotropy. While information provided by mag-
netic cues, the sun and ocean currents could provide a unidirectional movement
cue, topographical information in the form of roads, seismic lines and collagen
fibres may only provide bidirectional anisotropy, i.e. animals or cells choose both
directions with equal probability. In this latter case, we would assume symmetry
of ¢,

q(-xa —V) = q(x, V).

A direct consequence of this symmetry is

E, =0 and V,(x) =/vaq(x,v)dv.
14

3 The Parabolic Scaling

In this and the following two sections we discuss the three principal scalings:
(i) parabolic scaling, (ii) hyperbolic scaling and (iii) moment closure. We will show
that each of the methods have their own range of applicability, and that there are
situations when one is favourable over the other. With the aim of making this
methodology broadly accessible, we aim for transparent presentation by revealing
all steps in the analysis, noting that such details are often omitted in the literature.
To illustrate the structuring of what follows, the graphic (Fig.1) outlines the
relationships between the scalings as they will be discussed in this manuscript. The
parabolic limit (i) is found to play a pivotal role, as special cases of (ii) and of
(iii) both lead back to (i). For readers less motivated by the technical aspects of what
follows, we would like to note that each section is concluded with a summarising
box and a comparison between the scalings is presented in Sect. 6.

3.1 Motivation of the Parabolic Limit

As illustrated in Fig. 1, the parabolic limit marks a full-stop for scaling in our
analyses, with all paths eventually leading to it. Given its obvious and considerable
importance to the modelling community, we therefore discuss this case first. Two
ways to motivate the parabolic limit are (a) an appropriate scaling of space and time,
and (b) large turning rates and large speeds of the particles. These two approaches
are, in fact, equivalent, as we next illustrate.

E. coli bacteria on a petri-dish display an average turning rate of i ~ 1/s and an
average speed of s ~ 1072 mm/s (see [18]), whereas durations for experiments that
investigate population level dynamics are typically of the order of hours or days.
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transport equation
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moment closure

balance equations for hyperbolic
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drift—diffusion equation

diffusion
dominated

Fig. 1 Relations between the scalings and limit equations as discussed in the text

parabolic limit
diffusion equation

Taking a unit U = 10,000s (~3h), the turning rate and speed on this timescale
become

1
w=10"— and s= 102@.
Hence, introducing a small parameter
e=1072,

we have
w=0(@E2), and s=0(@").

By writing 4 = ¢2fi and s = £~'§ we obtain the equation
pe+e'50-Vp=eTfilqp - p).

where, for v € V, we write s6 = v with 0 € "1, Removing the ~’s on the scaled
parameters and rearranging we obtain

&pi+ev-Vp=plgp—p). (5)
Alternatively, we can simply introduce macroscopic time and space scales
%t

T =¢gt, £ =ex

and rescale model (3) accordingly to obtain

& p. +ev-Vep = u(qp — p). ©6)
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Formally, (5) and (6) are identical, though we note that we shall employ the second
formulation with the new time and space coordinates (z, §).

3.2 Parabolic Limit in an Oriented Landscape

We first study the properties of the turning operator defined on L2(V):

L) = pug(x,v)¢ —9).

The kernel of . is given by the linear space (g(x,.)). Hence we work in the
weighted Lebesgue space L;,l (V) where the inner product of a function f with ¢
is given by

dv -
/V e /V Foydv = F.

On the complement set, (¢)*, we can define a pseudo-inverse by solving the

resolvent equation. Given a function i € (g)* we solve for ¢ € (g)* such that

Lo = (N

Since ¢, ¥ € (q)*, we have ¢ = ¥ = 0 and the resolvent equation (7) reduces to

1
¢ =—1. (®)
i

where the pseudo-inverse appears as multiplication with —u ™.

To analyse the scaled equation (6) we take the scaled coordinates (7, £) and make
aregular expansion in &, called a Hilbert expansion:

p(‘L’, é,V) = pO(ts és V) + 5]71(1', 5, V) + 82[72(1', é,V) + h.o.t.

Substituting into (6) and comparing orders of magnitude of ¢:

&% The terms of leading order are . py(z, £, v) = 0 which implies

po(t,€,v) = q(§,v) po(z, §).
o gl: The terms of order one are
(V-v)po=ZLp:.

This equation can be solved on {g), if the right hand side satisfies the solvability
condition (V - v) po € (g)*. This condition reads
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dv .
qEv)

Crucially, this term is only equal to zero for arbitrary py when we impose the
following extra condition on g:

/ (V - V)g(E.v) polr. £.7) v. / wg(E.v) dv polr. &),
Vv Vv

E, = / vq(&,v)dv = 0. 9)
14
We can then solve for the first order term and find
1
pi(z.§,v) = —;V v po(t,€,v).

+ ¢2: The second order terms are
poc+v-Vpr=ZLp.
From assumption (4) it follows that [, Z¢(v)dv = 0 for all ¢ € L;,l. Hence

we integrate the above equation and use index notation for summation over
repeated indices:

0= /V(po,f +v-Vppdv,
_ 1 _
= e / - V)T ) (ol g (E.v)) dv,
— por— %a,-aj ( /V V) dv polc. s)) .

This last equation can be written as a diffusion equation for the macroscopic

density po(z, §):
Poc(7,§) = VV(D(§) po(z,§)). (10)

with a macroscopic diffusion tensor

D(§) = ! / wlq (&, v)dv. (11)
©wJy

Since we assumed E; = 01in (9), we find that the diffusion tensor for the particles
is given by the variance-covariance matrix of the underlying fibre network:

DE) = V).
W
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With ¢ assumed to be non-singular, the variance-covariance matrix V, (and hence
the diffusion tensor D) is positive definite and symmetric and (11) is uniformly
parabolic.

We summarise this limit in the following result:

The Parabolic Scaling. In addition to (4) we make the following assump-
tions:

(A1)
E, = / vq(x,v)dv = 0. (12)
14
(A2) There exists a small parameter ¢ > 0 such that either
n= 8_2/1, s =g 15,
or
T = &, & =ex,

where [i, §, T, £ are of order one.

Let p(z, &, v) be a solution of the scaled kinetic equation

& p. +ev-Vep = u(gp — p). (13)

Then the leading order term p, of a regular expansion p = po + ep; +
e2py + ... satisfies

pO(T’ g’ V) = 130(‘[’ S)CI(S, V),

where po(z, &) is solution of the parabolic limit equation

Pox (7. §) = VV(D(§) po(r.§)) (14)

with diffusion tensor

D(§) = lf wlq (&, v)dv. (15)
nJy

4 The Hyperbolic Scaling

The parabolic limit of the previous section considered macroscopic time and space
scales, where time is scaled quadratically in ¢ and space linearly. For the parabolic
limit to work it was necessary to specify £, = 0, with a diffusion equation arising.
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In the hyperbolic scaling we will observe that [E, corresponds to a drift term, which
dominates when nonzero, and that in the hyperbolic limit we derive both a drift term
and a diffusion correction.! For that, we assume that macroscopic time and space
scales are both linear in ¢, i.e.

o=c¢t, &=¢x.
Under this rescaling, the transport equation (1) becomes
eps +e(v-V)p=ZLp. (16)

Again, we use the operator properties of . on the space L;,l (V) and split the
solution into two parts (the Chapman-Enskog expansion):

p(0,€,v) = p(0,£)q(E,v) + ep™(0,€,v) (17)

d
with /Vpl(o,é,v)q(é,v)wvv)=/VpJ‘(a,§,v)dv=0.

Substituting the expansion (17) into (16) gives:

ePoq + &2 py +e(v-V)(pq) + (v V)pt = Z (pq + ep™)
=eZpt. (18)

Integrating (18) over V' and dividing by ¢ yields

p,,+v-(/vquvp+s/vpldv)=o, (19)

/p,fdvzi/pJ‘dvzo.
v do Jy

Once again, the expectation of ¢ appears

where we used

ﬁg+V-(]Eqﬁ+8/va‘dv)=O, (20)
v
and to leading order this is the drift-dominated model

Po + V- (Eyp) =0, 21

where the drift velocity is given by the expectation of ¢.

I'This section is an adaptation of Sect.4.1.3 from [17]. Tt was inspired by Dolak and Schmeiser
[11] who apply this scaling to chemotactic movement and, while their results do not directly apply
here, the methods are the same.
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We determine the next order correction term by constructing an approximation
to p. From (20) we obtain j,, substitute into (18) and divide by &:

ZLpt =—qV- (Eqﬁ + 8/ vpLdv) +ept + (v-V)(pq) +e(v-V)pt
14
= (- V)(Pq) =4V - (Egp) + O(e). (22)
Hence to leading order we have:

ZLpt~qv—E)-Vp+ (v-Vqg—qV-Ey)p. (23)

L

To apply the pseudo-inverse of . on (g)—, we must check the solvability condition

/Zplqﬂszpldv,
v q v

~ Vﬁ-/(q(v—IEq)dv+ﬁ/(v-Vq—qV-Eq)dv,
v v

=Vp-(E, —Ey) + pV-(E, —E,),

=0.

Hence we can apply the pseudo-inverse of . and find
1 1 = =
P :\v,—;(q(v—IE,,)-Vp+(v-Vq—qV-Eq)p). (24)
Substituting (24) into (20) we obtain
po + 0, (E] p)
=29, (/ i [q(vi —Edi p + (V'oiq — qBiE;)ﬁ]dv)
M v
& .o . _
=—0; / v (V' —E)qdvdip
M v

+£3j ([/ vj(via,-q—q/ v/iaiqdv’)dv]ﬁ).
H 14 14

The two integrals inside the square brackets can be written as
/ v (Vg —q / Vidiq dv)dy
v v

:/vaiaiqdv—/vjqdv/v/iaiqdv/
v v v
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= /(vj — BV digdvy
1%
= /(V—Eq)v-quv,
1%
Hence we obtain

€
Do+ V- -(Eyp) = EV/ v(v—Eq)quv'Vﬁ
14

+£v- ((/V(V—E,,)(v-vq)dv)p). (25)

We define the diffusion tensor D as before, i.e. as a multiple of the variance-
covariance matrix of ¢:

1 1
D(x) := ;V,, = ;/V(V—Eq)(v—Eq)Tq(x,v)dv. (26)

We collect two properties of D:

/ W — Eg) (& v)dv = / (v —Ep)(v — E)Tq(6.v)dv = uD(E).
Vv Vv
and

VV(Dp) = 8:9;(D" p)

1 o .
= 0;0; (—/ v (v —Eé)qdvﬁ)
HJy

1 . . o .
= —0; (—/v’ajEé qdvﬁ—}—/v’(v’ —E;)d;q dvp
7

—i—/v’(vj —]Eé)qdvajﬁ)

1
=—-V. (—/vdivKquﬁ+/V(V—Eq)~quv13
n

+/V(V—Eq)qdv'Vp)

Then, with (25), we arrive at the limit equation with correction term

1
Po+ V- (Egp) =eV(V(DE)P) + ;Eqw -Ey)p). (27)
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Equivalently, we can use the moments of ¢ to write the limit equation as
_ _ 3 _ _
Po + V- (Eyp) = ;V(V(Vq(é)m +E((V-Eg)p)- (28)

Critically, if E; ~ O (as in the parabolic case) we obtain the same diffusion term
as for the parabolic scaling in (14). In fact, for E, = 0 we can simply rescale the
hyperbolic limit equation (28) by 7 = ¢o to obtain an identical limit to (14).

The Hyperbolic Scaling. Further to (4) we make the following assumptions:

(B1)
o = et, & = ex,

where o, £ are of order one.

Let p(o, €, v) be a solution of the scaled kinetic equation

&ps +&v-Vep = u(gp — p). (29)

Then the solution p can be splitinto p = pg + ep*, where the leading order
term p (o, £) is approximated by the solution of the drift-diffusion equation

Po+ V- (Byp) = EV(V(Vq(S)ﬁ) +Ey(V-E)F).  (30)

From the construction it is expected that the approximation should be second order
in &, although to our knowledge this has not yet been shown.

S The Moment Approach

Moment closure provides a third way to derive macroscopic equations from the
transport model (1). As in the previous cases, it was first developed in a physical
context to describe the dynamics of fluids and gases and we will therefore adopt the
physical definitions within the present biological context. The principle players are
mass, momentum and energy, with the goal of defining model equations for these
quantities.’

2This section is an adaptation from [10].
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Given a particle distribution p(z, x, v), the mass is defined as

ﬁ(l,x):[/p(t,x,v)dv,

the momentum as
p(t, x)U(t, x) ::/vp(t,x,v)dv,
14

and the internal energy by

E(Z,x):/V|V—U(t,x)|2p(t,x,v)dv.

The momentum implicitly defines the ensemble (or macroscopic) velocity

1
U(I,X) = m/‘/vp(t,x,v)dv.

The energy is the trace of the pressure tensor

P(t,x) = /V(v —U(t, x)(v=U@t,x) p(t,x,v)dv,

in the sense that
E(t, x) =t P, x).

In a physical context mass, momentum and energy have vey precise meanings
yet applied to biology we must consider carefully their appropriate biological
reinterpretation. The total mass, p, and ensemble velocity, U, correspond directly
to their physical quantities, describing respectively the total density of individuals
and their average velocity. The momentum pU is somewhat different, since cells
and animals generally cannot be regarded as hard spheres and hence pU is not
the physical momentum an ensemble of cells would generate if it hits an object,
for example. The biological momentum can simply be regarded as the average
particle flux, i.e. the total density, p, multiplied by the mean velocity, U. The
energy is the trace of the full pressure tensor and direct interpretations of either
pressure or tensor are hard to find. We can, instead, consider these from a statistical
perspective. The ratio p/ p is a probability density with respect to the velocity, with
U/ p the expectation and P/ p the variance-covariance matrix. Consequently, U/ p
gives the mean velocity and P/ p gives information on the breadth of the distribution
p/ p- The variance-covariance tensor P/ p is symmetric, but can be anisotropic
and allowing greater spread in one direction than others. The energy E/p is the
(magnitude of the) variance with / E/ p the standard deviation.

We need one more variable which, in the physical context, corresponds to the
energy flux:

O(t,x) = /V lv—U(t, x)]*(v—U(t,x)) p(t, x,v)dv.
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The vector Q is a trace of a full third order moment, with magnitude dominated by
cells not moving with the mean velocity and direction given by the mean direction
of the outliers, relative to the ensemble velocity U .

In a similar way, we can also define the ensemble pressure tensor of the system

Po(t, x) = / U(t,x)U(t, x)T p(t.x,v)dv = p(t, x)U(t, x)U(t, x)T
v
and the ensemble energy flux

Qo(t, x) :/VUZ(t,x)U(t,x)p(t,x,v)dv: p(t,x)U?(t, x)U(t, x).

Next, we will derive differential equations for the macroscopic quantities
mass, p, momentum, pU, and energy, E. To obtain the mass conservation equation,
we simply integrate (3) over V' to obtain

pi(x,t) + V- (pt,x)U(t,x)) =0. 31

The momentum equation is derived through multiplication of (3) by v and integrat-
ing (omitting space, time and v dependencies for clarity):

/vp,fdv+/v(v-V)pdvzu/quvﬁ—u/vpdv,
14 14 14 14

(pU), +V'/Vvapdv= pwpEy — upU . (32)
The pressure tensor can be written as
P= /V(V—U)(V—U)Tp dv,
= /vap dv—/Uva dv—/vUTp dv—i—/UUTp dv,
= /WT,; dv—puurT, (33)
We use this expression in (32) and obtain the momentum equation

(PU) + V- (pUUT) = =VP + pu(pE, — pU). (34)

For the energy equation, we multiply (3) by v and integrate:
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/vzp,dv+/v2(v-V)pdv=,u/vzqdvﬁ—u/vzp dv,
E,+V~/vv2pdv:,u/vzqdvﬁ—pLE. (35)

We study the two integral terms in (35) separately. To obtain an expression for
[ w?p, we study the heat flux Q:

0= [W-vPe-vipav.
— /vvzpdv—/szpdv—/2(vU)vpdv
+/2(vU)Updv+/Uzvpdv—/UzUpdv,
:/vvzpdv—UE—ZU'/vapdv—f-ZU'(ﬁUUT),
= /vvzpdv—UE—ZU -, (36)

where we used (33) in the last equality.
To obtain the second order g term, we compute

trv, = /(vi —E;)(v,- —E,i)g dv,
14

= /viviqdv - / VEgigdv — /E;viqdv + /E;Eqiqdv,
= /vzqdv -E;. (37)
Hence the energy equation (35) becomes
E,f+V-(EU):—VQ—2V-(U~]P’)+u(trVq+E$—E). (38)

The equations for mass, p, momentum, pU, and energy, E, are given by (31), (34),
(38) respectively. However, this system is not closed, due to the inclusion of the
higher order moments P and Q. To resolve this, we can attempt a derivation of
differential equations for these higher moments, although in doing so even higher
order moments will appear: if fact, the sequence of moment equations is unending
and we face a moment closure problem. Thus, we must find a mechanism for
estimating the higher order moments in order to close the system of equations (31),
(34), (38). Two standard ways of finding a moment closure are through (1) the
equilibrium distribution and (2) entropy maximisation. Here we focus on the first
method, noting that details of the entropy method can be found elsewhere (e.g. [16]).
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5.1 Moment Closure

The principal assumption here is that the system is close to equilibrium and that
the higher order moments are dominated by this equilibrium. Earlier, we computed
ker Z = (q). Hence the equilibrium distribution has the form

Ppe(t,x,v) = p(t,x)q(x,v).
For this distribution, we can explicitly compute the moments:

¢ Mass,
putt.0) = [ 50990 = 50.3):
¢ Momentum,

Bet, ) UL (1, %) = / V(. X)) dy = (. )E, (x):

¢ Pressure tensor,

P.(t,x) = /(v -E)v— Eq)Tﬁ(t, x)g(x,v)dv = p(t,x)V,(x); (39)
* Energy flow,

0.(t.x) = / WPyt X)g(eV)dy = p(t.x)T, (). (40)

where we introduce the third order moment of ¢
Ty(x) = / Vg (x,v)dv.

These formulae reveal that at equilibrium all momentum is carried by the ensemble,
which is moving in the mean network direction [E,, and that all energy and pressure
is produced by the variance-covariance matrix of the underlying distribution. The
above expressions for the pressure tensor and energy flux are employed to close
system (31), (34), (38) for mass, momentum, and energy. We should stress that here
we are making an approximation and that even though we retain the equality sign
p, U, E are approximations to the exact p, U, E values.

Moment Closure. In addition to (4) we assume that

(C1) the macroscopic quantities P and Q are given by their equilibrium
distributions (39), (40).
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Then the mass p, the momentum pU and the energy E are approximated by
the solution of the closed system:

P+ V(pU)=0 (41)

(PU) + V- (pUUT) = =V(pV,) + w(pE, — pU) (42)
E,+ V- (EU) = =V(pTy) —2V- (U - (pVy))

+u(tr V, + E2 — E) (43)

We note that for the closed system (41)-(43), the first two equations are
independent of the energy E. Hence, (43) decouples and we can study the first two
equations (41) and (42) independently.

5.2 Fast Flux Relaxation

The derivatives on the left hand side of (41)—(43) all have characteristic form d,¢ +
V - (U¢), termed the directional derivative of ¢ in the direction of the flow U (also
known as the material derivative or characteristic derivative). As a special case we
assume that the flux relaxes quickly to its equilibrium, i.e. we set

0=-V(pVy + n(pE, — pU),

which we can solve for pU to give
_ I, _
pU = —;V(qu) + pE,.
Using this expression in (41) yields the drift-diffusion equation

1
pr + V(ﬁEq) = ﬁvv(ﬁvq)‘ (44)

Fast Flux Relaxation. In addition to (4) we assume that:

(C1) The macroscopic quantities P and Q are given by the equilibrium
distributions as in (39), (40);
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(C2) The momentum pU relaxes fast to its equilibrium.

Then the total mass p(z, x) is approximated by the solution of the drift-
diffusion limit equation

1
P+ V(pEy) = ;VV(ﬁVq). (45)

6 Comparison Between Scalings

In this section we will summarise the various scaling methods and compare and
contrast our findings. First we will focus on the forms of the limit equations them-
selves, with an explanation of the relationships between them, before proceeding to
examine their underlying assumptions. For convenience of comparison, we unify the
notation by setting u = p = po and specifying a generic time coordinate ¢ (noting
that ¢ had been rescaled to t for the derivation of the parabolic and hyperbolic
limits).

6.1 Relationships Between Limit Equations

The three scaling approaches resulted in the following four limit equations:

* Parabolic scaling (PS),
1
u = —=VV(©Vyu); (PS)
I

* Hyperbolic scaling (HS),
u + V- (Egu) =0; (HS)
* Hyperbolic scaling with correction terms (HC),
w + V- (Eyu) = EVV(un) + 2v (B (V- E)u): (HC)
¢ Moment closure (MC),

uy + V(Equ) = %VV(un). (MC)
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Clearly the above equations reveal significant overlap. For example, moment closure
(MC) is a combination of the parabolic (PS) and hyperbolic scaling (HS), containing
both diffusion and drift terms. Consequently, we refer to the parabolic scaling as
the diffusion-dominated case, with the hyperbolic scaling the drift-dominated case.
More formally, the relationships between the limiting equations can be grouped into
the following lemma.

Lemma 1. We summarise the relationships into five scenarios.

1. (Diffusion-dominated) In the case B, = 0 all three approaches (PS), (HC),
(MC) lead to the parabolic limit (PS), while (HS) is trivial.

2. (Diffusion-dominated) If[E, ~ O(g?), then equations (HC) and (MC) coincide
with the parabolic limit (PS) to order e.

3. (Drift-diffusion limit) If E, ~ O(e) equation (HC) is identical to (MC) to
leading order (assuming a suitable scaling of time in (HC)).

4. (Drift-dominated) If V, ~ O(e), then (MC) coincides with the hyperbolic
scaling (HS) to leading order.

5. (Drift-dominated) If 1 ~ O(¢™"), then (MC) once again coincides with (HS) to
leading order.

6.2 Assumptions Behind Limit Equations

Having explored the relationships behind the limit equations, we next consider their
underlying assumptions.

(Parabolic) Here the expectation £, = 0 and there exists a small parameter
& > 0 such that either T = 8zt,§ = &x, where 7 and £ are both of order one, or
w=¢g2ji,s = ¢ !5, where fi and § are both of order one.

(Hyperbolic) There exists a small parameter ¢ > 0 such that 0 = ¢t,§ = ex,
where ¢ and £ are both of order one.

(Moments) The higher moments P and Q are given by the equilibrium distribu-
tion and the momentum pU relaxes quickly.

While an all-encompassing interpretation of these assumptions is somewhat diffi-
cult, we provide the following intuitive scenarios. In the following section, these
distinctions will be illuminated further through specific applications.

(Parabolic) The time scale is one in which particles are fast and turn frequently,
with movement close to a Brownian random movement. The environment
provides no specific directional cue (or, at least, a relatively weak directional cue)
and hence E; ~ 0 (i.e. movement up or down a given direction is effectively
equal). Directional bias could be included through possible anisotropy of the
variance-covariance tensor V, of the underlying medium.
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(Hyperbolic) Once again, time and space scales are chosen such that particles
are fast and turn often. But now the movement has a very clear directional
component, [, # 0 and the drift component dominates.

(Moments) Here it is assumed that the pressure tensor is close to the pressure
tensor of the equilibrium. Effectively, the system as a whole is near to equilib-
rium with subsequently small differential pressure terms. This implies that the
population density p is “somewhat” closely aligned with the underlying tissue.

We note that all three methods lead to an anisotropic diffusion equation of the
form
U =VV(DU) (46)

i.e. the diffusion tensor lies inside the two derivatives. In the literature, anisotropic
diffusion is usually associated with an equation in divergence form,

V, = V(DVV). (47)

This second form is derived from material physics, where the material flux is
taken to be proportional to the gradient VV with proportionality factor D. As
we also discuss in Sect.7.1.3 below, the above two models are quite different. If
D is positive definite, (47) obeys the maximum principle and solutions converge
to homogeneous steady states (on bounded domains with zero-flux boundary
conditions, for example). In contrast, equation (46) does not have a maximum
principle and, as we see later, spatial patterns can evolve.

When deriving diffusion equations from stochastic processes, both of the above
versions (46) and (47) can be generated. For example, Othmer and Stevens [32]
present a careful analysis that reveals how different assumptions for an individual’s
local response to the environment results in distinct macroscopic models, including
the above two forms. Here we have shown how a model of type (46) arises very
naturally. It is certainly possible that a distinct set of assumptions to those used in
this paper could also give rise to a model of type (47), however we do not take this
further at present.

7 Examples and Applications

During the last few sections we have established a toolkit for generating distinct
macroscopic equations, originating from the same transport model for movement of
an individual (whether cell or organism) in an oriented environment. In this section
we demonstrate these findings through a combination of examples and some specific
applications.
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7.1 Bidirectional and Nondirectional Environments

Here we consider environments in which the orientational cues do not provide a
single direction to the biased movement. Examples range from the movement of
wolves along seismic lines, hikers along footpaths, animals along roads or cells
along collagen fibres: i.e., while there is a tendency to move with the alignment of
the environment, there is no specific “up” or “down”. As previously specified, we
model this by assuming symmetry in g:

q(x,—v) = q(x,v) s

with the direct consequence
E, =0 and V,(x)= / wlq(x,v)dv.
v

In relation to the above scaling methods, item (1) of Lemma 1 applies: we have no
drift term and all methods lead (eventually) to the diffusion limit

pr =V(VD(x)p), (48)

where D(x) = ﬁVq (x) is an anisotropic diffusion tensor.

7.1.1 Isotropic Diffusion: The Pearson Walk

We illustrate the above with the simplest version of a transport process as expressed
by (3) in a completely uniform directional field (i.e. we have a nondirectional
environment): the Pearson walk. Individuals are assumed to move with a constant
speed s (V = sS"™!) and the underlying directional field is uniform:

sl—n

1
gOev) = o =
VI~ s

Again, g is symmetric and hence [, = 0. The variance is computed as

sl—n s2 |Sn—1| s2
VvV, = T dv = 2 n—l/ Td = I 1 27 ,
q /VV q(v) v ISn_lls s _— Yy ao ISn_ll n n n n

where [, denotes the identity matrix.
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Hence, the drift component will be zero and the diffusion is isotropic with
diffusion constant®

7.1.2 Anisotropic Diffusion Example

We present a specific example together with some simulations of the transport model
and its diffusive limit. Specifically, we consider a migrating population within a
simple rectangular landscape (set to be of dimensions [—10, 10] x [—10, 10]) with an
oriented section centring on the origin. The orientational field strength is assumed to
reduce with distance, effectively becoming isotropic in the periphery. See Fig. 2a—d
for a representation of this environment.

For the directional distribution ¢ we consider the bimodal von Mises distribution:

q(x,0) = (X7 4 &7k (49)

47{10(]{)

where § € S' defines the movement direction of the population and y € S!
defines the dominating alignment of the local environment. 7, denotes the modified
Bessel function of first kind of order n. Note that the von Mises distribution is the
analogue of a normal distribution on a circle. The parameter k defines the strength
of anisotropy and is termed the parameter of concentration. The above bimodal
von Mises distribution clearly has two local maxima, one for # = y and one for
6 = —y [3]. For k — 0 it converges to a uniform distribution (i.e. isotropic), while
for k — oo it converges to a sum of two point measures in directions y and —y.

To represent an environment in which anisotropy varies in the manner described,
we assume k(x) decays exponentially with distance from the origin

k(x) = koe "M,

where, in this example, we set kg = 10 and r = 0.25. This leads to high anisotropy
in the centre of the domain and almost no directional bias in the periphery.
Generally, y could vary in space (for example, as in a curving road) however here
we set it constant and in the direction of the diagonal, y(x) = (1/+/2,1/+/2).
Figure 2a represents the environmental anisotropy for the central portion of the
field, with the orientation and size of k represented by the direction and length
of the individual line segments. For the three field positions indicated we plot the
corresponding bimodal von Mises distributions in Fig. 2b—d.

3A general formula for directional moments, such as [ yy”dy = |S"~!|/n 1, can be found in
[16].



Anisotropic Diffusion 203

5
a
0
-5 0
-5 0 5 0 pi/2 pi 3pi/2 2pi
10 1.4 1.4
e f
13 13
1.2 1.2
i . i
ol
1 . 1
0.9 08
0.8 0.8
10 0.7 0.7
10 14 14
g h
1.3 1.3
1.2 1.2
. 11 . 11
0.
» 1 » ‘
0.9 0.9
0.8 0.8
-10 2 0.7 2 0.7
-10 1] 10 -10 1] 10

Fig. 2 Population heterogeneity arising due to bidirectional orientation of the environment.
(a)—(d) representation of the imposed anisotropy, with (a) representing strength of anisotropy
k (length of line segments) and alignment in the field (figure truncated at &5 to aid clarity of
presentation) and (b)—(d) plotting the corresponding distribution (49) at each point indicated, as a
function of 8 = (cos ¢, sin¢) for ¢ € [0,27). Note that two dominating and equal orientations
arise corresponding to y = =(+/2/2,+/2/2). (e)~(g) Simulation of the transport model (3)
under the imposed ¢, showing the predicted macroscopic cell density p at time t = 50 for
@s=01pu=0015®s=1u=1(gs =10, u = 100. (h) Simulation of the parabolic
limit (51) at the same time ¢ = 50 with s/ = 1 and the diffusion tensor as computed from (50).
For details of the numerical implementations we refer to the Appendix

We first simulate the original transport model by substituting the above k and y
into (49) and solving (3). For details of the numerical methods used throughout
this section, we refer to the Appendix. We assume the population is initially
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homogeneous and unaligned, with p(x,v,0) = constant and p(x,0) = 1. To
limit the impact from boundaries we impose periodic boundary conditions along
edges. In Fig. 2e—g we plot the macroscopic cell density p(x,¢) at ¢ = 50 for three
distinct speeds, s, and turning rate, u: () s = 0.1,u = 0.01; () s = 1, u = 1;
(g) s = 10,u = 100. Note that the parabolic limit corresponds to the limiting
scenario in which s — oo, i — oo with s?/u constant and we can therefore
expect (g) to most accurately reflect the solution to the parabolic model. The
simulations reveal the impact of the environmental anisotropy on the population.
Far from the origin the population is almost uniformly distributed. Nearer the centre
a heterogeneous population distribution arises due to movement into the aligned
region with subsequent transport in the direction of alignment. The bidirectional
movement in this region results in symmetry in the population distribution, with
a “dumbbell-like” pattern arising composed from regions of higher and lower
density. The aggregations develop due to transport along the aligned region where
they accumulate in the peripheral, isotropic regions. Notice that there is no taxis or
adhesion involved in these aggregations; the patterns result solely from the geometry
of the underlying network.

We next determine the corresponding drift (E,) and diffusion (V) for the macro-
scopic equations by finding the moments of the bimodal von Mises distribution.
Such computations are usually quite involved and require multiple trigonometric
integrals (see [28]), however in the Appendix we present an alternative method
based on the divergence theorem. Specifically, we find

E,(x) =0,
(LK), | bk
Vo) =3 (1 Io(k<x)>)ﬂz+ Lkx)'? 0)

Thus, as expected for the bidirectional case, the drift term disappears while
diffusion generates a tensor composed from an isotropic (I,-term) and non-isotropic
component (yy”-term). Consequently, the macroscopic version of the transport
equation simulated above is the anisotropic diffusion equation

2
b= %V(Wq(x)ﬁ), (51)

where the heterogeneous and anisotropic diffusion tensor is given by (50) using the
choices for y and k(x) above that define our direction distribution. Simulations are
shown in Fig. 2h for a simulation of (51) with s2/u = 1, with p(x,¢) plotted at
t = 50. Notably, the population distribution quantitatively matches the output from
the transport model under the simulated parabolic limit scaling of s and u.



Anisotropic Diffusion 205

7.1.3 Steady States

The above simulations suggest a capacity of the model to generate inhomogeneous
steady states, at first a little surprising for a pure diffusion model. Closer scrutiny
of (51) reveals how these patterns could arise as we demonstrate through the one-
dimensional example. Consider the following distinct models for movement of a
population within an interval:

u = (D(x)uy)y (52)

and
ur = (D(x)u)xx (53)

with homogeneous Neumann conditions assumed at the boundaries. Equation (53)
can be expanded into u; = (D'(x)u + D(x)uy),, revealing an additional advective
term with advective velocity D’ in comparison to (52). To determine the impact of
this extra term we examine steady states for (52) and (53).

At steady state, (52) leads to (D(x)uy)y = 0 which, after integrating and
applying the boundary conditions, yields D(x)u, = 0. This implies u, = 0 and
u(x) is constant at steady state. This is what we expect for a pure diffusion process.
Steady states for (53), on the other hand, satisfy (D(x)u),xx = 0 and hence we find
(D(x)u)x = 0. Thus, D(x)u = ¢ (constant) and

u(x) = #x)

For spatially varying D(x), (53) clearly allows nonuniform steady states, with the
corresponding u(x) being high or low in small or large diffusion regions, respec-
tively. The additional advective term lies at the heart of this nontrivial steady state.

7.1.4 Application to Seismic Line Following

Having confirmed that the diffusion model (51) can accurately capture predicted
behaviour of the original transport model, at least under relevant scalings, we now
apply the method to tackle a specific ecological problem: wolf movement in certain
habitats. The model as discussed is particularly useful for describing the movements
of populations in environments containing linear features such as roads, rivers,
valleys, or seismic lines. Work by McKenzie and others [28, 29] determined the
movement patterns of wolves in a typical Western Canadian habitat, consisting of
boreal forest cut by seismic lines. Seismic lines are clear-cut straight lines (with a
width of about 5 m) used by oil exploration companies for testing of oil reservoirs.
Typical densities are approximately 3.8 km of lines on 1 km? and both wolves and
ungulates (such as caribou) use these lines to move and forage, leading to significant
impact on predator prey-interactions.
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To describe the movement of wolves in such a habitat, McKenzie used GPS data
generated from four individual wolves and estimated parameters for a diffusion-
advection model, dividing the habitat into three areas: (i) seismic lines, (ii) near
seismic lines (less or equal 50 m), and (iii) far from seismic lines (larger than 50 m).
Wolves demonstrated preferred movement along lines, while occasionally leaving
lines to reenter forest. In particular, wolf movement data on seismic lines supported
a fit to the directional distribution given by the bimodal von Mises distribution (49),
where y(x) € S! now describes the direction of the seismic line and 8 € S! the
movement direction of the wolves.

To model this scenario we consider the parabolic limit of an underlying transport
model in which wolf direction varies according to being on or off a seismic line.
With no up or down information provided by the seismic line, we therefore have
a bidirectional local environment and can expect the density of wolves, w(x, 1), to
follow the anisotropic diffusion equation

2
Wy = %V(Vqu), (54)

where the anisotropic diffusion tensor V, is given by (50), y(x) will correspond to
the direction of a seismic line while k(x) varies according to a position on or off a
seismic line.

To illustrate the applicability, consider for the moment a coordinate system
aligned with a seismic line, i.e. y = e;. Here we can directly compute the diffusion

tensor: | o
2
1+ )
v, =| 2 ( Io(k)

1 L(k)
© 3 (1 B m(k))

The term I,(k)/Iy(k) enhances the mobility along a seismic line and reduces
mobility in perpendicular direction. Moreover, for k — oo (corresponding to an
increasing strength of anisotropy), I>(k)/Io(k) — 1 and the above diffusion tensor
collapses to one-dimensional diffusion along the seismic line.

Away from the seismic lines wolves show no clear tendency to migrate towards
or away from seismic lines [28]. Effectively, away from the lines we set k(x) = 0 in
the bimodal von Mises distribution (49) and we obtain the isotropic diffusion tensor:

1

Vi = E]Iz' (55)

Using these ideas, we next simulate the expected population distribution for
wolves in a typical habitat containing seismic lines. The aerial photograph in
Fig.3a is of a Northern Alberta landscape in winter, demonstrating a woodland
habitat criss-crossed with a combination of roads (thicker lines) and seismic lines
(thinner lines). This image was digitised into a binary map, Fig.3b, showing
areas of seismic lines (or roads) (white) and away from seismic lines (black).
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Fig. 3 Wolf distribution in anisotropic environments. (a) Aerial photograph of a Northern Alberta
(Canada) landscape, showing criss-crossing seismic lines and roads. (b) Binary map created from
(a) with lines marked as white. (¢) Blow-up of boxed region in (b), showing detail of the anisotropic
diffusion tensor automatically generated from the image in (b). (d—f) Numerical simulation of (54)
for a uniform distribution w(x, 0) = 1, using the computed diffusion tensor generated from (b) and
setting s2/p = 1. Wolf density w(x, t) is plotted at times (d) ¢ = 0, (e) t = 1 and (f) ¢t = 10.
(g—i). Numerical simulation for w(x,0) = 1006~ —xel’ (where x. marks the domain centre),
showing w(x, ) at times (g) t = 0, (h) t = 1 and (i) t = 5. Note that the simulated domain is
a little larger than that plotted, with the surrounding zone assumed isotropic and implemented to
reduce the impact of boundary conditions (note that this has negligible impact on the qualitative
results presented). For details of the numerical implementation we refer to the Appendix

An automated processing of this image was applied to calculate the orientation at
a point specified as seismic line, with this orientation determining the vector field
y(x) used to compute the anisotropic diffusion tensor (50). In Fig. 3¢ this anisotropy
is represented for a small square section indicated by the boxed area in 3b, with the
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long axes at each point representing the direction (and strength) of the alignment.
We set k = 2.5 for points marked as on a seismic line and k = 0 for points marked
as off a seismic line. To limit the impact from boundary conditions we remark that
the digitised region in B was buffered with a perimeter of isotropic diffusion.

Preliminary simulations for the distribution of wolves, w, are shown for two ini-
tial conditions: a uniform distribution w(x,0) = 1 in Fig. 3d—f and a 2D Gaussian-
type distribution centered in the field for Fig.3g—i, w(x,0) = 100e~F=x", In
the former we observe the emergence of a spatially variable wolf population from
homogeneity, with a clear tendency of the population to accumulate and move
preferentially along the lines, shown at times (d) t = 0,(e)# = 1 and (f) # = 10. The
diffusion from the concentrated initial distribution further reveals this preferential
spread, with wolves clearly dispersing more rapidly along the lines than through
the surrounding lines; here, wolf distribution is shown at (g) t = 0, (h) # = 1 and
it =>5.

7.2 Unidirectional Environments

In many cases an environmental cue can provide a specific direction, as in the
magnetic fields used by migrating turtles and whales, the slope of the ground for
hilltopping butterflies, the movement of organisms towards food sources or the
current of a river. To include such cues we can remove the symmetry assumption
for g imposed in the bidirectional case.

To examine how this impacts on the scaling limit we consider the specific
example of attraction to a food supply. We let F'(x) denote a given food distribution,
with x € R2, and assume that individuals more or less accurately identify the
direction of the food source (e.g. by smelling) and move towards maxima of F.
We therefore consider the unit vector that describes the orientation of the field to be
given by

() = VF(x)
P T IVE@I

Since orientation of individuals is rarely perfect (i.e. movement will not be directly
in the direction of the food) we take a (unimodal) von Mises distribution about the
gradient of F:
1

G(x,0) = ————ek7. 56

q(x.0) = —— o) (56)
The above defines a direction distribution in which individuals align and migrate
in the direction of the source. Note that varying degree of alignment could also
be incorporated, for example through allowing k to depend on the size of F or
IV F(x)||. To determine the macroscopic terms we again compute the moments of
the distribution (see Appendix):
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I, (k)
Iy(k)

1 Iz(k)) L(k) (ll(k))z r
Vo==(1- L + - vy . (58)
‘T2 ( Io®)) > " \Tok) ~ \To(k)
Notably, the drift term [E; is now nonzero and in the direction of V F'(x), whereas the
diffusion term has two components: an isotropic part and an oriented nonisotropic

part, which is proportional to V F(x)V F(x)”. The resulting macroscopic equation
is therefore of the form of an anisotropic drift-diffusion equation

E,(x) = i (57)

2
S
e +sV(E;p) = ;V(Vqu)- (59)

It is worth noting two limiting scenarios. For the parameter of concentration k
becoming small (i.e. the food source provides a weak orientational cue), then

limE, =0 IimV, = -1,
k—0 k—0 2

and we obtain uniform isotropic diffusion and no accumulation at the food source.
For the parameter of concentration k becoming large (i.e. the food source provides
a strong orientational cue), then

lim E, =y lim V, =0,
k—o00 k—>o00

and hence we obtain the pure drift equation in which cells move directly towards
the food source with speed s.

7.2.1 Anisotropic Diffusion-Drift Example

To illustrate how unidirectional environments impact on patterning, we present
a scenario analogous to the example of Sect.7.1.2. Specifically, we consider a
population in a landscape with a unidirectional patch in the centre of the domain.
We assume the above von Mises distribution (56) with the main orientation along
the diagonal y = (1/+/2,1/4/2)7,

1
) = — kI
9. 0) = 3T ¢

Once again k(x) is assumed to decay exponentially from the centre to the periphery
of the domain, with

k(x) = koe "M .

Here we set kg = 5and r = 1.0.
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We again perform a direct simulation of the original transport model (3) with
the above choice for g and solving subject to the same initial and boundary
conditions as for the example of Sect.7.1.2. As we observe in Fig. 4e, the directed
patch significantly impacts on the subsequent distribution of the population.
Rapid transportation through the oriented region results in a markedly decreased
population density within this region. This generates a large “plume”-like structure
adjacent to this region.

We simulate the corresponding anisotropic diffusion-drift equation. For the above
von Mises distribution we compute the heterogeneous drift and diffusion terms
from (57) and (58) respectively and substitute these into (59). Simulations show an
excellent quantitative match with the transport model, Fig. 4f, once again confirming
the validity of the macroscopic scaling process.

7.2.2 Relation to Haptotaxis and Chemotaxis

As a brief remark we note that unidirectional environments can be reinterpreted in
terms of modelling haptotaxis (directed migration of cells in response to regions
of high adhesivity in the ECM), chemotaxis (directed movement in response to
chemical gradients) and other forms of gradient following. Haptotaxis and chemo-
taxis are typically modelled by an advective type term in PDE models (e.g. see
[2,19,22,27,31]), with cell velocity proportional to the adhesion/chemical gradient.

The present work provides new motivation for such models. For example, we
assume F(x) describes the ECM adhesivity field surrounding a cell and take the von
Mises distribution (56) to describe oriented movement towards higher adhesion, i.e.
we take ¢ to be given by

-.VF
g(v) = Ssqvrp (Il v VFG) )

1
2lo(k) 7 ( VI IVE®]

Furthermore, we let the speed s depend on the strength of the gradient, s(||V F(x)]|).
Since E; # 0, the parabolic limit does not apply and we employ instead the
hyperbolic scaling. Drift subsequently dominates with diffusion of lower order and
the corresponding macroscopic model becomes (to leading order)

s(IVFE])

2nl(k)V -
w207 (g

VFu) =0.

The field F could also be reinterpreted to describe other forms of tactic migration.

7.3 Singular Distributions

The theories above have been derived for regular measures ¢ € L2 only and,
while it is possible to extend some of the results to singular measures (see for
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Fig. 4 Population heterogeneity arising due to unidirectional orientation of the environment.
(a)—(d) representation of the imposed anisotropy, with (a) representing strength of anisotropy k
(length of line segments) and the directional alignment of the field (figure truncated at £3 to
aid clarity of presentation) and (b)—(d) plotting the corresponding distribution (56) at each point
indicated, plotted as a function of 8 = (cos ¢, sin¢) for ¢ € [0,27). Note that the dominating
orientation corresponds to y = («/5/ 2, «/5/ 2). (e) Simulation of the transport model (3) under
the imposed ¢, showing the predicted macroscopic cell density p at time t = 50 for s = 10 and
= 100. (f) Simulation of the diffusion-drift limit (59), using s = 10 and s?/;# = 1 and plotted
at ¢ = 50, with the diffusion tensor computed from (58) and the drift term calculated according to
(57). For details of the numerical implementation we refer to the Appendix

example [7,20]), the mathematical overhead becomes enormous; here we simply
apply the formal limit equations in good faith. Singular measures, however can play
an important role either in describing certain oriented fields or representing a limit
scenario for previously considered cases.

7.3.1 Strictly Bidirectional: Degenerate Diffusion
If we consider the earlier bimodal von Mises distribution (49) and let k — oo we

converge to two point measures in directions y and —y. Such distributions could be
considered as completely aligned and bidirectional networks. Specifically, we let
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400) = 5 G0 ) + 5000

and find
E,=0 and V,=yy". (60)

Thus, there is zero drift and diffusion is given by a rank-one tensor V, i.e. diffusion

occurs only along the y/ — y axis. The corresponding diffusion tensor D = %Vq is
degenerate and not elliptic, hence the general solution theory for parabolic equations
does not apply. In a forthcoming paper we develop methods that allows us to
describe very weak solutions for such degenerate problems [21].

7.3.2 Strictly Unidirectional: Relation to ODEs

For the corresponding unimodal von Mises distribution (56) with k — oo we obtain
a singular distribution. This defines a strictly aligned unidirectional field and, as
described in [17], there is a striking relation between these limit equations and the
theory of ordinary differential equations (ODE).

The solution of the autonomous differential equation

x(@) = f(x(0) (61)

in the domain R” is given by the solution semigroup @(¢, xo) which describes orbits
that are tangential to the vector field f(x). In our notation here, we assume that this
vector field f(x) € V defines a given direction at each point in R" and define

q(x,v) =8rxn(v), (62)
where § y denotes the point measure with mass in f € V. In this case we find
E,(x) = f(x), and V,=0.

This is a clearly drift-dominated situation and the hyperbolic scaling is appropriate.
Item (4) of Lemma 1 applies and we obtain the limit equation

u + V(f(x)u) = 0.
This hyperbolic PDE has the characteristics
x(1) = f(x(1)),

which is the ODE from above. Hence typical movement paths of particles in an
environment given by a singular measure (62) are orbits of the corresponding ODE.
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7.4 Lifein a Stream

An example that amalgamates various cases above (nondirectional, unidirectional
and singular) is the movement of living organisms in a stream (which, for conve-
nience, is assumed to be two dimensional).

Movement can be split into two principal contributions: (i) transport due to
the current, and (ii) active movement by the individuals. For transport due to the
current we let y(x) denote the direction of the stream (assumed quasi-constant
over the timescale of interest), and let q1(6) = 6, (x)(0) define the stream current.
We augment this transport with a degree of turbulence, expressed via the random
movement contribution g, (8) = |S"~!|71.

For the active movement we assume individuals are biased towards a given food
source . VF()

SRS 3 €O N - YY)
PO=mnwt M TS R
where F(x) describes the distribution of food inside the stream. To simplify
computations, we assume individuals have a preferred speed s, i.e. V = sS"!,
Hence, ¢ is a convex combination of the above effects:

g(x.v) = 5" (191 (D) + 02q2(P) + a3g3 (D)) |
where @y + oo + a3 = l,ando; > Ofori = 1,...,3.,and v = v/|v| denotes the

unit vector in direction of v.
In this case, the macroscopic drift component is given by

E;, = ary(x) + saz2xli (k) (x).

Drift arises as the interplay between transport due to the stream y (x) and movement
towards the food source I"(x). The diffusion term is given by

57 | a3 I (k) I (k) Lik))
Dx)=—|=L+—=|(1- I - reorx)’
) Iz {2 3 ( Io(k)) 2T\ T (lo(k)) (r
derived from a combination of random movement and the imperfect response to the

food source. We note that more detailed modelling of river ecosystems and species
survival has been undertaken by Lutscher et al. [26].

8 Discussion

The principal aims of this paper have been to demonstrate the effectiveness of
transport equations as a method for modelling cell or animal movement, to explain
and summarise the various scaling limits that allow their approximation to distinct
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macroscopic models, and to consider a few pertinent ecological applications, such
as wolf movement on seismic lines, attraction to a food source and movement in
rivers.

The transport model is a natural model for movement, relying as it does on
experimentally measurable data such as speeds and turning rates for its key inputs.
While it is certainly possible to study the transport model directly, both the analytical
and numerical overheads can be costly. For example, the numerical solution of
the simple (and assumed 2D) transport model given by (3) requires discretisation
not only over space, but also orientation; extensions to relevant scenarios such as
3D, variable speeds or more intricate turning functions would significantly add to
the computational time. Simplifying to the relatively straightforward macroscopic
model, which still possesses details of the underlying microscopic processes in its
macroscopic parameters, allows far faster numerical computation while opening the
vault to a wealth of analytical tools.

Typically the scaling methods considered here (parabolic scaling, hyperbolic
scaling, and moment closure) are studied separately and it can be difficult for
unfamiliar readers to determine why one method is chosen over another. By
focussing on a specific formulation of a transport model, originally developed to
describe cell movement in network tissues, we could transparently derive the various
limiting equations and expose the assumptions that underlie them.

Responding to a question posed during the introduction, it would be bold to
categorically state a “best” method and instead models must be treated on a case
by case basis. Succinctly, it comes down to the relative size of drift and diffusion
terms: when the model is drift-dominated, as occurs for environments with a strong
cue in a specific direction, the hyperbolic approximation applies; when the model is
diffusion-dominated, as for environments with either nondirectional or bidirectional
orientation, the parabolic limit is appropriate; if the two effects are of a similar order
then either the moment closure or the hyperbolic model with corrections provide the
most appropriate approximation.

It is worth noting that the clarity of the analysis here is a direct product of the
simplicity of our transport model. Full analyses for more general kinetic equations
can become highly technical and fill entire textbooks (for example, see [8] for
diluted gases or [5, 37] for biological applications). With the aim of illuminating
the various scaling limits we have made a number of convenient assumptions and it
is worth describing some of the limiting factors here, and their potential importance
for biological applications.

* We have not considered time-varying habitats. In many instances, the envi-
ronment can change considerably on the timescale of movement, either inde-
pendently (for example, the changing position of the sun or alterations in
wind strength) or through direct modification by the migrating population (e.g.
formation of pheromone trails by ants or restructuring the ECM by cells). The
addition of 7-dependence in the orientation function ¢ adds a significant level of
complexity and, while the scaling limits do apply, they require detailed analysis
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and consideration on a case by case basis. For details of such analyses in the
context of mesenchymal cell migration we refer to [17].

 In this paper, the environment has been assumed to only impact on the turning
of individuals, not on their speed. While it is trivial to extend the original
transport model to incorporate more general speed dependencies, the subsequent
computations to calculate the scaling limits are often complex and obscure their
basic features. We note that in the context of taxes above, we have given one
simple example on how to perform scaling for nonconstant speeds.

* Appropriate boundary conditions on bounded domains require special attention.
For example in the case of the seismic lines above, what would be meaningful
boundary conditions on and off the seismic lines for both the original transport
model and the subsequent macroscopic limits? We circumnavigated this issue in
the simulations by buffering the simulated region with a surrounding isotropic
region and using periodic boundary conditions, however other conditions could
certainly be considered. For example, zero-flux boundary conditions could be
one relevent choice, as assumed in [29].

e More complicated formulations for the turning kernel T'(x,v,v') and non-
constant turning rates w(t, x, p,v) arise naturally in many applications. Obvi-
ously, any such choice should be tailored according to the application under
analysis, however the ensuing calculations can become highly intricate. One
important yet complicated case is the incorporation of interactions between
individuals. For example, the patterns formed by many migrating populations,
from bird flocks to wildebeest, are highly structured through the response of an
individual to the movement of a neighbour.

» The simple model here has neglected aspects such as a resting phase (individuals
are assumed to move continuously) or population kinetics. For example,
modelling the impact of seismic lines on the predator-prey dynamics of wolves
and caribou would require an extension of the model to include a separate caribou
population and appropriate predator-prey interactions. Again, while tailoring the
original transport model to include such extensions is relatively straightforward,
the subsequent calculation of scaling limits would require treatment on a case by
case basis.

* On a technical side, in our theorems we have typically used the notion “is
approximated by” to denote the formal limit considerations. Rigorously, to
refer to an approximation property would require proof of convergence in an
appropriate function space and we have completely omitted these issues from
these studies.

Migration, whether cellular or animal, clearly is immensely relevant to a plethora
of crucial biological and ecological processes. Distinct methods offer different
advantages, allowing multiple windows through which the underlying mechanisms
can be observed. In this paper, our aim has been to concentrate on the transport (and
associated macroscopic) equations, with the key aim of shedding illumination on
this useful modelling approach.
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Appendix
9 Moments of von Mises Distributions

The appendix is used to present an alternative method for computing moments
of a von Mises distribution. Usually, moments are computed through explicit
trigonometric integrations (see e.g. [3, 28, 30]) however here we instead apply the
divergence theorem. While this method is easily generalised to arbitrary space
dimensions, explicit integration becomes increasingly cumbersome with increases
in the space dimension.

Given a unit vector y € S"!, we first study the (unimodal) von Mises
distribution

ek (63)

In the main text it is noted that the moments employ Bessel functions and we
begin by collecting a few of their properties. If J,(x) denote the Bessel functions of
first kind, then

Iy (x) == (=) 7" Ju(ix)

denotes the Bessel function of first kind with purely imaginary argument, or the
modified Bessel functions. For these we have the relation

1 2
I, (k) = — / cos(ng)e* < ?dg . (64)
2 0

Two further important relations include the differential recurrence

d n n

() = 2 () (65)

x

for n > 0, and the recurrence relation

2
Jo1(x) = 7”1,1 (x) = Ju1 (). (66)

9.1 Unimodal von Mises Distribution

To compute the total mass of the (unimodal) von Mises distribution (63) we denote
the angle between 6 and y by ¢:

1 2
0 = k cos ¢ =1
[ a0 = s [ kestag =1

where we used (64).
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To compute the expectation, we note

2 ly(k)E, = / 1 ekt
S

:/ div, 7dv,

B (0)

:/ kye"7dv,
B (0)

1 p27
:ky// e rdrdg
o Jo
1

= ky/ 2rrly(rk)dr ,
0

1
= 27tky/ rly(rk)dr .
0

To solve the last integral, we use (65) and write

rio(ri) = T L )i = G,
Then ! Y 1)
/0 FIo(rkydr = =ik = —ili0) = 1. (67)
and we find 1)
q = 1ok Y. (63)

The variance-covariance matrix is given by
v, = / O —E)v—E)"q(0)do = / 06" q(0)do — E,E] .
st st

To find the second moment of ¢ we consider two test vectors a, b € R? and employ
index notation for automatic summation over repeated indices

utsra [ 067q@)d0 b= [ ao'bj6le s
St sl

= / 0' (a;b; 67 ' 7)db
sl

0 .
= —(a;bjy/ e 1ydv
/Bl(m v )
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=/ aibiek”"’dv+/ a;(v-b)ky; e 7dv
B1(0) B (0)

=a-b rdy + ka - yb- ve " dv (69)
B1(0) B1(0)
The first integral in (69) can be solved directly

I (k
/ k”’dv—/ / e rdrde —/ 2rrlo(rk)dr = 2 ‘( ),
B1(0) st 0

where we used (64) and (67) in the penultimate and ultimate step respectively. Using
(64) we can transform the second integral from (69) as follows:

1 1
/ vek" 7 dy :/ / roe™ % rdrd6 :/ r2 | 0e™7dp
B1(0) 0 Jst 0 st

1
= 27[)// r21,(rk)dr, (70)
0

where we used (68) in the last step.

Now we use the differential recurrence relation (65) to write

PI (k) =~ k) Ty ) = L )ik =

1d ,. .
2 dx —EE(r J1(irk)).

Continuing from (70) we find

kv ! 1d Iz(k)
ve"Vdv = —27ry ——(r Ji(irk))dr = 2ryJh(ik) = 2wy 3
B1(0)

(71)
Substituting all the integrals back into (69)

11(") L p )
a.yZny b=
2o 2o k)
1 I (k) le(k))
=al|- L + b
(km(k)z " o)

Finally, we use the identity (66) for n = 1 to replace

1hk) 1 (1 3 Iz(k))
Io(k)

/ 6074(0)d0 b = a-b

k In(k)y 2

and the second moment is given by
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T _1 Lk ( r 1
/Sl 097 4(0)d0 = 31+ 75 (yy 2112). (72)

Together with the formula for the expectation (68) we find

vV, = ; 06" q(0)d6 — E,E]
L)1 L)\ ¢
RERATS (W - Eﬂz) - (Io(k)) vy 7
1, bk Lk (LK) g
=3 (1 - Io(k)) b (10(k) - (Io(k)) )W ' i

Clearly, if the parameter of concentration k becomes small (i.e. kK — 0) thenE, — 0
andV, — %]Iz.

9.2 Bimodal von Mises Distribution

Computations for the bimodal von Mises distribution

q(8) = (€77 +e707)

47‘[]0(]()

are very similar. Since the bimodal von Mises distribution is symmetric (or
undirected) we have E, = 0 and V, = [6067¢(0)d6. We apply formula (72)
for each of the components eX?7 and e ¥ separately and sum. We find

1(1 Iz(k))]lz bk,

U e ) e

10 Numerical Methods

10.1 Simulations of Transport Model

Simulations of the transport model (3) were performed with a Method of
Lines (MOL) approach, in which space and velocity are discretised into a
high-dimensional system of time-dependent ODEs (the MOL-ODEs). For the
transport equations presented, the rectangular spatial domain (of dimensions
L, x L)) was discretised into a uniform mesh of 201 by 201 points, while
velocity v = s(cosa, sina) (for ¢ € [0,27)) was discretised into 100 uniformly
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spaced orientations with a fixed speed s. Spatial terms for particle movement
were approximated in conservative form using a third-order upwinding scheme,
augmented by flux-limiting to maintain positivity. The resulting MOL-ODEs were
integrated in time using the ROWMAP stiff systems integrator [40], with a fixed
absolute and relative error tolerance of 107, Similar approaches to those above
were employed in [34].

10.2  Simulations of Macroscopic Models

Simulations of both the anisotropic diffusion (51) and anisotropic drift-diffusion
(59) model were performed with a similar MOL approach. The anisotropic diffusion
term was factored into diffusive and convective terms and solved in conservative
form, applying a central difference scheme for the former and first order upwinding
for the latter. The additional drift terms in the drift-diffusion model were also solved
with first order upwinding and the resulting MOL-ODEs were integrated in time
using ROWMAP with error tolerances of 10", For the two simulations in Figs. 2
and 4 we used 201 by 201 mesh points for the spatial discretisation, while for the
simulations in Fig.3 we use 500 by 500 mesh points. We note that simulations
with finer spatial discretisations and smaller tolerances demonstrated no appreciable
quantitative difference.
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