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Abstract Hilltopping butterflies direct their movement in response to topography, facilitating
mating encounters via accumulation at summits. In this paper, we take hilltopping as a case-study
to explore the impact of complex orienteering cues on population dynamics. The modelling em-
ploys a standard multiscale framework, in which an individual’s movement path is described as a
stochastic ‘velocity-jump’ process and scaling applied to generate a macroscopic model capable of
simulating large populations in landscapes. In this manner, the terms and parameters of the macro-
scopic model directly relate to statistical inputs of the individual-level model (mean speeds, turning
rates and turning distributions). Applied to hilltopping in butterflies, we demonstrate how hilltop-
ping acts to aggregate populations at summits, optimising mating for low density species. However,
for abundant populations hilltopping is not only less effective, but possibly disadvantageous, with
hilltopping males recording a lower mating-rate than their non-hilltopping competitors.

Keywords: oriented movement; topographical cues; multiscale models; butterfly populations; mate
location.

1 Introduction

Natural environments are replete with cues that provide useful orienteering information: topog-
raphy and landmarks, chemical, magnetic and electric fields, and so on. The question of how an
evolving, heterogeneous and anisotropic environment is filtered and exploited by an individual is
quite clearly a complex and difficult one, yet the answer is essential for understanding the spatial
organisation of a population and, in turn, population dynamics. ‘Hilltopping’ is a phenomenon
associated with a number of butterfly species (and other flying insects), in which individuals orient
in response to topography and accumulate at summits (Shields 1967; Scott 1968; Alcock 1987). The
short lifespan of many butterflies places a significant pressure to mate, and their susceptibility to
a wide variety of factors, including climate, habitat, parasitism and predation, can generate signif-
icant variations between one year and another: consequently, their dynamics provide an important
model for evaluating the robustness of populations in general, e.g. see Ehrlich and Hanski (2004).
Efficient mate-locating strategies, particularly for low density species, are a must and hilltopping,
in which peaks act as foci for newly emerging females, offers one such mechanism. Consequently,
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hilltopping has been the focus of a number of field studies (Shields 1967; Scott 1968; Ehrlich and
Wheye 1986; Alcock 1987; Baughman et al. 1988; Wickman 1988; Turchin et al. 1991; Pe’er et al.
2004), revealing its important role in determining population structure.

Insight into the orienteering cues used by organisms is typically obtained from tracking, whether
through traditional field tracking (e.g. Turchin et al. 1991) or more recent technologies (e.g. har-
monic radar, Cant et al. 2005, or global positioning systems (GPS), Tomkiewicz et al. 2010). In
the context of butterfly flight, tracking an individual and recording its landing (or turning) loca-
tion generates an approximated movement path that can be quantified by various statistics: mean
travel speeds; persistence of direction; frequency of turning and turning distributions. Correlation
with the local terrain can indicate a tendency to utilise topography for orienteering (Turchin et al.
1991; Pe’er 2003; Pe’er et al. 2004).

Field studies are always subject to an element of uncertainty, even when stringently conducted.
Modelling is unencumbered by such noise: real-world complexity can be replaced with a precisely
defined and controlled ‘environment’, although the results following such reductionism must ob-
viously be interpreted with care. Nevertheless, modelling can be used to test specific hypotheses
and explore particular questions: for example, to what extent does hilltopping increase the mating
success of a butterfly population, or does following this strategy always pay off?

Formulating a spatial model to answer such questions is, naturally, dependent on the relevant
scale of interest and the available data. The questions above are posed at the population-level, yet
movement data is obtained through tracking individuals. The latter naturally implies an individual-
based (or agent-based) model, in which each individual is described by a separate object that moves
through (and interacts with) its environment according to a set of rules motivated by hypothesised
behaviour. Yet the reliance of such approaches on raw computational power can be problematic
for large numbers in extended environments.

Modelling at a population, or macroscopic, level involves painting with a broader brush, for
example through equations for the evolution of population densities, structured by position and
time: the finer details of an individual’s movement path are condensed into net dispersal terms.
In meta-population models, the structure of a global population on a landscape is described by
a spatially-discrete network of local populations, linked through global dispersal (e.g. see Hanski
1999). In spatially-continuous models (see Cantrell and Cosner 2004), a population is typically
modelled via a continuous density distribution. For example, letting u(t,x) denote the population
density of the modelled species at position x and time t, one approach is to postulate a partial
differential equation for the rate of change of u(t,x) of the form

ut = −∇ · J(t,x) + f(u, t,x) , (1)

where right-hand side terms denote movement and kinetics, respectively. Various movement classes
can be modelled through the choice for the net population flux, J(t,x). For example, if movement is
considered to be essentially random, a classic assumption is a Fickian-style diffusive flux J = −d∇u,
where d defines the diffusion coefficient (e.g. Cantrell and Cosner 2004).

Macroscopic spatial models have tremendous power: with a root planted in classical applied
mathematics, standard analytical techniques can provide a nuanced understanding of how spatial
structure evolves over generations, with less reliance placed on brute-force computation. However,
their connection to the properties of an individual’s movement is blurred: in the context of (1),
what are the appropriate flux terms to describe a particular form of movement and what are the
relationships between macroscopic parameters, such as the diffusion coefficient, and the statistical
quantities obtained from individual-level data?

Reconciling population-level models with individual-level data can be achieved using a mul-
tiscale approach: for example, an individual-based model is formulated and scaling arguments
employed to bridge the gap to the corresponding macroscopic model. Moreover, simultaneous com-
putations of individual-based and continuous models provide distinct perspectives on the properties
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Fig. 1 Illustration of the modelling framework: (a) representative flightpath for the localised movement of a hill-
topping butterfly; (b) discretisation as a velocity-jump random walk (see Section 2.1); (c) contour representation
of a topographically complex landscape, with triangles marking major summits (see Figure 3); (d) representative
trajectories of virtual hilltopping butterflies (two days, final locations illustrated by diamonds), involving oriented
movement to local topography (gradient of the landscape in (c) illustrated by arrows); (e) two-day distribution of
an initially dispersed population reveals its structuring into hilltop aggregates; (f) the macroscopic model accurately
recapitulates this distribution. See text for details.

of a system. Adopting such methods requires assumptions and approximations, and a careful eval-
uation of their validity forms an essential component of the modelling process. Nevertheless, a
direct and transparent pathway is laid out between the statistical data informing the individual
model and the terms and parameter inputs of the macroscopic model.

1.1 Outline

In this paper we expound a multiscale framework for modelling animal movement within complex
environments via an application to butterfly hilltopping. The modelling is founded on a stochas-
tic ‘velocity-jump’ random walk model (Othmer et al. 1988) for individual movement paths. In
the formulation here, laid out in detail in Hillen and Painter (2013), orienteering cues – such as
topography for hilltopping butterflies – impart directional information via an appropriate contri-
bution to the probability distribution for a new velocity/direction. We state the scaling that leads
to a macroscopic model: an anisotropic drift-diffusion equation parametrised by the statistical
properties of the underlying individual model. Tailored to butterfly hilltopping, we demonstrate
the accumulation of a virtual population at hilltops and, exploiting its advantages, extend the
macroscopic model to account for mating dynamics. Our modelling substantiates the hypothesis
that hilltopping strategies are particularly effective for low density species. For abundant species,
however, pursuing a hilltopping strategy is shown to be unfavourable for individual males, with
non-hilltopping competitors demonstrating greater mating success.

The methodology is illustrated in Figure 1. A typical butterfly movement path is illustrated
in (a): if hilltopping occurs, movement is generally in an uphill direction. Portrayed as a velocity-
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jump random walk, this path is discretised into running and turning, where at each turn a butterfly
‘selects’ a new velocity (v) and flight time (τ) according to appropriate probability distributions.
The impact of orienteering cues in the environment, such as the topologically-complex terrain
(c) for hilltopping butterflies, can be incorporated via appropriate inputs into these distributions:
for hilltopping, we propose that the velocity chosen by an individual is biased according to the
direction and steepness of the local gradient, illustrated for the landscape in (c) by the direc-
tion and length of arrows in (d). Movement paths of virtual butterflies, computed through direct
stochastic simulation of the velocity-jump model, generally follow this information. For a large and
initially dispersed population, accumulation at summits is observed, (e). At this landscape scale,
macroscopic equations for the population density, derived by scaling, recapitulate the distribution
predicted by the individual model, (f).

2 Multiscale modelling of movement paths

To motivate the modelling that follows, we briefly describe findings from a field study (Pe’er 2003;
Pe’er et al. 2004) of the hilltopping butterfly Melitaea trivia. This species, distributed widely in
Southern Europe and the Middle East, has been the subject of an intensive tracking study during
spring 2000 in southern Israel (31◦25′N, 34◦50′E). Movement paths of released individuals were
recorded via the sequential flagging of landing/turning locations, with analysis indicating that male
and virgin female butterflies generally (but not ubiquitously) select an up-slope direction following
a landing, with mated females showing no such tendency: consistent with the general hypothesis
that hilltopping is primarily exploited to facilitate mating and ‘switched-off’ when not required.
Furthermore, the timing or frequency of turns showed no significant dependence on the local slope,
with a distribution statistically indistinguishable from a Poisson process.

To describe such movements, and their impact on population structure, we formulate a series of
discrete and continuous models, operating over distinct spatial scales: (Ia) an individual-based
(or agent-based) stochastic model; (Ib) its continuous and deterministic equivalent, a mesoscopic
velocity-jump model; and (II) a continuous macroscopic model, operating at the scale of
movement of a population over a landscape. Noting the substantial existing literature on the use
of random walk models to describe animal or cell movement (e.g. see Skellam 1951; Patlak 1953;
Kareiva and Shigesada 1983; Othmer et al. 1988; Turchin 1998; Okubo and Levin 2001; Codling
et al. 2008; Othmer and Xue 2013 and references therein), here we employ the velocity-jump
model (Othmer et al. 1988): movement is assumed to alternate between running (movement with
constant velocity) and turning (selecting a new velocity). This natural model for movement is clearly
compatible with standard descriptions for recording animal paths, and hence can be parametrised
by field data: butterfly movement consists of a sequence of discrete movements and the path laid
out by recording the times and locations of landing sites closely fits that of the velocity-jump type
model, e.g. see Turchin et al. (1991).

Beginning with the underlying velocity-jump process, we refine to a simpler and more convenient
form that remains relevant for the current application: specifically, it incorporates the impact of a
complex (topographic) environment on movement paths, yet admits a straightforward route to a
fully macroscopic model. We note that the formulation itself is not novel: we follow that laid out in
Hillen and Painter (2013) and a number of details will be omitted for succinctness. Further details
of velocity-jump (and other random-walk) models of biological movement and their applications
can be found in the general reviews of Codling et al. (2008); Othmer and Xue (2013).
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2.1 (I) Individual and velocity-jump models

We let t denote time, x ∈ Rd the spatial coordinate (x = (x, y) for d = 2) and v ∈ Rd the velocity.
While we currently remain in general form, we note that for butterflies (which typically remain a
few metres within the ground) d = 2 would be appropriate. We assume individuals move within
a range of speeds [s1, s2] (where 0 ≤ s1 ≤ s2 < ∞) and that turns/velocity changes occur as a
Poisson process, where τ(t,x) denotes the mean runtime between velocity changes (and λ = 1/τ is
the turning rate). At each turn, an individual selects a new velocity v according to the probability
distribution q(t,x,v,v′), where v′ is the previous velocity. Clearly,∫

V

q(t,x,v,v′)dv = 1 .

This individual-based model can be formulated as a mesoscopic velocity-jump model (Othmer
et al. 1988): formally this describes a probability distribution for the position of an individual, but
it can be interpreted as an evolution equation for population densities. Specifically, letting p(t,x,v)
denote the population density of organisms at time t ≥ 0, location x and moving with velocity v,
evolution of p(t,x,v) is given by

pt(t,x,v) +

running︷ ︸︸ ︷
∇ · vp(t,x,v) =

turning︷ ︸︸ ︷
1

τ(t,x)

(∫
V

q(t,x,v,v′)p(t,x,v′)dv′ − p(t,x,v)

)
, (2)

where the index t denotes the partial time derivative. On the right hand side, turning is split
into an integral term for switching into velocity v, and a term for switching out of velocity v.
Formal derivations are considerably less straightforward if interactions (direct or indirect) between
individuals must be taken into account: we remark on this further in the discussion.

2.2 Simplified individual and velocity-jump models

In general, both turning rates and reorientation distributions vary according to internal (e.g. pre-
vious velocity) and environmental (e.g. due to orienteering cues) factors: a specific application
therefore demands close scrutiny of the available data to ensure suitable functional forms are se-
lected. In the formulation considered in Hillen and Painter (2013), it was assumed that (i) the mean
runtime τ (or turning rate) is independent of other factors, i.e τ = constant; and (ii) the choice of
new velocity does not depend on the previous velocity v′, i.e. q(t,x,v,v′) = q(t,x,v). In the later
application to butterfly hilltopping, these simplifications appear acceptable given the flight path
characteristics and data available in Pe’er et al. (2004): butterflies land between turnings, and any
contribution from the pre-landing velocity can therefore be assumed to be relatively small; data
analysis revealed that local topography impacts on the choice of a butterfly’s new orientation (i.e.
q) but there was no demonstrated link to the frequency of landings (i.e. λ or τ).

As a final simplification we assume that (iii) individuals travel with a fixed mean speed s (i.e.
s1 = s2 = s), and hence v = sn for direction n ∈ Sd−1. For butterflies this could be an actual flight
speed, if butterflies alight only briefly at turns and the time scale of interest is short, or a mean
path speed averaged over a much longer time interval. The latter would absorb the (potentially
considerable) time taken for other activities, such as resting, sheltering and feeding, and the paths
generated would not represent real flight paths as such, rather the effective path that traces out
the butterfly’s passage over the landscape. A more sophisticated approach would be to explicitly
split individuals into moving and resting subpopulations (e.g. see Othmer et al. 1988; Hillen 2003),
however we do not consider this complication at present.
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We note that while the various assumptions above can be relaxed, the subsequent derivation of
a macroscopic model can not be guaranteed and would require a separate treatment. In terms of
the mesoscopic velocity-jump model, these assumptions allow us to reduce (2) to the simpler form
(Hillen and Painter 2013):

pt(t,x,v) +∇ · vp(t,x,v) =
u(t,x)q(t,x,v)− p(t,x,v)

τ
, (3)

where τ is now a constant. We note that u(t,x) defines the observable or macroscopic population
density

u(t,x) =

∫
V

p(t,x,v)dv .

Furthermore, since individuals travel with a fixed mean speed s, the turning distribution q (for
choosing a new velocity v ∈ V (= sSd−1)) can be reinterpreted as a directional distribution,
q̃(t,x,n), on the unit sphere Sd−1: q̃(t,x,n) defines the probability of choosing a new direction
n ∈ Sd−1. Specifically,

q(t,x,v) :=
q̃(t,x,n)

sd−1
where

∫
Sd−1

q̃(t,x,n)dn = 1 . (4)

2.3 (II) The macroscopic description

In certain applications it may be either appropriate or more convenient to work directly with the
previous models – for example, if population numbers are low or if the spatial/temporal scales
of interest occur at the level of an individual’s movement – yet this comes at a cost of greater
computational expanse and reduced analytical tractability.

In many cases the spatial and temporal scales of interest are distinct and a macroscopic model
can be obtained through scaling: in hilltopping, butterflies typically fly a few metres and turn/land
once every minute or so, yet overall population dynamics evolve on a landscape of the order of
kilometres and flight seasons of the order of weeks. From a population biology perspective, we are
less concerned of the success of one individual, rather the overall success of the population and it
is desirous to obtain an appropriate model for the macroscopic population density, u(t,x). Scaling
provides a route from the functions and parameters of the individual model (e.g. speeds, turning
rates and distributions) to the terms and inputs of the macroscopic model for u(t,x). Inevitably
this entails approximations, loss of information and a coarser model results: the validity of any
approximations should be considered with care.

We do not consider the intricacies of scaling here (referring to Hillen and Painter (2013) and
references therein for details), simply noting that a variety of methodologies can be adopted. Here
we employ a moment closure approach and adopt a fast-flux relaxation: this method originates
in a physical context, and its translation to a biological setting must be interpreted accordingly.
Briefly, a series of equations is formulated for variables including the population density (i.e. u,
or mass in the physical context) and average population flux (or momentum). Each new equation
requires an additional variable (or moment), and assumptions must be made for closure. In the
fast-flux relaxation the system is taken to be close to equilibrium, and the population flux is
assumed to rapidly equilibrate: effectively, the local population flux is taken to correlate with the
local orienteering information obtained from the environment. The validity of this assumption
clearly relates to scale: for example, failing at the mesoscopic-scale of the velocity-jump model,
where an individual transits over changes in orienteering information during the run phase, only
re-evaluating the environment at a turn. We later illustrate the validity of the scaling via numerical
comparisons (see Figures 2 and 5) of the individual-based, mesoscopic and macroscopic models.
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Applied to (3), moment closure generates a macroscopic model in the form of the drift-
anisotropic diffusion model:

u(t,x)t +∇ · a(t,x)u(t,x) = ∇∇
(
D̄(t,x)u(t,x)

)
. (5)

In the above D̄(t,x) defines a (symmetric) d×d–diffusion tensor matrix, a(t,x) is the d−dimensional
drift (or advective) velocity. For the right hand side, we use the notation

∇∇(D̄u) =

d∑
i,j=1

∂

∂xi

∂

∂xj
(D̄iju).

Notably, each of the macroscopic quantities a and D̄ are determined according to the statis-
tical properties of the inputs for the velocity-jump process: mean speeds, run times and turning
distributions. In particular, we note that the drift a is the expectation (i.e. the weighted average
velocity) of q, while D̄ is proportional to the variance-covariance matrix (the higher-dimensional
analogue of variance) of q. Specifically,

a(t,x) =

∫
V

vq(t,x,v)dv = s

∫
Sd−1

nq̃(t,x,n)dn , (6)

D̄(t,x) = τ

∫
V

(v − a(t,x))(v − a(t,x))T q(t,x,v)dv ,

= τs2
∫
Sd−1

(n− a(t,x)/s)(n− a(t,x)/s)T q̃(t,x,n)dn . (7)

Note that the product vvT denotes the dyadic product of two vectors and therefore generates a
(symmetric) matrix.

As a point of note, the diffusion term in (5) is distinct from that of ‘classic’ anisotropic diffusion:

ut = ∇(D̄∇u) .

The ‘fully-anisotropic’ form in (5) arises naturally from the underlying transport equation and has
significant ramifications on population patterning: it holds additional advective-type terms that
aggregates populations at interfaces of varying anisotropy (see Hillen and Painter 2013; Hillen et al.
2013; Painter and Hillen 2013 for examples in a biological context).

2.4 Incorporating orienteering cues

In the simplified velocity-jump process here, flexibility lies in the choice of q (or q̃) and we assume
orienteering cues, potentially varying with position and time, are encoded into this distribution:
for a hilltopping butterfly, an appropriate response to a measure of the topography (e.g. gradient)
would be accounted for in q. Orienteering cues that are altered by individuals – such as released
pheromones – would require separate evolution equations for their dynamics.

Linking the turning distribution to the macroscopic drift vector and diffusion tensor is il-
lustrated through some apposite examples. In line with the later application, we restrict to a
two-dimensional region: d = 2, x = (x, y) and v = sn = s(cos θ, sin θ), where angle θ ∈ (−π, π].
Hence we specify a directional distribution q̃(t, x, y, θ) on the unit circle, related to the turning

distribution via q(t, x, y,v) := q̃(t,x,y,θ)
s .
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For a single preferred direction of turning – such as uphill for hilltopping butterflies – a natural
description is the von Mises distribution (e.g. Mardia and Jupp 2000), a form of normal distribution
wrapped onto the unit circle:

q̃(θ | k, φ) =
1

2πI0(k)
ek cos(θ−φ) . (8)

The above generates a predominance of turns into the direction corresponding to the dominant
angle, φ, concentrated according to k; Ij(k) denotes the modified Bessel function of first kind
of order j. We refer to Moorcroft and Lewis (2006); McKenzie et al. (2012); Hillen and Painter
(2013); Painter and Hillen (2013) for applications in biological movement ranging between cells and
organisms. Generally, φ(t, x, y) and k(t, x, y) are functions of space and time to reflect variation
in the direction and strength of the orienteering cue: these dependencies are omitted from the
notation for clearer presentation.

Expectations and variance-covariance matrices of (8) have been previously calculated (e.g. see
Hillen and Painter 2013) and we can therefore state explicit forms for the drift-velocity and diffusion
tensor in (5) according to the dominant angle and concentration parameter:

a(k, φ) = s
I1(k)

I0(k)
(cosφ, sinφ) , (9)

D̄(k, φ) =
τs2

2

(
1− I2(k)

I0(k)

)(
1 0
0 1

)
+τs2

(
I2(k)

I0(k)
− I1(k)2

I0(k)2

)(
cos2 φ cosφ sinφ

cosφ sinφ sin2 φ

)
. (10)

The drift is as expected: in the direction corresponding to the dominant angle. The anisotropic
diffusion tensor has been decomposed into isotropic and anisotropic terms, where the alignment
of the latter also depends on the dominant angle. We first note that as k → 0, the directional

distribution q̃ becomes uniform and all directions are chosen equally. In this limit, I1(k)I0(k)
, I2(k)I0(k)

→ 0,

the drift term disappears and diffusion, as to be expected, becomes isotropic. As k → ∞ an

individual becomes increasingly restricted into choosing angle φ: I1(k)
I0(k)

, I2(k)I0(k)
→ 1, diffusion terms

disappear. This limiting scenario corresponds to a pure-drift equation in which the local population
density is advected in the direction indicated by φ(x, y, t), for example the direction of the local
gradient.

Although the above treatment is specific to the two-dimensional case, other applications may
demand a full three-dimensional treatment. The natural extension of (8) to higher dimensions
is the Fisher-von Mises distribution (Mardia and Jupp 2000): its expectation and variance co-
variance matrix and, hence, corresponding drift and anisotropic diffusion tensors for input into the
macroscopic model (5) can be found in Painter and Hillen (2013). Note that the forms (9)–(10)
have also been determined in other studies for biological movement, albeit under a different starting
random walk model (e.g. Codling et al. 2010).

We also note that many environments feature multiple orienteering cues: for example, a butter-
fly’s movement can also be influenced by pheromones, vegetation, wind and other factors (Dover
and Settele 2009). One approach to model environments with multiple cues would be to apply
linear combinations of (8), parametrised distinctly to represent the different orienteering fields.

2.5 Numerical case study

We conclude this section with a brief case study: motivated by hilltopping and other types of
gradient-following, but idealised such that important elements of the modelling process can be
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exhibited. In line with later applications we will restrict to time-independent orienteering cues,
and remove the t−dependence where applicable for notational simplicity. We further restrict to a
rectangular landscape A = [0, Lx]×[0, Ly] ∈ R2 containing a population of individuals. To conserve
the population, we assume zero net-loss at the boundaries: for the individual and mesoscopic
models, an individual moving out of the region with velocity v is instantaneously replaced (or
reflected) by another individual moving into the region at the same location and with velocity −v;
in the corresponding macroscopic model this translates to zero-flux boundary conditions.

We consider a single orienteering cue in A that provides taxis-type attraction via gradient
following: in the context of butterflies, this could represent a hilltop or pheromone source. We
denote the orienteering cue E(x, y) and assume individuals orient according to the local gradient
∇E: the angle φ(x, y) in (8) is taken in the direction of ∇E and we assume steeper gradients
generate a higher tendency to take this direction,

k(x, y) = κ |∇E(x, y)| . (11)

The sensitivity parameter κ indicates the capacity to detect and follow the gradient. We note that it
is straightforward to consider more sophisticated sensing mechanisms: for example, the individual
may sample E over some non-local region determined by its sensory range.

To generate a quasi-one-dimensional framework, we assume a population is initially distributed
uniformly with x and E only varies with y: specifically, E(y) = E0e

−a(y−y0)2 (for a, y0, E0 > 0).
Hence, φ = ±π2 for y ≶ y0 and dominant turning will be in the direction of the ‘ridge’, y = y0.
With (11), drift and diffusion tensors are calculated from (9–10) as follows:

a(x, y) = (0, sa(y)) , D̄(x, y) =

(
τs2d1(y) 0

0 τs2d2(y)

)
, (12)

where coefficients a(y), d1(y) and d2(y) depend on y via k. Figure 2 (a) illustrates the translation
between E and these coefficients, via q̃. The turning distribution illustrates a predominance of
turns towards y0, concentrated according to the local steepness of E. The drift is clearly towards
y = y0 while the diffusion tensor coefficients vary across the field; their distinct sizes in regions of
steep gradient imply anisotropic diffusion.

We simulate the predicted movement of a population: 100 individuals are released, initially
distributed uniformly across A. Figure 2 (b) shows typical simulations of the stochastic individual-
based model: the tendency of individuals to orient according to the gradient of E is clear, culminat-
ing in accumulation along the ridge y = y0. Exploiting the quasi-one-dimensional framework, we
investigate model convergence: obtaining (5) demands that the scale of interest is ‘appropriately
macroscopic’, and we should only expect correspondence within suitable parameter regimes. Av-
eraging over x and computing the evolving density distributions as functions of y, we compare the
stochastic simulations of the individual-based model with numerical solutions of the mesoscopic
velocity-jump model (3), and the macroscopic model (5). In each case the population is normalised
to yield a dimensionless average density (=1), while distributions predicted from the stochastic
model are averaged over multiple (1000) simulations. Note that τ, κ and the parameters defining
E are fixed, leaving s as a control parameter.

The results plotted in Figure 2 (c) clearly indicate model convergence, although only in certain
parameter regimes: smaller s yields a quasi-identical match, yet larger values lead to significant
discrepancy between the macroscopic and individual/mesoscopic models. Intuitively, when s = 1.0
(and τ = 1.0) the mean distance travelled by an individual between turns is τs = 1: the observation
frame is the order of an individual movement path and the macroscopic model (5) has little import.
For smaller s, e.g. s . 0.01, the average path lengths forms a fraction of the length scales of A and
the macroscopic viewpoint is valid.
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(a)

(b)

(c)

Fig. 2 (a) Translation from orienteering cue to inputs for the macroscopic model: (left) individuals are assumed
to move up gradients of the cue E(y); (centre-left) the turning distribution is shown for the points along the y-axis
indicated, we note that the dominating direction and concentration of turning vary along y; (centre-right) drift-vector
and (right) diffusion-tensor coefficients generated from E(y), revealing drift towards y = y0(= 1) and anisotropic
diffusion. (b) Stochastic simulations of the individual-based model for a population (of size 100) responding to
the gradient of E(y): the direction and steepness of the latter is reflected in the underlying arrows. We observe
accumulation of individuals along the ridge y = y0. Individuals were initially positioned uniformly across A, other
parameters listed below. (c) Comparison of distributions predicted by (dot-dash/blue line) the stochastic individual
model, (Ia), (dashed/red line) the mesoscopic velocity-jump model, (Ib), and (solid/black line) the macroscopic
model, (II). Distributions plotted as functions y, averaged over x; distributions for the individual model are the
mean of 1000 simulations. Frames (top to bottom) are for t = 10, 100, 1000 at the various speeds indicated at the
top of each column. Other model parameters set at τ = κ = 1 = E0 = y0 = Lx = 1, Ly = 2 and a = 10. For details
of the numerical methods we refer to the appendix.

Even when the macroscopic model breaks down, the mesoscopic velocity-jump model remains
valid and can be employed if a continuous approach is required. Of course, this is also subject to
caveats: this correspondence can only be expected under the assumed independence of individuals,
and we refer to the discussion for further consideration of this potentially important case.

3 Hilltopping dynamics in butterflies

The above provides a mechanistic framework for moving between individual-level and population-
level modelling of movement under various spatio-temporal orienteering cues. For the remainder of
this paper we focus on the main application: the impact of hilltopping on mating in butterflies. As
noted earlier, in hilltopping it is the local terrain that provides the orienteering cue for movement,
with individuals flying up slopes to local summits.
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This application is motivated both from a basic illustrative aim as well as addressing funda-
mental questions concerning hilltopping. Long-term studies have resulted in a large pool of data
on butterfly population dynamics and their fluctuations under environmental pressures, producing
a model system for determining the robustness of populations (Ehrlich and Hanski 2004). The
mechanisms that facilitate mating encounters, such as hilltopping, are therefore of manifest inter-
est and a variety of studies have specifically focussed on its impact, for example see Shields (1967);
Scott (1968); Ehrlich and Wheye (1986); Alcock (1987); Baughman et al. (1988); Wickman (1988);
Turchin et al. (1991); Pe’er et al. (2004). With regards to modelling, these researches provide the
data to inform a mechanistic model for the dynamics of a virtual hilltopping population.

In the following we formulate a series of models from individual to macroscopic and explore
how hilltopping impacts on butterfly population structure. We first replicate typical flight paths
for a population in topologically complex environments, explore convergence between models and,
by incorporating simple kinetics, determine how hilltopping impacts on mating.

3.1 Basic movement models

3.1.1 Environment and population details

As previously mentioned, butterflies generally remain close to the ground and we restrict their
flight movements to a two-dimensional square landscape A of dimensions L × L, setting (x, y) ∈
A ⊂ R2 as the spatial coordinate; for all simulations here we consider L = 2 km. While butterflies
receive a wide variety of movement cues from their environment (e.g. Dover and Settele 2009),
here we fix attention on topography as the principal orienteering cue. Specifically, we assume all
guidance information is stored in the (fixed) elevation of the imposed landscape, E(x, y) (measured
in metres).

We consider a range of terrains, ranging from artificial to genuine. The former are generated
through a linear combination of 2D Gaussian functions as follows:

E(x, y) =

K∑
i=0

hie
− (x−xi)

2+(y−yi)
2

2σ2
i . (13)

Setting h0 > 0, hi = 0 for i > 0 and xi = yi = L/2 generates the ideal landscape of a perfectly
circular hill, centred in A: see Figure 3(a). Combining multiple Gaussian functions can generate
more complicated topography, such as the undulating landscape in Figure 3(b). For the genuine
landscape we digitise the terrain centred on Arthur’s Seat, a peak rising to approximately 250 metres
near the centre of Edinburgh: Figure 3 (c) indicates the topography at this site. For comparative
purposes, all artificial landscapes are normalised such that the maximum elevation gain across A
is 200 metres, approximately the same as that of the terrain surrounding Arthur’s Seat.

Simulations are performed for time t ∈ [0, T ], where T denotes either the time butterflies are
studied or the overall length of a flight season. Outputs from simulations will often be represented in
days or weeks, however we note that one day corresponds to just Tactive hours in model simulation
time, since butterflies are assumed active for only a portion of a day. For simulations here we set
Tactive = 10 hours; generally, Tactive will be species, climate and habitat dependent, e.g. Kingsolver
(1983).

Models explicitly consider males (m) and virgin females (f); we ignore mated females, assuming
they have no explicit impact on population dynamics and exit to lay eggs following copulation.
Note that the location of egg laying may be an important input in terms of sources of new but-
terfly emergence: suitable vegetation for eggs (and caterpillars) can be sparsely distributed and
away from exposed hilltops, for example see Ehrlich and Hanski (2004). Initially we ignore explicit
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(a) Ideal landscape (b) Undulating landscape (c) Arthur’s seat

Fig. 3 Landscapes used for simulations. Top panels show the relief, with height depicted in metres and (x, y)
coordinates in kilometres; bottom panels show contour lines, with thin contours representing 10 m intervals and
thicker contours indicating 50 m intervals. The highest point in each landscape is marked with a triangle. (a-
b) Artificial terrains showing (a) an ideal hill, and (b) an undulating landscape: see text for details. (c) Terrain
surrounding Arthur’s Seat (Edinburgh, UK, 55◦56′N, 3◦09′W ). Elevation data obtained using OS Opendata Land-
Form PANORAMA (http://www.ordnancesurvey.co.uk/oswebsite/).

descriptions of population dynamics (emergence, mating and death): our first simulations form an
idealised mark-release-recapture study in which a population is released into an empty (of butter-
flies) landscape, with the study-time sufficiently short that population dynamics can reasonably be
ignored. This allows us to focus on definitions of the movement response to terrain, demonstrate
hilltopping and explore model convergence.

3.1.2 Modelling flight paths

Noting the earlier considerations, individual butterfly flight paths are modelled according to the
simplified stochastic jump process in Section 2.2, in which turns occur with constant mean fre-
quency into a new velocity direction determined by the slope/altitude. Using subscripts m and
f to denote the distinct flight characteristics of males and virgin females, we define τm,f to be
the mean flight-times between turning/landing, sm,f as the mean flight speeds and qm,f to be the
probability distribution for turning into velocity vm,f = sm,f (cos θ, sin θ). As mentioned earlier,
the latter can be restated as directional distributions, q̃m,f (θ) ≡ qm,f (v)/sm,f to turn into angle θ.
The corresponding movement-only mesoscopic velocity-jump model for the butterflies is given by

pmt(t, x, y,v) +∇ · vpm(t, x, y,v) =
m(t, x, y)qm(x, y,v)− pm(t, x, y,v)

τm
, (14a)

pf t(t, x, y,v) +∇ · vpf (t, x, y,v) =
f(t, x, y)qf (x, y,v)− pf (t, x, y,v)

τf
. (14b)
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In the above, pm,f (t, x, y,v) define the densities of male and female butterflies moving with velocity
v, while m(t, x, y) and f(t, x, y) denote the corresponding macroscopic densities. The subscript t
denotes the partial time derivative. Scaling as in Section 2.3 generates the macroscopic model:

mt +∇ · (amm) = ∇∇(D̄mm) ; (15a)

ft +∇ · (aff) = ∇∇(D̄ff) . (15b)

am,f and D̄m,f are the previously defined drift-velocities and anisotropic diffusion tensors, com-
puted according to qm,f (x, y,v) through (6)–(7).

3.1.3 Initial and Boundary Conditions

The first investigation ignore resident populations and assume a total of N released butterflies
(Nrm males and Nrf virgin females) in a simulated mark-release-recapture study. For the stochastic
model, we select the initial position of the (ith) male butterfly from a circular bivariate normal
distribution (centred on (xi,ic, yi,ic) and with spread σi), while initial velocities are selected from a
uniform distribution. Translated to the continuous models, this generates initial conditions in the
form of sums of 2D Gaussian functions:

pm0(x, y,v) =

Nrm∑
i=1

1

2π

1

2πσ2
i

e
−

(x−xi,ic)
2+(y−yi,ic)

2

2σ2
i ;

m0(x, y) =

Nrm∑
i=1

1

2πσ2
i

e
−

(x−xi,ic)
2+(y−yi,ic)

2

2σ2
i .

Note that equivalent forms will be generated for the females. At the boundaries of A we consider
the same no-loss conditions as in the earlier case studies.

3.1.4 Turning responses

Orientation in response to the landscape is to be encoded into the turning distribution, as consid-
ered in Section 2.4. Note that here we will restrict to a time-independent turning distribution: in
practice, visits to mating encounter-sites such as hilltops can be confined to certain hours of the
day (Rutowski 1991), and a time-dependent turning distribution may therefore be more realistic
for certain species. Since field studies of hilltopping butterflies indicate their tendency to choose an
upward slope (Turchin et al. 1991; Pe’er 2003; Pe’er et al. 2004), we follow the modelling choices
of the earlier case study: we assume the unidirectional von Mises form (8), with φ(x, y) and k(x, y)
determined by the gradient of E(x, y). Specifically, we set angle φ(x, y) in the direction of the
gradient ∇E(x, y) and k(x, y) according to its steepness: km,f (x, y) = κm,f |∇E(x, y)|. Hence

qm,f (x, y,v) =
q̃m,f (x, y, θ)

s
, where q̃m,f (x, y, θ) =

eκm,f |∇E(x,y)| cos(θ−φ(x,y))

2πI0(κm,f |∇E(x, y)|)
. (16)

Thus, the tendency to fly uphill increases with steepness. The parameter κm,f defines the hilltopping
tendency of the population: κm,f = 0 corresponds to a non-hilltopping population while large κm,f
indicate a strong tendency to fly up slopes. Certain populations may possess exquisite sensitivity
to topography, with field studies indicating accumulation of individuals at the maxima of quasi-flat
terrains (Baughman and Murphy 1988). With the von Mises form (8), explicit calculations for the
functions am,f and D̄m,f in Equations (15) are directly computed from E(x, y) via (9)–(10), i.e.
elevation data directly feeds into the movement terms of the macroscopic model.
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Set Parameter Definition Units Value/range
Flight sm,f Mean flight speed metres/minute 2.5
Flight τm,f Mean run time minutes 2 (m), 4 (f)
Flight κm,f Hilltopping tendency (none) 0 - 20

Kinetics δm,f Death rate /week 1.0
Kinetics β Mating rate /butterfly/hectare/hour 0.005
Kinetics α Emergence rate /hectare/week 1-1000

Table 1 Model parameters used in simulations.

In fact, tracking studies in Pe’er et al. (2004) indicate a more sophisticated response than
simple local gradient detection: butterflies in the vicinity of multiple peaks typically select the
highest within visual range (approximately 50 metres). A future extension would be to evaluate the
consequences of different slope-following strategies, via appropriate sampling of their surrounding
environment.

3.1.5 Parametrisation

The various model elements (release location, flight characteristics, terrain elevation etc.) generate
a sizeable parameter set and systematic exploration of the full space is unrealistic. Therefore, we
utilise established datasets (from tracking) to fix certain parameters and estimate ranges. Field
studies of Melitaea trivia (Pe’er 2003; Pe’er et al. 2004) provide a set of estimates for sm,f and
τm,f ; parameters for other species are likely to differ, with a corresponding impact on the spatial
and temporal scales of dispersal. Release locations will be specified in individual simulations.

Instantaneous butterfly flight speeds will typically be several kilometres per hour (e.g. Pe’er
2003; Cant et al. 2005), however over a longer timescale a butterfly is likely to spend a consid-
erable proportion of time involved in other activities (resting, feeding). As previously noted, one
approach would be to explicitly account for this via splitting the population into flying and rest-
ing subpopulations (e.g. see Othmer et al. 1988; Hillen 2003), however we presently ignore such
complications. Rather, we consider for the flight speed a value averaged over a much longer flight
path, taking a value towards the lower end of the spectrum reported in Pe’er (2003) and setting
sm,f to be 2.5 metres/minute. Consequently, paths generated here should not be strictly viewed as
true depictions of butterfly flight, rather an ‘effective path’ traced out. With these speeds, and the
reported mean distances between turning points determined as approximately 5 metres for males
and 10 metres for virgin females (Pe’er et al. 2004), we take mean flight times τm = 2 and τf = 4
minutes.

κm,f are the key parameters that define the hilltopping tendency, and we leave this unspecified
to evaluate its impact on population organisation. While studies in Pe’er et al. (2004) indicate a
greater tendency of virgin females of Melitaea trivia to climb slopes (κf ≥ κm), here we restrict to
κf = κm. The set of flight parameters is recorded in Table 1. We note that the differences between
male and female flight parameters is small, and studies (not shown) with identical parameters will
generate similar results. Nevertheless, we retain the distinct flight characteristics for realism, with
a more detailed exploration into the impact of distinct characteristics planned for future studies.

3.2 Hilltopping studies

We first perform a simulated tracking study for a population released into various landscapes:
specifically, butterflies are released at a particular location and their subsequent flight paths are
tracked, discretised according to the turning locations. We exploit the capacity of modelling to
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focus on specific phenomena, concentrating on the oriented movements that lead to hilltopping
behaviour. We assume the released population is homogeneous (male only, with identical movement
properties) and that the environment is otherwise devoid of butterflies. We note that simulations
for females generate (qualitatively) equivalent behaviour to those for males shown below. We will
demonstrate how the individual model captures the directed movement observed in field studies
(e.g. Turchin et al. 1991; Pe’er et al. 2004), explore its capacity to replicate hilltopping and the
extent to which the individual model converges with the continuous mesoscopic and macroscopic
models.

3.2.1 Hilltopping in the individual model

Individual butterflies are released into a landscape of constant gradient, sloping upward in the
direction of increasing x: hilltopping would be characterised by a tendency to fly rightwards. We
simulate the stochastic individual-based model, releasing (at (0, 0)) and tracking 100 butterflies
(male-only with hilltopping tendency κm = 5). Figure 4 (a)-(d) plots representative trajectories and
the collected statistics for populations released on slopes of varying steepness. We plot frequency
histograms for the orientation taken at a turning location (where 0◦ corresponds to the angle
directly uphill) and the runtime between turning points.

Hilltopping is clearly observed, demonstrated through a shift from an unbiased random walk
for flat terrains (Figure 4 (a)) to a highly biased path uphill on a steep slope (Figure 4 (d)).
The simplified form of the model is reflected in the frequency distributions: while the angle of
orientation becomes increasingly concentrated into an uphill direction with steeper slopes, the
runtime remains unaltered (exponentially distributed with the mean value listed in Table 1). Figure
4 (e)-(g) evaluates hilltopping tendency as a function of the slope through the following statistics:
(e) the mean displacement uphill (i.e. the average position of a butterfly along the x-axis after
10 hours); (f) the mean first transit time (the average time at which a butterfly first crosses a
transect located 500 metres uphill from the release location); and (g) the mean turning angle (i.e.
the angular difference in orientation between consecutive runs). The displacement and first transit
times increase and decrease respectively, saturating towards the maximum displacement (mean
flight speed × 10 hours) and minimum transit time (500/mean flight speed). The mean turning
angle decreases towards zero, reflecting an increased persistence of butterflies in the same direction,
i.e. in uphill directions.

While the above simulations are for fixed flight parameters, the impact of varying these param-
eters is as intuitively expected: increasing κ has the same effect as increasing the slope and, while
altering mean flight speed and turning rates changes the mean displacement, transit times etc., it
does not impact on the overall hilltopping behaviour.

3.2.2 Model comparison

We next consider an imposed landscape: the ideal hill centred in A, see Figure 3 (a). As above,
we consider the release of a homogeneous (male) population with flight parameters as in Table 1.
Representative simulations of the individual-based model are plotted in Figure 5 (a) for various
hilltopping tendencies κm. Each butterfly is released approximately 1 km from the summit and
their flight path is tracked either until they reach within 100 m of the summit, or 100 hours (10
days) of flight time has passed. Increasing κm corresponds to a greater capacity to summit, reflected
in more individuals reaching the summit (within 10 days), straighter paths and a decrease in the
time taken.

This idealised study is exploited to explore model correspondence and the validity of a macro-
scopic approximation. We numerically solve (14) and (15) under equivalent release, terrain and
flight conditions and compare against average distributions obtained from multiple simulations of
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 4 Individual paths computed by the individual-based model. 100 identical butterflies are released at point
(0, 0) and tracked over a period of 10 hours: for these simulations, we take the male flight parameters from Table
1 and κm = 5. Simulations are performed on slopes of varying gradient: (a) zero gradient (flat terrain); (b) 1:10
gradient (inclination angle 5.71◦); (c) 1:3 gradient (18.43◦); (d) 1:1 gradient (45◦). For each we plot (from top to
bottom) representative flight paths, the orientation histogram (with 0◦ indicating rightwards), and the histogram
of flight times between turning/landing. (e-g) Population averaged behaviour as a function of the gradient showing:
(e) the mean displacement uphill; (f) the mean first transit time; (g) the mean turning angle between successive
flights. For details of the simulation method, we refer to the appendix.

the individual model. From the earlier case study we expect that the mesoscopic velocity-jump
model matches the mean behaviour of the individual model, with (15) also comparable if the scale
is macroscopic. Figure 5 (b) summarises the results: in the first row we plot the averaged (over
1000 simulations) population distribution (blue to red indicates low to high densities) predicted
by the individual model at various times, following the initial release of 100 hilltopping butterflies
(κm = 5) at a site located 1 km from the summit; second and third rows respectively plot the
distributions generated by the mesoscopic and macroscopic models. We observe a quasi-identical
match, exemplified in the bottom row plot for the distributions along the diagonal transect. Fur-
ther studies for distinct, yet plausible, parameter sets or with different terrains corroborate this
similarity.

Firstly, this investigation confirms the scaling: correspondence between the models is observed,
validating the macroscopic terms and parameter calculations. Secondly, they indicate that popu-
lations dynamics can be adequately approximated by the macroscopic model. We will therefore
exploit its greater tractability (both analytical and numerical) over the intermediate mesoscopic
model, dispensing of the latter in subsequent investigations. Note, however, that other applica-
tions may demand employment of the mesoscopic model, if relevant and important features of the
population dynamics are lost due to the scaling.
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Fig. 5 Hilltopping and model comparison for an ideal hill. (a) We show 4 representative trajectories of butterflies
released into the ideal hill environment: frames from left to right are for increasing values of κ. Each butterfly starts
approximately 1 km from the summit and is tracked either until it arrives within 100 metres of the summit or 100
flight hours (10 days) have passed. The final location of a butterfly is shown by the circle, with the number of flight
hours for each trajectory indicated in the highlighted text. (b) Comparison of density distributions generated for
(first row) the stochastic individual-based model, (second row) the mesoscopic velocity-jump model and (third row)
the macroscopic model. Density distributions plotted at times indicated at the top of the panels, following the initial
release of 100 individuals at a site centred 1 km from the summit. White shaded regions indicate ≤ 0.01 butter-
flies/hectare, with blue to red representing an increasing butterfly density (dark red = ≥ 50 butterflies/hectare).
In the bottom row we plot the density (in butterflies/hectare) along the diagonal transect: dot-dash and blue line
= individual-based model, dashed and red line = mesoscopic model, solid and black line = macroscopic model.
Coordinate axes denoted in km. Parameters and model details as in text. For details of the numerical methods, we
refer to the appendix.
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(a) (b) (c) (d) (e)

t = 0 days t = 0.5 days t = 1 day t = 1.5 days t = 2 days

(f)

(g)

Fig. 6 Hilltopping in a complex terrain. (a) Illustration of the site topography, with all peaks marked with a
triangle and the two major peaks marked with the double triangles. The three release sites are indicated R1-R3.
(b-c) Individuals released from either site (R1) or (R2) nearly always fly directly uphill to the nearest of the two
major peaks. (d-e) Individuals released from site (R3) show greater variability in their movement, either flying to
one of the main peaks or meandering at lower level and visiting minor peaks. (f-g) Comparison between distributions
predicted by the (f) individual-based model and (g) macroscopic model (15). Colorscale to the right of (g) indicates
the butterfly density, in butterflies/hectare. In these simulations, 100 individuals are released from site R3. Note
that temporary accumulations occur at intermediate peaks en route to the major peaks, for example as indicated
by the arrow at 0.5 days. Parameter details as described in the text, numerical details described in the appendix.

3.2.3 Complex terrains

The final part in our initial investigation explores movement dynamics for butterflies released into
a more complex terrain. Figure 6 (a) reveals the contour profile of the landscape and release sites.
We consider three locations, (R1)-(R3), and release 100 hilltopping (κm = 5, male-only) butterflies
with flight parameters as in Table 1. Paths are tracked for a total of 2 days (20 hours flight time).
Individuals released at (R1) or (R2) typically move directly uphill, accumulating at the nearest of
the two major peaks to their release location: representative trajectories are plotted in Figure 6
(b) and (c) respectively. The consistency of trajectories echoes the findings of Pe’er et al. (2005)
in a similar modelling study: topography funnels the trajectories along ‘virtual corridors’. Flight
paths for releases from site (R3), located further down slope and in a flatter region, show greater
variability: individuals move towards and localise at different peaks, e.g. Figure 6 (d-e).

To explore the subsequent population distribution we plot (f) the locations of all released indi-
viduals at distinct times and (g) the population distribution computed from the fully macroscopic
model; note that the latter distribution closely matches the averaged distribution from multiple
simulations of the individual model, as expected from the investigation above. This study reveals
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that the population splits into two factions respectively moving towards one of the two major
peaks, although a small fraction remains at lower elevations. Note also that intermediate accumu-
lations can occur at lower-level peaks, e.g. the yellow arrowheads at t = 1 day: these lower peaks
may provide an intermediate rendezvous location.

4 Impact of hilltopping on mating

Hilltopping is generally regarded as a mechanism to increase encounter rates, and we expand
the investigation to explore its impact on mating. Given its capacity to quantitatively predict
distributions of the underlying individual model, we focus exclusively on the macroscopic model,
exploiting the ease with which it can be augmented with classical population kinetics:

mt +∇ · amm = ∇∇(D̄mm) + gm(t, x, y)− δmm ; (17a)

ft +∇ · aff = ∇∇(D̄ff) + gf (t, x, y)− βmf − δfm. (17b)

The emergence of new butterflies from pupae is assumed to take place at rates gm,f (t, x, y): gen-
erally these will be position- and time-dependent functions to reflect a heterogeneous and variable
emergence rate across the course of a season (Iwasa et al. 1983). δm,f define the (assumed linear)
death rates. In the above equations mating is modelled as an ‘encounter’ similar to standard disease
modelling: we assume a loss of virgin females at a rate proportional to the local male and virgin
female densities, with mating encounter rate β. For the simplified model here, males are allowed to
have unlimited mating potential whereas females mate just once before exiting to lay eggs: males
usually mate more often than females (e.g. see Scott 1973b), although potency may diminish with
age and females of certain species may also mate multiple times; future extensions of the model
may relax the specific assumptions here. As previously, we study the dynamics of (17) for t ∈ [0, T ],
where T denotes either the time butterflies are tracked or the overall length of a flight season, and
(x, y) ∈ A, where A is one of the landscapes featured in Figure 3.

For presentation purposes we track both the cumulative density distribution of mating events (at

time t),
∫ t
0
βm(x, y, τ)f(x, y, τ)dτ , and the total number of matings (at time t),

∫ t
0

∫
A
βm(x, y, τ)f(x, y, τ)dAdτ .

The former generates a density map of how many and where matings have taken place by time t,
with the latter tracking the total number of matings across the studied region by time t.

4.1 Parametrisation, initial and boundary conditions

4.1.1 Parameters

Any parametrisation of (17) must be taken with caution: in addition to the distinct flight charac-
teristics, emergence, death and mating rates are highly variable with species, habitat, weather, etc.
In particular, emergence rates are dependent on conditions (e.g. climatic) during the current and
previous years: population densities can fluctuate widely over the years, varying by several orders
of magnitude (Hellmann et al. 2003). For low density species (or low density years), increasing
one’s chance of mating is likely to impact more heavily on overall population dynamics and, to
investigate this potentially crucial dependence, we take a pragmatic approach to parametrisation:
we fix mating and death rates at estimated values and allow the emerging numbers to vary over
a broad range, thus generating a spectrum of population sizes through single parameter variation.
Additional data would allow a more precise, species-specific investigation to be conducted.

We define the parameters Nem(=
∫ T
0

∫
A
gm(x, y, t)dAdt) and Nef (=

∫ T
0

∫
A
gf (x, y, t)dAdt) as

the total numbers of emerged males and females, respectively. Butterflies are typically assumed to
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emerge in a 1 : 1 ratio, as holds under many laboratory-controlled studies, although the extent to
which this holds true in the field will be dependent on a variety of factors (e.g. see Ehrlich et al.
1984). For example, infections by the Wolbachia bacteria can lead to grossly distorted sex ratios
for certain species, e.g. Jiggins et al. (2000). Here we strictly assume the 1 : 1 ratio holds, i.e.
Nem = Nef , and leave any investigation of unequal emergence for future studies.

To parametrise death rates we assume a mean lifespan for a butterfly to be one week: lifespans
vary considerably across species (from as little as a day to about a year), however one week appears
a reasonable approximation for many hilltopping species (e.g. Scott 1973a). Note that estimates
in reared/protected butterflies can be distinct to their wild counterparts, due to differences in
vulnerability to infections, weather conditions, predation (e.g. birds, see Bowers et al. 1985), etc.
While distinct behaviours may lead to distinct death rates for males and females, we ignore such
complications at present and assume δm = δf = 1.0 per week. Note that the modelling implicitly
assumes no nonlinearities in the death rate, such as higher predator numbers at points where
butterflies accumulate.

The mating rate will also depend on factors such as the ability to detect a mate and the length of
courtship/copulation (Scott 1973b). We exclude any complexities, such that mating only takes place
during certain hours, or that butterflies only gain reproductive potential at a certain age following
emergence, and simply take the mating rate to be uniform and constant. We set β = 0.005 per
males/hectare per hour: this assumes that the mean time for a virgin female to mate in a terrain
containing male butterflies at a mean density 100/hectare is 2 hours. We finally remark that the
simulation study below has also been conducted for other feasible mating/death rate parameters,
with the same qualitative behaviour observed. The set of population kinetic parameters used is
listed in Table 1.

4.1.2 Initial and boundary conditions

Our model studies will be conducted according to one of two situations.

(i) Controlled mark-release-recapture study. We assume released populations of sizes Nrm and Nrf
for males and females, respectively, and no resident population (Nem = Nef = 0). Here, t = 0
indicates the release time and t = Tstudy denotes the end of the study period.

(ii) Natural emergence over a flight season. We assume Nem = Nef > 0 and no initial (or released)
population, Nrm = Nrf = 0. Here, t = 0 indicates the beginning of the flight season and
t = Tseason indicates the season length.

For (i) we initially assume released males and females are concentrated at separate sites ac-
cording to 2D Gaussian functions:

m0(x, y) = Nrm
e−((x−xm,ic)

2+(y−ym,ic)2)/2σ2
m

2πσ2
m

,

f0(x, y) = Nrf
e−((x−xf,ic)

2+(y−yf,ic)2)/2σ2
f

2πσ2
f

,

where (xm,ic, ym,ic) and (xf,ic, yf,ic) respectively describe the male and female release locations,
with σm,f denoting the spread about these sites. For (ii) we simply set m0(x, y) = f0(x, y) = 0.
As previously, we assume no loss or gain of butterflies across the edges of the study field, imposing
zero-flux boundary conditions on (17).
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(a) (b)

(c) (d) (e)

Fig. 7 Impact of hilltopping on the mating efficiency of a butterfly population. (a) 100 male and 100 female
butterflies were released at t = 0 at the 2 sites indicated, separated by 2 km on opposite sides of the ideal hill.
(b) The accumulated distribution of matings across the field after 4 weeks, for increasing values of κ: matings are
confined to the summit and rise with greater hilltopping tendency; horizontal axes indicate location, vertical axis
indicate the accumulated density in matings/hectare. (c) Number of females that have mated as a function of time
(the arrow indicate results under increasing κ). (d-e) Remaining number of (d) virgin females and (e) males for
increasing κ. In (c-e) we have (green) κ = 0, (red) κ = 1, (magenta) κ = 2, (blue) κ = 5, (cyan) κ = 10 and (black)
κ = 20. For model and parameter details we refer to the text, for details of numerical methods we refer to the
appendix.

4.2 Mark-release-recapture studies

Our first study exploits the controlled nature of a mark-release-recapture style study. Specifically,
we consider the separated releases of males and virgin females as described above and track the
subsequent population dynamics. Here we assume Nrm = Nrf = 100. We set Tstudy = 4 weeks,
noting that very few butterflies remain (see Figure 7 (d-e)) at the end of the study.

In the first investigation we consider the ideal hill, Figure 3 (a). We release the male and female
populations on opposite sides of the summit, separated by 2 km: see Figure 7 (a). In each case
we assume males and females have an identical capacity to hilltop, κm = κf = κ, and increase
κ between 0 and 20 to consider populations with distinct tendencies. Results are summarised in
Figure 7 (b)-(e), where we plot: (b) the cumulative density distribution of mating events after 4
weeks; (c) the % of females that successfully mate; (d) the percentage of remaining virgin females;
and (e) the percentage of remaining males. Note that the last is unaltered with κ: male loss is a
result of natural death only and the population decays exponentially according to the death rate.

Clearly, mating is significantly assisted by hilltopping, with the % of mated females rising with
an increased tendency to hilltop. For κ = 0 (i.e. no hilltopping) the initial separation is too large,
precluding random encounters between males and females: the number of matings is insignificant.
At lower values of κ the summit draws males and virgin females together to mate, however its
weak nature results in a significant number of females dying before encountering a male. As κ
is increased, individuals will take a more or less direct route to the summit (e.g. see Figure 5
(a)) and subsequently a high percentage of females mate. The cumulative density distribution
of mating events after 4 weeks shows a concentration of matings at the summit, with maximum
concentrations at the highest values of κ.
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4.3 Seasonal dynamics

We next consider the mating dynamics for a naturally emerging population over the course of a
flight season. Specifically, we assume butterflies begin to emerge at time t = 0 (the start of the
season) and track distributions until t = Tseason; we take Tseason = 8 weeks. We assume no prior
(or released) populations, i.e. m0(x, y) = f0(x, y) = 0.

Realistically, emergence functions gm and gf will be both spatially heterogeneous and time
dependent: the spatial pattern of emergence will be localised according to larval food vegetation,
while the timing is typically weighted towards the start of the mating season (e.g. Iwasa et al.
1983). Moreover, discrepancies occur between males and females, with the former usually emerging
a few days earlier (Iwasa et al. 1983). To exclude any environmental induced heterogeneity (beyond
hilltopping movement), we suppose emergence, and hence larval vegetation, is uniformly distributed
across the region. Further, we restrict time-emergence to a simple step-function form such that
emergences occur at a uniform rate in a 1:1 relationship over the first four weeks:

gm,f (t, x, y) =

{
α/2 if t ≤ 4 weeks

0 if t > 4 weeks
,

where α defines the emergence rate of all butterflies, measured in butterflies/hectare/week.
To understand the extent to which hilltopping benefits species/populations of distinct sizes, we

classify the following four population sizes according to the emergence rate α:

– Rare, α = 1 (total population/hectare = 4);
– Low, α = 10 (total population/hectare = 40);
– Average, α = 100 (total population/hectare N = 400);
– Abundant, α = 1000 (total population/hectare N = 4000).

Hence, the population sizes studied vary across 3 orders of magnitude: such differences are not
unusual amongst butterfly species, and can even occur within the same population at a particular
site over different years (e.g. Hellmann et al. 2003). For each of the above populations we will
explore the mating success across a range of hilltopping tendencies and landscapes; for the latter,
we consider the ideal hill, the undulating landscape and the terrain surrounding Arthur’s seat.

Figure 8 (a) plots the mating success of the population, defined as the % of total females that
mate during the season. We note that by the end of the season all butterflies have emerged and
the number of any remaining virgin females has dropped to negligible levels. In each panel we
plot these percentages as a series of bar charts, as functions of the hilltopping tendency for each
population size. For medium and abundant populations, hilltopping has a negligible impact on
the overall mating success: densities are driven sufficiently high such that newly emerging females
quickly find a mate, regardless of whether they move uphill. However, for rare and low populations,
hilltopping clearly enhances mating at a population level: congregation at the summit enhances
the likelihood of locating a partner and matings are frequent (with respect to the population size).
In particular, we note that for the largest κ there is relatively little variation in the mating success
across the distinct population sizes. Thus, hilltopping has maximum benefits for low population
numbers.

We examine the spatial pattern of mating encounters for a non-hilltopping and hilltopping
(κ = 5) population across the range of population sizes in Figure 8 (b). In the absence of hilltopping,
encounters are uniformly distributed and range from negligible (for rare species) to frequent (for
abundant species). With hilltopping, encounters are predominantly found at summits for lower
density populations. However, for larger populations, matings will occur widely across the terrain
and the overall number and distribution of matings is broadly consistent with that of the non-
hilltopping population.
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(a)

(b)

Fig. 8 Mating success for butterfly populations varying with hilltopping tendency, abundance and terrain. (a) In
each frame we plot bar charts for the percentage of females that mate under distinct hilltopping tendencies (colour
key in first frame) and varying population sizes (horizontal axis). Different frames show the results for different
landscapes, see Figure 3. For all landscapes, a strong hilltopping strategy is shown to negate the limited likelihood
of meeting a partner for low population densities. (b) Spatial plots showing the cumulative density distribution
of mating encounters over the season, for various population sizes and hilltopping tendencies: results here shown
for Arthur’s seat terrain. Colour indicates the number of encounters/hectare according to the right-most scale. For
model and parameter details we refer to the text, for details of numerical methods we refer to the appendix.

4.4 Adaptive or non-adaptive function of hilltopping

The results corroborate a long standing hypothesis: hilltopping enhances mating for rare and low
density species, with summits acting as a ‘lek’ for males and a navigating landmark for newly
emerged females (Alcock 1987). For abundant populations, any advantage gained through hilltop-
ping is lost and mating events are dispersed across the landscape. Moreover, a non-hilltopping
strategy even appears to provide a very slight advantage at a population level, with a marginally
higher number of matings observed, see Figure 8 (a).

Therefore, does a male butterfly always gain by pursuing a hilltopping strategy? For abundant
populations, female emergence is a relatively frequent event and, given that the majority of emer-
gences take place away from summits, a male butterfly located at lower terrains may be better
positioned to encounter and mate with a newly emerged female. Moreover, hilltops can offer a
number of further disadvantages, such as greater exposure to the elements and a lack of suitable
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nectar resources: blindly following a hilltopping strategy may therefore be deleterious to both an
individual and the population.

We investigate this question via an extended version of (17) in which the population of males is
subdivided into three phenotypes. Specifically, emerging males pursue one of three strategies: (S1)
a high tendency to hilltop, κ = 5; (S2) a moderate tendency to hilltop, κ = 1; (S3) a negligible
tendency to hilltop, κ = 0. Note that we will focus on distinct male strategies: emerging females
are assumed to always hilltop, with the same high tendency as (S1). To exclude any further biases,
we assume equal and spatially uniform emergence and death rates for all phenotypes, and that
females do not show any specific predilection to mate with one phenotype over another.

Denoting mi(t, x, y) as the density of male butterflies of phenotype i, the model is extended to:

mit +∇ · amimi = ∇∇(D̄mimi) + gm(t, x, y)− δmmi ; (18a)

ft +∇ · aff = ∇∇(D̄ff) + gf (t, x, y)−
3∑
i=1

βmif − δff . (18b)

Note that differences in the male phenotypes arise via distinct drift velocities (ami) and diffusion
tensors (D̄mi), according to their hilltopping tendency. As previously, we will assume no prior
butterfly populations (mi0(x, y) = f0(x, y) = 0) and the following simplistic emergence functions:

gm(t, x, y) =

{
α/6 if t ≤ 4 weeks

0 if t > 4 weeks
and gf (t, x, y) =

{
α/2 if t ≤ 4 weeks

0 if t > 4 weeks
.

The above ensures females and (total) males emerge in a 1:1 ratio.

In Figure 9 (a) we plot the proportion of females mated according to each phenotype over the
range of population sizes: the percentage stated above each chart indicates the total percentage
of females that mate. In Figure 9 (b) we plot the average number of times a male of a particular
phenotype mates as a function of the population size. Note that simulations are plotted using the
Arthur’s seat landscape: results for other terrains generate qualitatively equivalent behaviour.

For rare or low density populations, it is the (S1) males that clearly dominate the mating
encounters. Here, the population densities remain low and random encounters are rare: males that
have accumulated at summits are therefore most likely to encounter a female, with these males
averaging more than one mating encounter. For medium population sizes, the moderate hilltopping
strategy (S2) is more effective: a less tight adherence to the summit of this population offers these
individuals the chance of encountering females en route to the summit. For abundant populations
the behaviour observed for low density populations is completely reversed and the non-hilltopping
strategy (S3) dominates. Remaining at low terrains allows these males to encounter emerging
females before they start to summit.

This population-size dependency is further revealed by tracking the rate of matings according
to each phenotype as a function of time as the mating season progresses, Figure 9 (b). Early in the
season the hilltopping strategy is always more effective, regardless of the eventual population size:
relatively few virgin females have emerged resulting in low densities and hilltopping co-localisation
is the optimum strategy. As overall population numbers steadily increase, the hill-topping strategy
loses its effectiveness and moderate or non-hilltopping strategies gain ground.

Overall, the results of this section suggest that hilltopping can be both an adaptive and non-
adaptive strategy, according to overall population size, substantiating the observations in Ehrlich
and Wheye (1986); Baughman and Murphy (1988).
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(a) (b)

(c)

Fig. 9 Mating success of male subpopulations with distinct hilltopping tendencies. (a) % of females mated according
to each phenotype expressed as bar charts, over the range of population sizes indicated along the horizontal axis.
The total % of females that mate is indicated by the number above each bar chart. (b) The average number
of matings per male of each subpopulation as a function of population size. (c) Rate of mating encounters by the
various subpopulations during the first two weeks of the flight season, vertical axis represents matings/hectare/week.
Simulations here conducted using the Arthur’s seat terrain. For model details, we refer to the text, for numerical
methods we refer to the appendix.

5 Discussion

A mechanistic and multiscale process for modelling oriented movements in a complex environment
has been illustrated. The model is founded on a velocity-jump random walk for movement (Othmer
et al. 1988, see also Codling et al. 2008; Hillen and Painter 2013; Othmer and Xue 2013), a natural
description of an individual’s discretised movement path. The impact of a complex environment
– topography here – is accounted for via an appropriate input into the probability distribution
for selecting a new orientation/velocity at a turn. If the scale is appropriate, an approximating
macroscopic model for the evolution of population densities can be derived. With its computa-
tional and analytical advantages, this macroscopic model can be applied to studies of population
dynamics, such as the hilltopping application considered here. At the same time, direct simulation
of the underlying stochastic individual model can also be undertaken, providing an alternative
viewpoint.

The velocity-jump model was tailored into a simpler and more convenient form (see also Hillen
and Painter 2013) that facilitated the scaling to a macroscopic model. While the assumptions
appear acceptable for the hilltopping application, they obviously limit its general applicability:
as one example, the supposition that previous velocity has negligible impact on new velocities
discounts that many organisms persist (even in the absence of external cues) in the same direction.
Hence, applying the current scheme in a given situation must entail careful evaluation of the
data and appropriateness of the assumptions. Relaxing them will require renewed consideration of
the scaling limits and treatment on a case-by-case level: we note that velocity-jump models have
received significant attention in the context of cell migration, and we refer to Othmer and Xue
(2013) for a review of various classes of movement.
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The population distribution generated by the macroscopic model fails to converge with the
distributions predicted by the individual-based model for certain parameter regimes. Employing
moment closure to derive (5) is just one of various scaling techniques, and we refer to Hillen and
Painter (2013) for an overview of other approaches that can be applied to (3). More generally,
we note that the continuous mesoscopic velocity-jump model (3) will continue to predict averaged
distributions from the individual-based model even when the macroscopic model fails, and can
therefore be employed when a continuous approach is required. This approach can also be used in
lieu of the macroscopic model for cases where the underlying assumptions, such as those described
above, are relaxed and the scaling to a macroscopic model is challenging: for example, under the
general form of velocity-jump model assumed in (2). Of course, this does come at the cost of reduced
tractability: equation (2) is computationally costly, requiring additional discretisation over velocity
coordinates, and less amenable to analysis than a macroscopic model such as (5).

A significant, yet highly non-trivial case, emerges when interactions between individuals must
be taken into account. For example, the intricate population structures observed in ant trails, bird
flocks, fish schools etc. are crucially dependent on communication, whether by direct contact or
responses to signalling cues modified by the population, such as pheromones. Formally, deriving a
continuous mesoscopic model from the underlying velocity-jump random walk is highly involved: a
standard approach is to simply state a model of the form (2) a priori (such an example under the
current framework is considered in Hillen (2006); Painter (2009) for a cell population interacting
by remodelling its local extracellular environment). Rigorously, (2) can only then be viewed as
an approximation of the true dynamics, and direct comparisons between its behaviour and the
underlying stochastic system should be considered. For example, in Franz et al. (2013) a comparison
was made between a stochastic velocity-jump based model and its proposed mesoscopic model
for the chemotactic movement of E. coli bacteria along consumed nutrient gradients. While the
distinct approaches yielded close correspondence over a range of parameter values, notably different
behaviour emerged in certain regimes. For simpler interactions a formal derivation of an appropriate
continuous model may be possible: for example, see Erban and Haskovec (2012) for an application
in locust swarming.

The application to hilltopping explored a number of hypotheses. Firstly, our modelling cor-
roborates the long-standing notion that hilltopping can significantly aid mating (and hence limit
population collapses) for low density species (e.g. Shields 1967; Scott 1968): in our virtual pop-
ulation, strong hilltopping neutralised the lower likelihood of meeting a mating partner through
co-localisation at summits. Secondly, we demonstrated that the benefit to males of following a
hilltopping strategy vary with population density: for low density populations, adopting a hill-
topping strategy is highly advantageous, yet at high densities a non-hilltopping strategy proves
more successful. These results corroborate the findings suggested in the field studies of Ehrlich
and Wheye (1986) and Baughman and Murphy (1988): that hilltopping can be either adaptive or
non-adaptive, according to the population density.

The hilltopping model was kept intentionally simple to concentrate on how topography can
impose on population dynamics. Butterfly interactions are, of course, considerably more involved
than those implied by the model here, and future investigations will aim to address more compli-
cated dynamics. For example, here we restricted to simple forms for emergence, mating and death,
equal numbers of males and females and a single density equation that absorbs all of a butterfly’s
activities (rather than separate equations, with appropriate transitions, for resting, flying, etc.).
Furthermore, hilltopping was accounted for via a very simple sensing mechanism: butterflies were
postulated to respond to topography by ‘computing’ the local gradient. Evaluation of the topog-
raphy is likely to be far more sophisticated in reality: studies in Pe’er et al. (2004) indicate that
butterflies determine a direction by assessing the topography within visual range, suggesting that
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non-local sampling of the environment is more appropriate. Extending the modelling to evaluate
the relative effectiveness of distinct sensing methods will form part of a future study.

An aspect that also demands further attention is the critical role played by vegetation (e.g. see
Ehrlich and Hanski 2004; Dover and Settele 2009). First, the distribution of suitable larval vege-
tation is the determinant for the emergence of new butterflies. Second, its distribution is likely to
impact on the orientation of butterflies: for males, perching near sites of emerging females provides
an alternative (to hilltopping) mate-locating strategy (Rutowski 1991); for females, proximity to
larval food vegetation is advantageous for quickly locating an egg-laying site post-mating. Third,
vegetation is of obvious importance in terms of providing a suitable nectar source for feeding. In
certain landscapes (for example, the desert landscape in the hilltopping study of Pe’er et al. 2004),
exposed hilltops can be devoid of suitable vegetation, creating a dilemma: move to a hilltop or
remain near vegetation? Extensions of the model to include heterogeneous vegetation structure
will be considered.

We also remark on a number of other simulation studies of hilltopping behaviour. In Pe’er et al.
(2005); Peer et al. (2006) an individual-based modelling approach was used to simulate the move-
ment paths of butterflies, based on the hilltopping field study of Pe’er et al. (2004). In particular,
topography was shown to channel movement paths along ‘virtual corridors’. Findings from the
modelling here substantiate these findings: for example, consistent flight paths are observed for
butterflies released from the various release sites in Figure 6. In Courtney and Anderson (1986) a
game theory approach was used to investigate the distribution of males about encounter sites (such
as hilltops). Notably, individuals were assumed to move between locations according to density,
and it was shown that no stable distribution was obtained. Our present modelling does not include
any behavioural changes due to density-dependence, and this is obviously an important area for
further investigation.

The near-ubiquitous importance of spatial structure on the day-to-day activities of mobile
organisms is manifested in many crucial questions of conservation biology: How does habitat change
impact on the viability of local populations? What are the principal pathways by which an alien
species invades? The capacity to generate detailed information on the pathways of animals through
GPS and other technologies (e.g. Tomkiewicz et al. 2010) can provide enormous volumes of data to
help answer these issues, and its effective use in models is a must if they are to become predictive
tools. The modelling here has taken one particular example – butterfly hilltopping – to illustrate
a broad multi-scale framework that can be applied to a wide variety of problems: one that passes
from an individual-level description of oriented movement paths within a (potentially) spatially-
heterogeneous and time-varying environment to a macroscopic-scale model for the evolution of a
population.
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support of the Leverhulme Trust for a Research Fellowship Grant.

Appendix: Numerical Methods

Stochastic individual-based model

Each individual starts at t = 0 with position and velocity according to the given initial distributions.
A movement path is generated through direct simulation of the stochastic velocity-jump process
in Matlab. If ti represents a time at which a turn is made, xi is the location of the individual at
this time and vi−1 is its previous velocity:

1. The new velocity vi is chosen according to the proposed velocity distribution q;



28 Kevin J Painter

2. The new runtime τi is selected from a Poisson distribution, with turning rate parameter λ
(= 1/τ , where τ is the mean runtime).

3. The individual is moved to position xi+1 = xi + τivi, time is incremented to ti+1 = ti + τi and
the process is repeated.

For velocity distributions based on the von Mises distribution, we employ code (circ vmrnd.m) from
the circular statistics toolbox (Berens 2009). Selecting an orientation according to this distribution
requires a concentration parameter (κ) and dominant angle (φ), drawn from the local gradient of
an underlying orienteering cue E(x). For landscapes such as Arthur’s seat, where terrain data is
only available at discrete points, local gradients of E are approximated via a central difference
scheme.

Mesoscopic velocity-jump model

Equation (3) is solved using a Method of Lines (MOL) approach: we discretise in position and
velocity space to create a large system of ordinary differential equations (ODEs) to be solved
with an appropriate time integration method. In two dimensions, with fixed speed s, positional
coordinates (x, y) ∈ A = [0, Lx] × [0, Ly] are discretised onto a regular lattice x1 = ∆x

2 , x2 =
3∆x
2 . . . , xM = Lx− ∆x

2 , y1 =
∆y
2 , y2 =

3∆y
2 . . . , yN = Ly − ∆y

2 for ∆x = Lx/M , ∆y = Ly/N , while
velocity v = s(cos θ, sin θ) is discretised according to its angular coordinate θ ∈ (−π, π] such that
θ1 = −π +∆θ, θ2 = −π + 2∆θ, . . . , θP = π, where ∆θ = 2π/P ,

Spatial terms consist of the advective term representing movement: this is discretised in conser-
vative form via a third-order upwinding scheme, augmented with a flux-limiting scheme to ensure
positivity of solutions. The right hand side terms of (3) are treated as kinetic-type terms. Inte-
gration of the ODEs has been performed with both explicit and implicit schemes: the former a
forward Euler method with sufficiently small time step, the latter with the rowmap stiff systems
integrator (Weiner et al. 1997). Tests using the two time-iteration methods yield equivalent results
and simulations have been performed across a range of discretisation steps. Default discretisations
for the simulations employ N = M = 200 and P = 100.

Macroscopic model

We also employ a MOL scheme to solve the macroscopic equation (5). The spatial region A is
discretised using the same regular lattice as above for the transport model. In 2D, assuming the
drift-vector and diffusion-tensor are of the form

a(x, y) =

(
µ(x, y)
ν(x, y)

)
and D̄(x, y) =

(
α(x, y) γ(x, y)
γ(x, y) β(x, y)

)
,

we can expand the spatial terms of (5) as follows

−∇(au) +∇∇(D̄u) = (αux)x + (γux)y + (γuy)x + (βuy)y

+ ((µ+ αx + βy)u)x + ((ν + βx + γy)u)y .

The above reveals a combination of diffusive (first line) and advective (second line) type-terms, with
the diffusive terms in the first line identical to those generated for standard anisotropic diffusion.

The choice of finite-difference discretisation for diffusive terms is crucial: naive discretisations
can lead to numerical instability for large and negative γ, see Mosayebi et al. (2010). The possibility
of numerical instability can be reduced using the method in Weickert (1998): finite difference
derivatives are calculated not only along the ‘standard’ axes of the lattice, but combined with those
in an appropriately chosen new direction. Advective terms are discretised in conservative form,
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employing a first-order upwinding scheme. Time integration involves a forward Euler method with
a suitably small time-step ∆t. To verify the numerical method, simulations have been performed
for varying time-step and mesh-discretisations. The validity of the various numerical methods is
further substantiated by convergence of the models within relevant regimes.
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