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Abstract This chapter provides an introduction on how anisotropic diffusion models can be derived from4

position-jump and velocity-jump random walks. We show how the availability of measurement data can5

guide the choice of the appropriate model. We further present two new applications, respectively to cell6

movement on micro-fabricated surfaces and magnetic compass orientation by sea turtle hatchlings.7

1 Introduction8

Getting from point A to point B is a daily challenge, although for the most part our movement patterns are9

routine – staggering from bedroom to bathroom, from home to work, from office to coffee pot – and we10

switch into autopilot, following the course hard-wired into our conscious. Sometimes we may find ourselves11

in an unusual place attempting to reach an unfamiliar goal, yet even then navigation is straightforward when12

armed with a smartphone and network connection.13

14

Cells and animals do not have the technological aids at our disposal yet frequently need to migrate through15

their environment, sometimes independently, sometimes collectively: the solo navigations of recently fledged16

albatrosses across thousands of kilometres of southern oceans, or the collective movements of cells as they17

move into developing tissues and organs offer particularly astonishing examples. Given the myriad of poten-18

tial factors – chemicals, electric, magnetic and gravitational fields, topography and physical structure of the19

environment, etc – a key question, whether posed by ecologists, cell biologists, microbiologists or oncolo-20

gists, is exactly what cues signal to the cells or organisms along their paths.21

22

Mathematical and computational modelling offer the means to address such questions, via encapsulating a23

biological process into its essentials. Yet choosing an approach and setting up a model to begin with is far24

from a trivial task. Inevitably this will come down to the knowledge and data we have and the nature of25
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the problem we are trying to address. One major determinant in the modelling choice will be the biological26

scale of the problem. Consider a population-scale problem such as predicting the spatial spread of a cancer27

to aid diagnosis and treatment. While we may have some understanding of the underlying biological pro-28

cesses at a cellular level (e.g. enhanced proliferation and invasion of cells into healthy tissue), the primary29

scale of interest is typically a macroscopic one at the time of treatment: the scale of the cancer (centimetres)30

is significantly greater than the microscopic cells from which it is formed. In such instances, an efficient31

and oft-used solution is to blur the population into a convenient density distribution and propose a suitable32

evolution equation (such as a partial differential equation) for its change over space and time [48, 37, 36].33

34

Macroscopic approaches such as these have formed a bedrock for mathematical modelling over many years,35

providing insight into a wide variety of fundamental processes. When the only data we have is similarly36

macroscopic, such as an MRI (magnetic resonance imaging) scan indicating the spatial extent of a cancer’s37

growth, a macroscopic model makes sense: fitting the model to approximated densities determined from the38

scan offers a method of validation and parameter estimation [56]. But what if the available data is at the level39

of the individual? Can we relate a model posed at a macroscopic level to an individual’s movement? These40

questions are clearly crucial when we consider technological advances in our capacity to track molecules,41

cells or organisms: individual molecules can be tagged and followed via single particle tracking (SPT) as42

they skate across the cell membrane [52]; labelled cells can be followed via sophisticated imaging while43

migrating through a complicated tissue environment [59]; attaching a global positioning system (GPS) to44

an animal can allow it to be followed even if it travels across oceans and continents [7]. Clearly, the data45

provided by such methods can shed significant light on the fundamental mechanisms of movement. For46

modellers, a significant challenge is raised: how can we best exploit all forms of available data to obtain47

better models, both at the level of individuals and populations?48

49

To motivate the rest of this chapter, we consider two very different applications respectively in cell move-50

ment and turtle hatchling navigation. Both applications have a similar fundamental question (what are the51

guidance cues that determine navigation?), but offer distinct examples for the type of data that may be at52

hand for model parametrisation/formulation. In the case of cell movement we have a tabulated summary53

of population-averaged behaviour. For turtles we have individual-level data, an orientation for each tested54

hatchling in a sample. The analytical models we proceed to describe can be fitted to each of the datasets, in55

each case shedding light on the problem.56

1.1 Dataset A: Cell Movement on Microfabricated Substrates57

The development, maintenance and repair of our bodies requires that various cells migrate through com-58

plex tissue environments; in tumour invasion, these same mechanisms can facilitate the rapid dispersal and59

spread of malignant cells into neighbouring healthy tissue [19]. Various extracellular factors contribute to60

cell guidance, ranging from extracellular molecules (e.g. chemoattractants and repellents), direct signals61

from other cells (e.g. contact inhibition of locomotion) and the oriented movement of cells along aligned62

structures [20, 42]. This latter form of oriented movement is generally termed contact guidance [14] and,63

while principally described in the context of movement along the long bundles of collagen fibres charac-64

teristic of connective tissue, can also occur during the movement of cells along axonal tracts of the central65

nervous system or crawling along blood capillaries [17]. Contact guidance has been identified in various cell66
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Fig. 1 Top Left: schematic of the micro-ridge substrate. Top Right: typical observation of cell movement on an anisotropic
substrate, where the micro-ridges are in different aspect ratios. Bottom: cell tracks observed for different environmental
anisotropies. Horizontal and vertical axes represent microns. Figures reprinted from Biomaterials, volume 31, Jeon, H., Hidai,
H., Hwang, D.J., Healy, K.E. and Grigoropoulos, C.P., “The effect of micronscale anisotropic cross patterns on fibroblast mi-
gration”, pp. 4286–4295 (2010), with permission from Elsevier.

Case Ridge height x-velocity vx±error y-velocity vy± error Speed ± error
(µm×µm) (µm) (µm/min) (µm/min) (µm/min)

12 x 24 3 0.38±0.015 0.58±0.025 0.78±0.027
12 x 48 3 0.28±0.014 0.9±0.045 1.01±0.045
12 x ∞ 3 0.08±0.005 0.56±0.029 0.59±0.029
16 x 32 3 0.48±0.021 0.65±0.026 0.9±0.03
16 x 64 3 0.31±0.015 0.87±0.038 1.0±0.039
16 x ∞ 3 0.12±0.007 0.8±0.036 0.84±0.036
24 x 48 3 0.26±0.015 0.42±0.024 0.55±0.027
24 x 96 3 0.2±0.012 0.49±0.02 0.58±0.022
24 x ∞ 3 0.12±0.007 0.48±0.027 0.52±0.028
12 x 24 10 0.33±0.016 0.46±0.024 0.65±0.026
12 x 48 10 0.18±0.013 0.76±0.044 0.83±0.046
12 x ∞ 10 0.04±0.003 0.60±0.032 0.61±0.032
control 0 0.38±0.019 0.41±0.033 0.63±0.025

Table 1 Reproduction of the movement data from Jeon et al. [25] for fibroblast cells migrating on a micro-ridged substratum.
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populations, including fibroblasts [13], immune cells [59] and various cancerous populations [49, 16].67

68

The capacity of environmental anisotropy to influence cell orientation/movement can be studied by tracing69

cell paths when plated on micro-fabricated structures. To illustrate the data available from such experiments70

we analyse those in Jeon et al. [25], where a two-dimensional substratum is formed with a rectangular array71

of orthogonal micro-ridges, see Figure 1 (left). Inter-ridge lengths in the x− and y−directions are respec-72

tively denoted W and L, with the former set at 12,24 or 48 µm and the latter set to generate W : L ratios of73

1 : 2, 1 : 4 or 1 : ∞ (the last case corresponding to an absence of ridges in the x−direction). Ridge heights74

were set at 3 µm, with further tests conducted at 10µm and a control case without any ridges. NIH37375

fibroblast cells were plated on these substrates: a population characterised by its mesenchymal movement76

with cells extending long protrusions to probe the environment. Cells clearly align to the micro-ridges, gen-77

erating anisotropic movement (see Figure 1, top right and bottom row) under anisotropic arrangements. Data78

from individual tracking was summarised at a macroscopic level (averaged over the population) in terms of79

mean speeds and directional bias, reproduced in Table 1. In Section 4.1 we will use this data to parametrise80

an anisotropic diffusion model that describes cell spread for different anisotropies in the substratum.81

82

1.2 Dataset B: Magnetic Navigation in Loggerhead Hatchlings83

Maritime navigation is undeniably hazardous. The frequent lack of visible landmass, turbulent currents and84

dramatic meteorological conditions resulted in frequent positional misreckoning (and shipwrecking) during85

the early ages of maritime traffic, stimulating governments of the time to propose prizes for a method of86

accurately establishing longitudinal coordinates. John Harrison’s marine chronometer marked a pivotal mo-87

ment in the transition towards (relatively) safe navigation [53]. Marine animals, of course, do not rely on88

such aids but many species routinely undertake long marine journeys [29], with one of the most phenomenal89

belonging to the loggerhead turtle (Caretta caretta). North Atlantic loggerhead hatchlings dash to the ocean90

from eggs laid at various nesting beaches and undergo a period of “frantic” swimming that transports them91

from the dangerous coastal waters to ocean circulatory currents such as the Gulf Stream. They subsequently92

embark on a years to decades long period of open ocean migration, remaining within the warmer waters93

of the Sargasso Sea and the North Atlantic Subtropical Gyre, the circular current system that surrounds it94

(Figure 2). As adults, they continue to navigate between feeding grounds or back to nesting beaches.95

96

Considering the small size of hatchlings and juveniles, sustained swimming is energetically demanding and97

there is clear benefit to simply drifting within the convenient conveyor belt of the North Atlantic Gyre. Yet,98

such simplistic behaviour could come with a risk if the stream branches, such as in the North Atlantic where99

it splits into separate streams heading south (towards the warmer waters of the Azores) or north (into the100

colder waters of Ireland and the North Atlantic), Figure 2; drifting into the latter could transport turtles into101

perilously cold waters. Consequently, it is likely that some degree of positional awareness and navigation is102

employed and an increasing volume of evidence has emerged on the potential for turtles to follow a mag-103

netic compass [28], exploiting the information provided by the Earth’s magnetic field. Such a capacity would104

clearly be advantageous: despite its diurnal and secular variation, magnetic field information is always avail-105

able (unlike, say, celestial cues).106

107
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Fig. 2 The North Atlantic Gyre (Black arrows) is a circular system of currents, formed by the Gulf Stream, the North Atlantic
Current, the Canary Current and the North Equatorial Current. For North Atlantic loggerhead turtles, such as those hatching
along Florida beaches, remaining inside the region enclosed by the Gyre is optimal for access to suitable feeding grounds (e.g.
the Sargasso Sea, the Azores) and to avoid straying into perilously cold waters (e.g. far North Atlantic) or unfamiliar geographic
regions (far from traditional nesting/feeding sites). Two potentially hazardous points are indicated by the North Easterly point
(3) and the South Westerly point (7): here, currents split into northerly/southerly streams for (3) and northerly/westerly streams
for (7). Circular histograms reproduce the hatchling orientation data from [28], where (1-8) correspond to the locations where
the magnetic field was reproduced in an experimental arena. When this data is fitted to the von Mises distribution, equation
(11), a clear bias emerges, with the dominant direction and concentration strength reflected by the arrow direction and length
(concentration parameters κ range from 0.67 for dataset 5 to 0.91 for dataset 1). Clearly, the unimodal von Mises distribution
may not always be an “optimal” distribution: for example, datasets 2 and 8 may be more convincingly fitted by a multimodal
form, such as linear combinations of von Mises distributions. Given the present study aims and the limited sample sizes, we
restrict our fitting to the unimodal von Mises distribution.
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To investigate this hypothesis, Lohmann and colleagues (see [28] for a review) devised a laboratory exper-108

iment that monitors how hatchling orientation changes when exposed to distinct magnetic fields. Briefly, a109

turtle is placed in a large water-tank while harnessed and tethered to an electronic monitor that computes its110

swimming direction. The tank is surrounded by a coil system capable of replicating specific geomagnetic111

fields, such as those found at distinct points along a turtles typical migratory route. Following an acclima-112

tisation period, the mean swimming direction over a 5 minute period is recorded for each turtle, generating113

orientation data at an individual level. In Figure 2 we reproduce the data summarised in [28] (itself sum-114

marising the collection of studies found in [27, 50, 15]). Specifically, magnetic fields were reproduced for115

different points along the North Atlantic Gyre and, for each location, the (mean) orientation of each tested116

turtle is binned into a circular histogram. The key inference from these studies is that hatchlings indeed show117

subtle changes to their preferred swimming direction, consistent with an orientation that optimises remain-118

ing within the Gyre. In Section 4.2 we will use this data to parametrise stochastic and continuous models,119

assessing the capacity for oriented swimming to maintain successful circulation of hatchlings.120

1.3 Outline121

In the next section (Section 2) we introduce advection-diffusion equations and the fully-anisotropic advection-122

diffusion framework. We introduce position-jump and velocity-jump random walks as two alternative123

stochastic models for oriented movement, and show how these models can be parametrised by translat-124

ing between individual-level and population-level measurements via circular statistics. In Section 3 we give125

detailed derivations of the fully-anisotropic advection-diffusion model, starting from either a position-jump126

or velocity-jump process. In Section 4 we return to the two applications/datasets described above. While127

each dataset offers a rather distinct set of summary statistics, we show how they can both be incorporated128

within our framework to parametrise models.129

2 Basic Tools130

Here we outline the basic set of tools that we employ to model and analyse population spread in an131

anisotropic/oriented environment: advection-diffusion equations, scaling limits for random walks, position-132

jump and velocity-jump random walks and directional statistics. We note that the derivations of the follow-133

ing sections require a copious notation, spanning scalar, vector and tensor/matrix quantities. To help the134

reader keep track, we use normal face fonts for scalar quantities (e.g. t, p,u . . .), bold faces for vectors (e.g.135

a,n,v . . .) and double struck (D,V . . .) for tensors and matrices. Much of the material here is of an elementary136

textbook nature, and we limit references as follows: for more information on the use of advection-diffusion137

equations in biology, see for example [35, 37]; for more information and perspectives on random walks and138

their continuous approximations in biological systems, see for example [46, 38, 39, 47, 9, 41, 22]; for more139

information on the theory and use of directional statistics in biology, see [2, 31].140
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Fig. 3 Typical solutions of the basic diffusion-advection equation (1). Initial conditions are u(x,0) = e−x2
and solutions shown

for (left to right): pure advection; pure diffusion; diffusion-advection.

2.1 Advection-Diffusion Equations141

Advection-diffusion equations (AD equations) occupy a prominent position in biological movement mod-142

elling [35, 37]. Firstly, AD equations have a relatively straightforward and intuitive form and their long143

history has generated numerous methods for their analysis. Secondly, AD equations can arise as a limiting144

form from more realistic/detailed models: they can be derived from discrete and continuous random walks145

[38], from stochastic differential equations [18] and from individual based models [12]. Thirdly, they have146

shown to be powerful models capable of describing a wide range of applications in areas as diverse as mi-147

crobiology [11], ecology [34, 30], physiology [26], and medicine [45]. In short, AD equations describe the148

basic elements of a movement process.149

150

In the simplest case we restrict to a one-dimensional line and consider a constant drift velocity a and constant151

diffusion coefficient d > 0. The AD equation for some population density u(x, t), where x denotes position152

along the line and t describes time, is given by153

ut +aux = duxx (1)

where the index notation denotes partial derivatives.154

155

In the absence of diffusion (d = 0), we have ut +aux = 0 and solutions are of the form u(x−at), describing156

movement with constant speed a. If a > 0 this movement is to the right and if a < 0 to the left (see Figure 3157

left). In the absence of advection (a = 0) we obtain a pure heat (or diffusion) equation ut = duxx: solutions158

disperse (Figure 3 middle) and (for x ∈ R) the fundamental solution is159

u(x, t) =
1√

4πdt
e−x2/4dt .

Taking both terms together (a 6= 0,d > 0) the population is transported with velocity a while simultaneously160

spreading due to diffusion (Figure 3 right).161

162

While the basic elements of directed movement (via a) and spatial spread (via d) are already contained in163

(1), questions arise concerning their specific choices related to biological observations/properties: How does164
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the direction and thickness of nano-grooves translate to advection/diffusion terms? How can we link datasets165

on turtle headings to these parameters? To answer questions like these we need to generalise the above AD166

equations (1) in a number of ways:167

• advection and diffusion coefficients will more generally depend on space and time;168

• we need to explore AD equations in higher space dimensions, in particular two dimensions for the exam-169

ples studied here;170

• as we shall see, any underlying anisotropy or oriented information in the environment can affect both171

advection and diffusion, necessitating usage of an anisotropic formulation with n× n diffusion tensor172

D(x, t).173

Instead of (1) we will therefore consider the fully anisotropic advection-diffusion equation (FAAD equation):174

ut +∇ · (a(x, t)u) = ∇∇ : (D(x, t)u) . (2)

Note that because the advective velocity (a(x, t)) now depends on space, it appears inside the divergence175

such that ut +∇ · (a(x, t)u) = 0 is a conservation law. The new anisotropic diffusion term in (2) demands176

special attention. The colon notation (:) used here denotes the contraction of two tensors, and generates a177

summation across the full suite (i.e. including mixed) of second order derivatives:178

∇∇ : (D(x, t)u) =
n

∑
i, j=1

∂

∂xi

∂

∂x j
(Di j(x, t)u(x, t)) . (3)

Note moreover that this term can be expanded into179

∇∇ : (Du) = ∇ · (D∇u)+∇ · ((∇ ·D)u) ,

which reveals a standard (Fickian-type) anisotropic diffusion term along with an advection term with velocity180

∇ ·D. As we will show below, the term (3) arises naturally from a detailed random walk description for181

moving biological agents. We also note that this term can confer some advantages over the standard Fickian182

anisotropic diffusion form (∇ · (D∇u)): in particular, (3) can allow local maxima and minima to form in the183

population density steady state distribution, consistent with certain biological observations. Before we move184

on to this we first show how explicit expressions can be obtained for drift and diffusion terms, correlating to185

the inputs into an individual-level random walk, and introduce scaling methods in the process.186

2.2 Scaling Limits for a Simple Random Walk187

Consider an unfortunate hare confined to a life of consecutive and equispaced hops left or right along an188

infinite one-dimensional road. This animal’s convenient movement path can be characterised by a probability189

density function p(x, t), denoting the probability of the hare being at position x at time t. We set δ to be the190

hop length, q and 1− q as the probabilities of a jump to the right or left and introduce τ as the (assumed191

constant) time between consecutive hops. To determine an equation for p(x, t + τ) we need to calculate the192

probability of finding the individual at x at time = t + τ . Clearly this will only be possible if the individual193

has jumped right from position x−δ , or left from x+δ , at time t. As a result, we have the discrete Master194

equation195

p(x, t + τ) = qp(x−δ , t)+(1−q)p(x+δ , t) . (4)
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How can we determine a continuous limit for this discrete equation? The first step is to reinterpret p as a196

continuous probability distribution and then expand the left hand side about (x, t) as a function of t in powers197

of τ , and the right hand side terms as functions of x in powers of δ . After removing the arguments (x, t) for198

clarity, we find199

p+ τ pt +
τ2

2
ptt + . . .= q

(
p−δ px +

δ 2

2
pxx− . . .

)
+(1−q)

(
p+δ px +

δ 2

2
pxx + . . .

)
,

where the subscripts denote partial derivatives. Simplifying, we obtain200

pt(x, t) =
δ

τ
(1−2q)px(x, t)+

δ 2

2τ
pxx(x, t)+O(τ,

δ 3

2τ
) . (5)

Glancing at Equation (5) hints at the continuous model, where we see that the leading terms form an201

advection-diffusion equation,202

pt(x, t) =−apx(x, t)+d pxx(x, t) (6)

with203

a =
δ

τ
(2q−1) and d =

δ 2

2τ
.

However, to do this more formally we must think carefully about different scalings, corresponding to distinct204

limiting scenarios as δ ,τ → 0 and q→ 1/2. We will present three choices: others certainly exist, yet the205

majority do not lead to a useful limit equation. In other words, if δ ,τ and q do not scale as indicated below,206

then the above does not provide an appropriate method for deriving a useful continuous model. Note that for207

each of these scalings, all of the hidden lower order terms of equation (5) limit to zero and are henceforth208

excluded from consideration.209

(a) Suppose δ ,τ → 0 such that δ

τ
→ α = constant. This describes a hyperbolic scaling. Hence, δ 2

τ
→ 0,210

and the diffusive term vanishes. Thus, we are left with a simple transport equation211

pt +apx = 0 ,

where the advective velocity is a = α(2q− 1). We can see from this that the advective speed reaches a212

maximum of α when q = 0 or 1, which corresponds to always choosing left or always choosing right: i.e.213

there will be no doubling back.214

(b) Suppose δ ,τ → 0 such that δ 2

τ
→ 2d = constant. This describes a parabolic scaling. Here we can215

consider two cases:216

(b.1) If q = 1
2 . Here we have a = 0 and we hence obtain a pure diffusion equation217

pt = d pxx.

(b.2) If q→ 1
2 in such a way that δ

τ
(2q−1)→ a, and δ 2

2τ
→ d, then the scaling results in the advection-218

diffusion equation219

pt +apx = d pxx . (7)

Summarising:220

• When δ and τ scale in the same way, then we obtain a pure transport equation. This case is called drift221

dominated.222
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• When δ 2 ∼ τ , we have the diffusion dominated case.223

• Only if q− 1
2 ∼ δ do we get both terms, an advection and a diffusion term (mixed case). In this case224

we exactly derive our simple one-dimensional AD equation (1), but now we have a connection from the225

macroscopic parameters a and d to the statistical inputs of the underlying random walk process (q,δ ,τ).226

The question of which scaling to apply will typically come down to the appropriate relationship between the227

macroscopic and the individual spatial and temporal scales: i.e. between the scales of the individual move-228

ment process and the scale of the problem. For example, for the hops of a hare their frequency may take229

place on a timescale of seconds, over a distance of several centimetres. For modelling purposes, we may be230

interested in the dynamics of the system over observational scales ranging from minutes and metres to years231

and kilometres. The comparison between these scales provides the key to the appropriate scaling.232

233

It is important to note that we have, in fact, only derived a continuous limiting equation for the probability234

distribution of finding an individual at position x at time t. Can we directly relate p to a density function u that235

describes the distribution of a population? Formally, this would require that the jumpers are stochastically236

independent, i.e. that any interactions between population members can be (reasonably) ignored. This would,237

quite obviously, be a strong assumption if applied generally and its validity demands careful assessment238

[46, 54]. Accounting for population interactions will significantly complicate the proceedings (often to the239

point of intractability) and we shall therefore restrict to stochastically independent jumpers in the context of240

this chapter: effectively, we directly interchange the probability distribution p with the population density241

distribution u.242

2.3 Classes of Biological Random Walks243

In the above example we considered an uncorrelated position-jump random walk on a discrete and regular244

one-dimensional lattice for our underlying movement process: moves were uncorrelated, in that the decision245

of which direction to take did not depend on the previous decision(s), movement occurred through posi-246

tional jumps in space that ignored explicit description of passage between successive points, and were of247

fixed length, so that the path was localised to equally-spaced points along a one-dimensional line.248

249

More generally, two popular random walk descriptions for biological movement are the position-jump and250

velocity-jump random walk processes. These descriptions have been introduced to biological modelling by251

Othmer, Dunbar and Alt [38] and subsequently proven to be powerful and popular approaches. In the sim-252

pler position-jump process, the random walker jumps discretely from point to point according to certain253

jump probabilities (Figure 4 left); the one-dimensional random walk discussed above provides a particularly254

simple example. The more sophisticated velocity-jump process assumes piecewise continuous movement255

through space, with random walkers changing their velocity (or heading) during turns. Choosing an appro-256

priate random walk description involves a balancing of their respective advantages: for example, while the257

velocity-jump approach benefits from its more natural representation of biological movement, the subse-258

quent derivation of a continuous limiting equation is somewhat more complicated (Figure 4 right).259

260
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Fig. 4 Schematic illustrating position-jump and velocity-jump random walks. (Left) In the position-jump process, the particle
makes instantaneous jumps through space at discrete times t0, t1, t2, . . .. (Right) In the velocity-jump process, the particle makes
instantaneous velocity-changes at discrete times t0, t1, t2, . . . (red circles), but subsequently moves continuously through space
with a fixed velocity in the intervening times (white circles).

2.3.1 Position-Jump Processes261

Moving beyond our simple random walk above, a more general position-jump random walk assumes move-262

ment proceeds through a sequence of positional jumps in space, interspersed according to some characteristic263

mean waiting time. Such instantaneous transitions are clearly somewhat unrealistic in the context of biolog-264

ical movement, yet given the discrete nature of many datasets (for example, satellite tracking of an animal in265

which its path is recorded through its spatial coordinate at discrete times) a position-jump model can often266

be justified as a reasonable approximation [5, 57].267

268

Position-jump random walks can be alternatively stated via a discrete or continuous time master equation269

[38], and here we consider the former form. Specifically, we consider a population of stochastically inde-270

pendent jumpers performing a discrete time random walk, starting at t = 0 and making jumps at fixed times271

separated by time step τ . We introduce a redistribution kernel K(y,x, t), a probability density function for a272

jump from position x to y at time t. Note that, as a probability, we have K ≥ 0.273

274

The difference in the population density at x between times t and t + τ will be determined by summing all275

jumps into position x and subtracting all those away from position x, i.e. by the equation276

u(x, t + τ)−u(x, t) =
∫

Dx
K(x,y, t)u(y, t)−K(y,x, t)u(x, t)dµ(y) . (8)

In the above, (Dx,µ(y)) is a measure space. The above is general for random walks including jumps of277

various step lengths, or cases where movement occurs in continuous space or is restricted to discrete jumps278

between regularly or irregularly arranged nodes. The set Dx determines the set of destination/incoming sites279

for position x, i.e. the set of points y ∈ Dx from which jumps into or out of x can be made, with µ(y) its280

associated measure. For example, if jumps can be made in any direction and any distance up to length h, then281

Dx becomes the ball centred on x of radius h and the associated measure is the standard Lebesgue measure.282

If jumps can be made in any direction, but are restricted to a fixed length h, then Dx will be the sphere of ra-283

dius h centred on x and the associated measure is the surface Lebesgue measure. When movements become284
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restricted to a set of nodes, Dx becomes a finite or infinite set of discrete positions with a corresponding285

discrete measure.286

287

The choice of redistribution kernel K is a key modelling decision, and allows various potential factors to288

be incorporated: for example, K could incorporate an impact due to environmental anisotropy or navigating289

cues that bias jumps into particular headings. The redistribution kernel is taken to be a probability measure,290

i.e.291 ∫
Dx

K(y,x, t)dµ(y) = 1 .

The above excludes spatio-temporal variation in the rate that jumps are made. However, it is noted that this is292

distinct from variation in staying at the same site, since Dx could include x and remaining would correspond293

to K(x,x, t)> 0.294

2.3.2 Velocity-Jump Processes295

In velocity-jump random walks, movement consists of smooth runs with constant velocity interspersed by296

(instantaneous) reorientations [38]. For stochastically independent walkers, the individual-scale velocity-297

jump random walk can be formulated as an individual-scale continuous transport equation. Transport mod-298

els form a powerful and relatively new tool in the modelling and analysis of animal and cell movement299

[37, 21, 40, 47], although they have a long history in continuum mechanics (where they are usually referred300

to as kinetic equations) [8, 3]. As a result, various tools and techniques have been developed and in particu-301

lar the scaling techniques that allow their approximation to a reduced (and hopefully simpler) macroscopic302

model [47, 22]. Consequently, the transport equation can be thought of as a bridge that connects the individ-303

ual random walk to a fully continuous macroscopic model.304

305

The reapplication of transport equations to biological processes has grown from seminal work of the 1980s306

(see [1, 38]) as an approach for modelling biological movement, whether by cells or organisms. Transport307

equations typically refer to mathematical models in which the particles of interest are structured by their308

position in space, time and velocity. In words, the transport equation for animal/cell movement takes the309

intuitively simple form:310

Rate of change of population Change due to Change due to
moving with velocity v = movement through + turning into or out

at position x time t space of velocity v

Formally, if we define by p(v,x, t) to be the density of the population moving with velocity v ∈V at position311

x and time t, then312

pt(v,x, t)+v ·∇p(v,x, t) = L p(v,x, t) , (9)

where L denotes a turning operator that describes the process of velocity switching1. For the velocity space313

V ⊂Rn we take V = [s1,s2]×Sn−1, where 0≤ s1 ≤ s2 < ∞, s1 and s2 define the lower and upper bounds for314

organism movement speed2 and Sn−1 defines the unit sphere.315

316

1 We note that this particular form assumes there is no net force on the particles, and thus no inertia on them.
2 It is worth noting that this is a key distinction from the kinetic theory of gas molecules, where V = Rn permits (at least
theoretically) individual molecules to acquire infinite momentum [8].
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The choice of L forms a key modelling decision, and an oft-used form is the integral operator representation317

[38]:318

L p(v,x, t) =−µ p(v,x, t)+µ

∫
V

T (v,v′,x, t)p(v,x, t)dv′ , (10)

where the first term on the right hand side gives the rate at which particles switch away from velocity v319

and the second term denotes the switching into velocity v from all other velocities. The parameter µ is the320

turning rate, with 1/µ the mean run time between individual turns. The turning kernel T (v,v′,x, t) ≥ 0321

denotes the switching into velocity v for a turn made at position x and time t, given some previous velocity322

v′. Mass conservation demands323 ∫
V

T (v,v′,x, t)dv = 1

and consequently T denotes a probability measure over V . As for the redistribution kernel in the position-324

jump process, its choice is a major consideration: for example orientation signals from the environment at x325

and time t, or the inclusion of persistence in the previous direction v′.326

2.4 Directional Statistics327

Each of the position-jump and velocity-jump processes above rely on various biological inputs: mean wait-328

ing times, speeds, turning rates and redistribution kernels. It is through these inputs that the random walk329

can be linked to biological datasets, and not least significant are the kernels K and T , which respectively de-330

scribe probability distribution functions for either the redistribution kernel for a positional jump from some331

position x to a position y, or a change of velocity from v′ to v. Fundamentally, each distribution encapsu-332

lates an orientating “choice” of the animal or cell and we now turn to consider some suitable representations.333

334

Typical datasets for cell movement and animal navigation problems relate to orientations/headings in space335

and handling such data demands a review of some concepts from directional statistics [31]. In two dimen-336

sions, directional (or circular) statistics involves consideration of data on orientations that can be expressed337

with respect to some angle α relative to a given x-direction. The problem of directly transposing the defini-338

tions of regular (linear) statistics to circular statistics becomes immediately apparent with even its simplest339

concepts: for a set of angles uniformly distributed across the circle, what meaning would the (linear) mean340

angle of this dataset have?341

342

In general we consider the set of directions on the n-dimensional sphere, i.e. the set of unit vectors n ∈ Sn−1.343

A directional distribution is then a probability distribution q(n) defined over Sn−1, i.e. one satisfying344

q(n)≥ 0 and
∫

Sn−1
q(n)dn = 1 .

Of particular importance for our work are the first and second moments of q, respectively the expectation Eq345

and variance-covariance matrix Vq (which we will often refer to simply as the variance):346

Eq =
∫

Sn−1
nq(n)dn,

Vq =
∫

Sn−1
(n−Eq)(n−Eq)

T q(n)dn.
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Fig. 5 Left: The unimodal von Mises distribution as a function of n = (n1,n2)
T ∈ S1 with a peak at ννν = (1,0)T . Right: The

bimodal von Mises distribution qvM as a function of n ∈ S1 with peaks at ννν =±(1,0)T . In these plots we set κ = 10.

In two dimensions, distributions will be defined on the unit circle, i.e. n ∈ S1. The simplest example is the347

uniform distribution, q(n) = 1
2π

, although this has obviously limited usage in cases where data shows clear348

clustering/structure.349

350

Given the enormous importance of the normal distribution in linear statistics, it is clearly desirable to351

define a similar concept for circular statistics. While the wrapped normal distribution offers the most direct352

analogue, the normal distribution’s prominent position in circular statistics is filled instead by its sibling the353

von Mises distribution [31, 2], which benefits from its more analytically tractable form; the subtle differences354

between the wrapped normal and von Mises distribution are unlikely to be differentiated within the context355

of typical (noisy) biological datasets. Suppose we have some dominant/preferred direction ννν ∈ S1, then the356

von Mises distribution is given by357

qvM(n,ννν ,κ) =
1

2πI0(κ)
eκn·ννν (11)

for n ∈ S1. Here κ denotes the concentration parameter and I0(κ) (I j(κ)) denotes the modified Bessel358

function of first kind of order 0 (order j). The von Mises distribution is illustrated in Figure 5 on the left.359

360

It is, of course, equally possible to write down the von Mises distribution in terms of polar angles. Denoting361

α to be the angle of n and φ to be the angle of ννν (i.e. the dominant angle), then we can write362

qvM(α,φ ,κ) =
1

2πI0(κ)
eκ cos(α−φ) .

The above form is more common, particularly in the biological literature [32], but it is less useful for compu-363

tations and can be notationally more cumbersome. Hence we work with the coordinate free form (11) when364

possible.365

366

As for the normal distribution on the line, the von Mises distribution on the circle is the workhorse of planar367

directional statistics [31, 2]. It can be derived from random walks, diffusion equations and energy principles,368

and has applications in earth sciences, physics, biology, medicine and elsewhere. It is used for data fitting369

and hypothesis testing of directional data, and we will use it here for our modelling of biological movement.370

The first and second moments of (11) have been computed in [23] (amongst elsewhere) and are given by371
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EqvM =
I1(κ)

I0(κ)
ννν ; (12)

VqvM =
1
2

(
1− I2(κ)

I0(κ)

)
I2 +

(
I2(κ)

I0(κ)
−
(

I1(κ)

I0(κ)

)2
)

νννννν
T . (13)

Note that I2 denotes the 2×2 identity matrix, and ννννννT denotes the dyadic product of two vectors (in tensor372

notation ννν⊗ννν).373

374

Many biological datasets possess multimodal structure and we note that the von Mises distrubution can be375

extended to describe such instances, for example through simple linear combinations of (11); the moments376

correspondingly follow from linear combinations of (12-13). A particularly useful case emerges for axially-377

symmetric directional information, such as the spreading of cells along nanogrooves or animal movement378

along linear environment structures such as seismic lines [33]. In such cases we can define a bimodal von379

Mises distributions with equal sized local maxima at ±ννν . As shown in [23], we find that for given ννν ∈ S1
380

the bimodal von Mises distribution381

qbvM(n,ννν ,κ) =
1

4πI0(κ)

(
eκn·ννν + e−κn·ννν) , (14)

has moments382

EqbvM = 000 , (15)

VqbvM =
1
2

(
1− I2(κ)

I0(κ)

)
I2 +

I2(κ)

I0(κ)
νννννν

T . (16)

An illustration of the bimodal von Mises distribution is shown in Figure 5 on the right.383

384

For the present chapter we exclusively concentrate on two-dimensional applications, however it is worth385

remarking that extensions can be made to three dimensions. The equivalent of the von Mises distribution in386

three dimensions is called the Fisher distribution and is given by387

qF(n,ννν ,κ) =
κ

4π sinh(κ)
eκn·ννν , n ∈ S2. (17)

Again, first and second moments have been previously calculated for this distribution (see [23]), given by388

EqF =

(
cothκ− 1

κ

)
ννν , (18)

VqF =

(
cothκ

κ
− 1

κ2

)
I+
(

1− cothκ

κ
+

2
κ2 − coth2

κ

)
νννννν

T . (19)

3 Derivation of Fully Anisotropic Advection-Diffusion Equations389

Here we present two derivations of the FAAD model (2), respectively from a position-jump and velocity-390

jump process. We will find that both the macroscopic drift velocity a and the diffusion tensor D depend391
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on statistical properties of the parameters in the corresponding random walk model. Hence, the choice of392

an appropriate model can be linked to the available data: if we can compute mean and variance of species393

locations, then the position-jump framework applies (see our cell movement example); if the data allow394

estimates for mean speeds, mean directions and their variances, then the velocity-jump process is perhaps a395

better choice (see the sea-turtle example).396

3.1 Position-Jump Derivation397

For the position-jump derivation we will make a number of convenient restrictions:398

1. we assume random walks in which the jumps can occur in any direction (i.e. lattice-free), but are restricted399

to fixed length δ .400

2. we assume the jump is myopic (or short-sighted).401

The first restriction determines that the set D in equation (8) simply becomes the sphere of radius δ . The402

myopic nature of the jump implies that the heading is based only on environmental information obtained at403

the present site, i.e. at (x, t) for a walker at position x at time t; alternatives could involve, as an example, a404

dependence on information at the destination site, or a comparison between the current and destination site405

[55].406

407

The consequence of these assumptions is that our redistribution kernels can be written in terms of a direc-408

tional distribution for choosing direction n ∈ Sn−1, i.e. K(y,x, t) = k(n,x, t) where n is in the direction y−x
|y−x|409

and the Master equation becomes410

u(x, t + τ)−u(x, t) =
∫

Sn−1
k(n,x−δn, t)u(x−δn, t)− k(n,x, t)u(x, t)dn . (20)

At this point it is interesting to quickly consider the connection to the one-dimensional case (4) that was411

studied earlier. In the one-dimensional case we have only two headings, n ∈ {−1,1}. Hence we define412

k(n,x, t) = qδ0(−1−n)+(1−q)δ0(1−n),

where δ0 denotes the Dirac-delta distribution. Then (20) becomes413

u(x, t + τ) = qu(x−δ , t)+(1−q)u(x+δ , t),

which is exactly (4).414

415

For small values of δ and τ we expand the right hand side of equation (20) about x and the left hand side416

about t to obtain417

∂u
∂ t

+O(τ) =
δ

τ

∫
Sn−1
−n ·∇(ku)+

δ

2
(n ·∇)2 (ku)+O(δ 2)dn ,

= −δ

τ

(
∇ ·
∫

Sn−1
kndn

)
u+

δ 2

2τ

(
∇∇ :

∫
Sn−1

nnT kdn
)

u+O(δ 3/τ) ,

where we use the colon notation (:) which denotes the contraction of two tensors as418
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A : B =
n

∑
i, j=1

ai jbi j, A,B ∈ Rn×n.

As discussed in Section 2.2, distinct scalings generate different continuous limits and we again consider both419

the drift and diffusion dominated scenarios.420

• (drift dominated) if δ ,τ → 0 such that limδ ,τ→0
δ

τ
= c (constant) we have the hyperbolic model421

∂u
∂ t

+∇ · (a(x, t)u) = 0 ,

where a(x, t) = c
∫

Sn−1 nk(n,x, t)dn (i.e. the advection is proportional to the first moment of k).422

• if δ ,τ → 0 such that limδ ,τ→0
δ 2

2τ
= d then we have two cases423

– (diffusion dominated) if
∫

Sn−1 nkdn = 0 then we have424

∂u
∂ t

= ∇∇ : (D(x, t)u) ,

where D(x, t) is the n×n matrix defined by D(x, t) = d
∫

Sn−1 nnT k(n,x, t)dn.425

– (drift-diffusion) If limδ ,τ→0
δ 2

2τ
= d and limδ ,τ→0

δ

τ

∫
Sn−1 nkdn∼ cδ we have426

∂u
∂ t

+∇ · (a(x, t)u) = ∇∇ : (D(x, t)u) ,

with427

a(x, t) = c
∫

Sn−1
nk(n,x, t)dn ,

D(x, t) = d
∫

Sn−1
(n−a(x, t))(n−a(x, t))T k(n,x, t)dn .

The final form is particularly relevant, as it is exactly the FAAD model we introduced earlier. In this case, we428

now have a connection to the advection velocity and diffusion tensor terms from the underlying statistical429

inputs k(n,x, t) of a random walk process.430

3.2 Velocity-Jump Derivation431

To facilitate the derivation we consider a simplified form of transport equation. Specifically, we assume that432

the turning kernel does not depend on the previous velocity v′, i.e.433

T (v,v′,x, t) = T (v,x, t) .

Using this choice in (10) for (9) we have the considerably simpler form434

pt(v,x, t)+v ·∇p(v,x, t) =−µ p(v,x, t)+T (v,x, t)u(x, t) , (21)

where we have defined the macroscopic density435



18 Kevin J. Painter and Thomas Hillen

u(x, t) =
∫

V
p(v,x, t)dv. (22)

The process from here is to derive an evolution equation for the macroscopic density u(x, t), which can be436

achieved through a variety of scaling techniques, including parabolic scaling, hyperbolic scaling and moment437

closure. For a detailed treatment for model (21) we refer to our earlier paper [22] and we summarise one438

such choice here: moment closure.439

3.2.1 Moment Closure Method440

In a moment closure approach, the idea is to identify statistically meaningful quantities related to p and441

T , such as expectations and variances. We remind ourselves that the formulation demands that the turning442

distribution T (v,x, t) is a probability measure, i.e.443

T (v,x, t)≥ 0,
∫

V
T (v,x, t)dv = 1,

and we consider its expectation ET and variance VT ,444

ET (x, t) =
∫

V
vT (v,x, t)dv, VT (x, t) :=

∫
V
(v−ET (x, t))(v−ET (x, t))T T (v,x, t)dv . (23)

ET (x, t) describes the mean new velocity vector for the turning kernel, while VT (x, t) is its variance-445

covariance matrix.446

447

We now introduce the same quantities for p(v,x, t), although we note that p in itself is not a probability448

measure, since
∫

V p(v,x, t)dv = u(x, t) is not necessarily equal to one. But we can normalise, introducing p̂449

via the equation450

u(x, t)p̂(v,x, t) = p(v,x, t)

and noting that
∫

V p̂(v,x, t)dv = 1. We subsequently introduce the expectation and variances451

E p̂(x, t) =
∫

V
vp̂(v,x, t)dv,

V p̂(x, t) =
∫

V
(v−E p̂(x, t))(v−E p̂(x, t))T p̂(v,x, t)dv.

Then, E p̂ defines the mean velocity of the normalized population while V p̂ is its variance-covariance matrix.452

In terms of the original population density p, we can write453 ∫
V

vp(v,x, t)dv = E p̂(x, t)u(x, t) , (24)∫
V
(v−E p̂(x, t))(v−E p̂(x, t))T p(v,x, t)dv = V p̂(x, t)u(x, t) . (25)

Next we explain the moment closure method itself. We can derive equations for the expectation and variance454

introduced above, and it turns out that the equation for the expectation (first moment) depends on the variance455

(second moment) while the equation for the variance depends on a third moment etc. Effectively we obtain456

an infinite hierarchy of moment equations, where each new equation depends on a next higher moment. To457
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obtain a usable model, the sequence of equations must be cut somewhere, a process termed moment closure.458

Generally, choosing the right closure condition is a work of art and many plausible approaches are available459

in the literature [8, 20]. Here we will choose a standard method that uses the equilibrium distribution and cut460

at the second moment to obtain a single equation of type (2) for the mass density u(x, t).461

462

Let us start by integrating equation (21) over V and express each term with respect to the corresponding463

moments. Note that hereon we omit the arguments for readability.464 ∫
V

ptdv+
∫

V
∇ ·vp dv =−µ

∫
V

p dv+µ

∫
V

T dv u,

which can equivalently be written as465

ut +∇ · (E p̂u) =−µu+µu = 0.

Hence our first equation is a conservation law466

ut +∇ · (E p̂u) = 0 . (26)

As a next step we multiply (21) by v and again integrate over V . We obtain467 ∫
V

vutdv+
∫

v(∇ ·vp)dv =−µ

∫
V

vp dv+µ

∫
V

vT dv u ,

which can be equivalently written as468

(E p̂u)t +∇ ·
∫

V
vvT p dv = µ(ET −E p̂)u . (27)

We write the second moment
∫

vvT pdv in terms of the variance of p̂, i.e.469

V p̂u =
∫

V
(v−E p̂)(v−E p̂)

T pdv ,

=
∫

V
vvT pdv−2

∫
V

vET
p̂ pdv+E p̂ET

p̂ u.

Hence470 ∫
V

vvT pdv = V p̂u+E p̂ET
p̂ u.

We use this expression in (27) and obtain the equation for the expectation:471

(E p̂u)t +∇ · (E p̂ET
p̂ u) =−∇ · (V p̂u)+µ(ET −E p̂)u . (28)

So far we have simply integrated and introduced a few fancy variables for E p̂,V p̂ etc. The next step is to472

present two critical assumptions that allow us to close the system:473

(a1) Moment closure – the variance V p̂ is computed from the equilibrium distribution pe: V p̂ ≈ V p̂e .474

475

(a2) Fast flux relaxation – the equation (28) for the expectation E p̂ is in quasi-equilibrium.476
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It is noted that the above assumptions were originally conceived in a physical context, namely the kinetic477

theory of dilute gases [8]. The extent to which these can be directly translated to biological particles, such478

as cells and organisms, is uncertain and a goal for further investigations: within the present article we sim-479

ply take them as stated. The first assumption has proven to be useful in a number of studies. The second480

assumption effectively stipulates that, at the space/time scales of the macroscopic model, the particle instan-481

taneously respond to local information: reasonable, say, for an organism switching direction multiple times482

a day but studied over a macroscopic scale of months to years.483

The equilibrium distribution pe can be computed from the condition L pe = 0 where L is the integral484

operator from (10). In our case485

L p = µ(Tu− p) = 0

is solved by the equilibrium distribution ,486

pe(v,x, t) = u(x, t)T (v,x, t).

This equilibrium distribution has the expectation487

E p̂e u =
∫

V
vpedv =

∫
V

vuT dv = ET u . (29)

Now we approximate the highest order term, the variance as488

V p̂ ≈ V p̂e =
∫

V
(v−E p̂e)(v−E p̂e)

T uT dv = VT u . (30)

In assumption (a2) we postulate that the equation (28) is in quasi steady state, i.e.489

000≈−∇ · (V p̂u)+µ(ET −E p̂)u ,

and, substituting the moment closure (30), we find the approximation490

E p̂u≈− 1
µ

∇ · (VT u)+ET u . (31)

Finally, we substitute (31) into the conservation law (26) and we assume that the approximation is good (i.e.491

we replace ≈ with =) to obtain a closed system492

ut +∇ · (ET u) =
1
µ

∇∇ : (VT u) . (32)

This closed equation is exactly the fully anisotropic advection-diffusion equation (FAAD) in (2) with493

a(x, t) = ET (x, t) and D(x, t) =
1
µ
VT (x, t). (33)

Let us consider two special cases of this derivation.494

495

Example 1: (directional distributions) Some further simplifications can be used to relate turning directly496

to a directional distribution. Let us restrict movement to a single speed, i.e. V = sSn−1, where s is the mean497

speed and Sn−1 is the n-dimensional sphere. Hence, v = sn where n ∈ Sn−1 defines the directional heading.498
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We can therefore simply define T in terms of a directional distribution, say q, for choosing some heading499

n ∈ Sn−1. Specifically,500

T (v,x, t) :=
q(n,x, t)

sn−1 , (34)

where the sn−1 factor results from moving between a distribution over V to one over Sn−1. Subsequently,501

advection and diffusion tensors for (2) will be given by502

a(x, t) = sEq(x, t) = s
∫

Sn−1
nq(n,x, t)dn , (35)

D(x, t) =
s2

µ
Vq(x, t) =

s2

µ

∫
Sn−1

(n−Eq)(n−Eq)
T qdn . (36)

Notice that for the von-Mises and Fisher distributions discussed earlier, we have already computed expecta-503

tion and variances: i.e. they are ready to be used.504

505

Example 2: (including external drift) The above derivation can also be applied to the case of particles that506

are drifting in an external velocity field b(x, t) ∈ Rn, for example turtles transported in ocean currents or507

insects blown by the wind. If particles are inactive their heading is exactly the direction of the external flow508

field b(x, t), in which case the directional distribution used for the turning kernel would be a point measure509

T (v,x, t) = δb(x,t)(v) .

Then, expectation and variances can be calculated as510

ET (x, t) = b(x, t) and VT (x, t) = 0 .

The above macroscopic limit is a pure drift equation511

ut +∇ · (b(x, t)u) = 0. (37)

Note that the same equation arises if we simply assume that a force proportional to b acts on cells, where512

the cells have no inertia. In that case we also get a drift of the form b(x, t). For situations in which we have513

a population of actively navigating/moving particles immersed in an external velocity field we can simply514

combine the two cases of (35), (36) and (37) to obtain515

ut +∇ · ((a(x, t)+b(x, t))u) = ∇∇ : (D(x, t)u). (38)

Indeed, this case was used to analyse sea turtle data in [43].516

4 Applications to Cell/Animal Orientation Datasets517

We illustrate the methodology through our two motivating applications. In each case we take as a start-518

ing point an individual-based description for oriented movement: an underlying velocity-jump process for519

the random walk. This initial description arises naturally, given our fundamental knowledge of particle be-520

haviours: cells on fabricated substrates reveal alignment and orientation according to the substrate anisotropy521
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(Figure 1); datasets for turtles are based according to their mean swimming orientation when subjected to522

specific magnetic fields (Figure 2). We remark that in each application a two-dimensional approximation523

(n = 2) is reasonable: cells migrate across the two-dimensional substrate and the diving capabilities of young524

turtles restrict their movements to the ocean surface [10]. Simulation methods are provided in the Appendix.525

The two applications differ not only in their field of study but also with respect to the “usable data”.526

For cell movement we consider a tabulated summary of responses for distinct micro-ridge substrates, Table527

1. This is data at a population-averaged level, and we do not have explicit data on each individual cell’s528

orientating response. Nevertheless, we can still use this data to directly parametrise our model, which is done529

directly at the FAAD level that arises as a continuous approximation of the individual model. In the case of530

hatchling movements, a circular dataset is available for the mean heading of each tested turtle in samples531

exposed to distinct navigation fields. In this case, we can directly parametrise the von Mises distribution that532

describes an individual’s orientation response, and subsequently scale to a macroscopic FAAD equation in533

order to collect population-level measurements.534

4.1 Application A: Cell Movement on Microfabricated Structures535

The data of Jeon et al. [25] in Table 1 are at a population level: the mean x-velocity (vx± vx,error), mean536

y-velocity (vy± vy,error) and mean speed (s± serror), where velocity components are measured according to537

absolute values. To relate these to the parametrisation of (2), we first remark on some particulars induced by538

the anisotropic arrangement. Firstly, the dominant drift velocity a = 0, since the environment is essentially539

bidirectional and, on average, equal numbers of cells will be found travelling up or down (left or right).540

Secondly, the substratum is anisotropic but spatially homogeneous, and hence the diffusion tensor D is541

constant in space. Finally, anisotropies coincide with the coordinate axes, so D becomes a diagonal matrix542

D=

(
λx 0
0 λy

)
, (39)

with two eigenvalues λx and λy.543

544

Given that D is constant in space, the fully-anisotropic diffusion model becomes identical to the standard545

anisotropic diffusion equation:546

ut = ∇ ·D∇u . (40)

Hence we can exploit results relating to the above. Firstly, the fundamental solution of (40) is the Gaussian547

distribution with covariance matrix D:548

u(x, t) =
1

2πt
√

DetD
exp
(
− 1

4t
xTD−1x

)
(41)

(in two spatial dimensions), where the set549

Ec := {x : xTD−1x = c}

gives the set of locations for which there is an equal probability of finding a random mover that started at the550

origin. This set defines a diffusion ellipse, with semi-axes of lengths
√

λx and
√

λy respectively, and provides551

one way to graphically visualise the anisotropy of D. A second method is the diffusion peanut, which is the552
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Fig. 6 Diffusion ellipses (black solid line) and peanuts (red-dashed line) representing the anisotropic cell migration for the
16×32, 16×64 and 16×∞ micro-ridge arrangements, see Table 2. Note that we renormalise the longer axes to aid comparison
between their respective shapes.

image of the map w 7→ wTDw for w ∈ S1, and relates to the mean-squared displacement in direction w, σ2
w,553

via σ2
w = 2twTDw [45]. This gives rise to the apparent diffusion coefficient in direction w,554

ADCw :=
σ2

w
2t

= wTDw .

In particular, given coordinate directions (1,0)T and (0,1)T , we find that the mean squared displacements in555

x− and y−directions will be 2tλx and 2tλy respectively. This provides the key for using the data in Table 1:556

given the mean velocities in x and y directions and taking a unit time step of 1 minute, we convert to mean557

displacements for the x and y directions and in turn estimate the λ ’s in (39), the values of which are listed558

in Table 2 for each experimental setting. To illustrate some of the anisotropies graphically, we plot diffusion559

ellipses and peanuts for the three cases 16×32, 16×64 and 16×∞ in Figure 6. As the structure is stretched560

along the y− direction we observe progressively thinned-out ellipses/pinched peanuts, reflecting restricted561

movement along this axis.562

For turning rates of the order of 2.5/min and a tracking timeframe of 400 minutes, each cell turns on563

average 1000 times across its track. Given an average speed of 0.5 µm/min, each particle travels about 200564

µm in this timeframe, suggesting this to be a suitably macroscopic scale. We subsequently plot solutions565

to the FAAD model on this spatial and temporal scale, plotting the evolving distribution for 10 individuals566

presumed to have started at the origin. Exploiting the spatially uniform nature of the environment, solutions567

will simply be governed by the fundamental solution (41), which we plot in Figure 7 at t = 100 and t = 400568

for the same three cases 16× 32, 16× 64 and 16×∞. Consistent with the diffusion ellipses, the highest569

degree of environmental anisotropy generates a quasi-one dimensional spread of the cells along the y−axis.570

We note that there is no direct information in [25] that allows us to directly compare these plots to their data,571

and therefore this represents a prediction of the expected population distribution.572

573

We can turn the argument full circle and use the measured data to estimate cell movement parameters that574

would be required in the underlying velocity-jump process: speed s, turning rate µ , and concentration param-575

eter κ of the bimodal von-Mises distribution (14). We should note that this is predicated on an assumption576

of the individual-level behaviour: i.e. that cells orient according to a bimodal von-Mises distribution. In the577
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Case Ridge height Speed ± error λx± error λy± error Turning rate Anisotropy
(µm×µm) (µm) (µm/min) (µm2/min) (µm2/min) (/min) Parameter

12 x 24 3 0.78±0.027 0.072±0.0057 0.17±0.015 2.53 2.57
12 x 48 3 1.01±0.045 0.039±0.0039 0.41±0.041 2.29 10.79
12 x ∞ 3 0.59±0.029 0.0032±0.00040 0.16±0.016 2.17 49.49
16 x 32 3 0.9±0.03 0.12±0.010 0.21±0.017 2.48 1.96
16 x 64 3 1.0±0.039 0.048±0.0047 0.38±0.033 2.34 8.32
16 x ∞ 3 0.84±0.0072 0.0072±0.00080 0.32±0.029 2.15 44.84
24 x 48 3 0.55±0.027 0.034±0.0039 0.088±0.010 2.47 2.89
24 x 96 3 0.58±0.022 0.020±0.0024 0.12±0.0098 2.40 6.42
24 x ∞ 3 0.52±0.028 0.0072±0.00084 0.12±0.013 2.20 16.47
12 x 24 10 0.65±0.026 0.055±0.0053 0.11±0.011 2.63 2.10
12 x 48 10 0.83±0.046 0.016±0.0023 0.29±0.033 2.25 18.28
12 x ∞ 10 0.61±0.032 0.00081±0.00012 0.18±0.019 2.05 224.22
control 0 0.63±0.025 0.072±0.0072 0.085±0.014 2.53 0.83

Table 2 Speed and diffusion coefficients λx and λy from the data from Jeon et al. [25]. We also list the values for the turning
rate µ , and the concentration parameter κ of a corresponding bi-modal von-Mises distribution.

Fig. 7 Population distributions u(x, t) plotted at (top row) t = 100 and (bottom row) t = 400 for 10 cells initiated at x = 0.

absence of specific individual-level data, this is of course impossible to state with certainty, yet it is never-578
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theless instructive to show how we can “reverse the process”.579

580

Recall that, given the symmetric/bidirectional scenario, the drift velocity a = 0 and the macroscopic model581

becomes the pure fully anisotropic diffusion equation582

ut = ∇∇ : (Du) ,

with diffusion tensor from (36)583

D=
s2

µ
Vq =

s2

2µ

(
1− I2(κ)

I0(κ)

)
I2 +

s2

µ

I2(κ)

I0(κ)
νννννν

T . (42)

For now let us write the diffusion tensor in (42) as584

D= k1I2 + k2νννννν
T , k1 =

s2

2µ

(
1− I2(κ)

I0(κ)

)
, k2 =

s2

µ

I2(κ)

I0(κ)
. (43)

Since the primary direction of anisotropy is in the y-direction, we have ννν = (0,1)T and can explicitly com-585

pute586

D=

(
k1 0
0 k1 + k2

)
=

(
λx 0
0 λy

)
,

where we employed (39) for the second equality. Therefore, we obtain two equations relating k1,k2 and587

λx,λy:588

k1 = λx k1 + k2 = λy.

Using the expressions for k1 and k2 in (43) we find trD= λx +λy =
s2

µ
, which gives589

µ =
s2

λx +λy
. (44)

The corresponding values for the turning rate µ are listed in Table (2). Furthermore we can use the previous590

relations to compute591

I2(κ)

I0(κ)
=

µ(λy−λx)

s2 . (45)

Determining concentration (or anisotropy) parameter κ demands inverting the ratio of modified Bessel func-592

tions I2(κ)/I0(κ), a monotonically increasing function from 0 to 1 for κ ∈ [0,∞). We use Wolfram Alpha to593

invert this function for our data and list the corresponding values in Table (2).594

595

The turning rate µ is surprisingly consistent between the different experiments, which may reflect that this596

parameter is (relatively) independent of the form of the substratum (for example, determined mainly by597

intracellular factors). The anisotropy parameter κ , however, varies over several orders of magnitude with598

the most anisotropic cases corresponding to those without ridges in the x-direction, as expected. Graphical599

illustrations of the bimodal von Mises distribution for the three cases 16× 32, 16× 64 and 16×∞ are600

provided in Figure 8. Higher ridges (10 µm) offer even more guidance and, consequently, larger anisotropy:601

including an extreme of κ = 224. This upper value effectively reduces the bimodal von Mises distribution602

to a pair of Delta functions in opposite directions, so that movement is almost completely confined to the603

one-dimensional y−direction.604
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Fig. 8 Bimodal von Mises distributions for the turning distributions of stochastic velocity-jump random walks corresponding
to the macroscopic cases in Figure 7.

4.2 Application B: Magnetic Navigation in Loggerhead Hatchlings605

Our second application considers hatchling loggerhead turtle navigation, investigating the extent to which606

oriented swimming keeps them within the relative safety of the North Atlantic Gyre. Specifically, we extend607

the agent-based simulation study of [51], exploiting the computational advantages of the FAAD model to608

investigate how different amounts of oriented swimming help to maintain turtle trajectories. We specifically609

focus on two critical regions of the Gyre as follows.610

• (NE) a north east Gyre location corresponding to a “corridor” along its northeastern sector, the region611

where it breaks into northerly (perilous) and southerly moving streams. We center this region on the point612

marked 3 in Figure 2, with its corresponding dataset providing the parameters for orientation.613

• (SW) a south west Gyre location corresponding to a region of the Carribean, where the Gyre branches614

into a more northerly stream that remains within the Gyre, or continues west into the Gulf of Mexico.615

We center this region on point 7 in Figure 2, with its corresponding dataset providing the parameters for616

orientation.617

In each case we quantitatively assess the extent to which hatchling turtles that are continuously immersed at618

some point inside (NE) or (SW) tend to maintain a trajectory within the Gyre. Specifically, for each region619

(NE) and (SW) we numerically solve the FAAD equation, as extended to incorporate both an additional drift620

(as derived above, see equation (38)) due to currents and a constant (in time) source representing hatchlings621

entering the region under investigation. Specifically, defining u(x, t) to be the hatchling turtle density, we622

solve623

u(x, t)t +∇ · ((a(x, t)+b(x, t))u(x, t)) = ∇∇ : (D(x, t)u(x, t))+ γδx0(x) , (46)

where, in addition to previous definitions, γ represents the rate at which new hatchlings enter the system and624

δx0 is the 2D Dirac delta function. The point x0 defines the “immersion site” and we set x0 = (25◦W,44.5◦N)625

for (NE) and x0 = (56.5◦W,8◦N) for (SW), respectively denoting points upwards of the general current di-626

rection for the regions. Encountered currents b(x, t) can vary considerably over time, and we therefore inject627

hatchlings continuously into the corridor across a full calender year (taken to be 2016). Our restriction to the628

two-dimensional ocean surface follows from the poor diving abilities of young marine turtles: a maximum629
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dive of the order of 1-2 metres for loggerhead hatchlings [10].630

631

We define a “success” and a “failure” boundary for each region, removing turtles if they hit either of these632

boundaries and tracking over time the total numbers that have done so. In the context of the continuous633

model, this corresponds to setting absorbing boundary conditions along two boundaries. For the (NE) region634

we define the success boundary along the 42.5◦N line and the failure boundary along 46.5◦N line; the more635

northerly line represents turtles moving towards cooler waters and straying from the southerly shifting Gyre.636

For (SW) the success boundary is set along 18◦N line and the failure boundary marked by 64.5◦W; success637

is implied by a northerly shift with the Gyre, while failure is marked by a westward shift towards the Gulf638

of Mexico. Of course, the lack of any data makes any such notion of success or failure moot and we cannot639

equate these boundaries with survival probabilities: they simply provide a proxy to track the tendency to640

remain within the Gyre.641

642

To close the computational regions we consider two further boundaries with reflective boundary conditions643

associated with them, so that there is no net loss across these boundaries. For (NE) we consider the lines644

28◦W/12◦W, and for (SW) the lines 54.5◦W/8◦N. Note that these lines are all reasonably far from the initial645

injection site such that, in practice, the vast majority of turtles end up becoming absorbed by one of the646

success/failure boundaries before hitting one of the reflective boundaries.647

4.2.1 Data and parametrisation648

The model demands two specific components that can be drawn from biological data: the ocean cur-649

rents b(x, t) for the passive drift vector field and navigation/movement parameters for hatchling active650

movement. Velocity fields for ocean currents are obtained from HYCOM (the global HYbrid Coordi-651

nate Ocean Model, [6]), an ocean forecasting model forced by wind speed, heat flux and numerous other652

factors that has been subsequently assimilated with field measurements (from satellites, floats, moored653

buoys etc) to generate post-validated output. The resolution of HYCOM data (1/12◦ and day to day) al-654

lows it to reproduce both the large scale persistent currents and localised phenomena such as eddies. Note655

that the surface/near-surface swimming behaviour of young tutles allows us to restrict to the (2D) upper-656

most layer of HYCOM datasets. HYCOM data for each of regions (NE) and (SW) was downloaded from657

http://pdrc.soest.hawaii.edu/data/data.php, accessed during June/July 2017. Note that658

for computations, HYCOM data has been interpolated from its native resolutions (1/12◦ and day-day) to the659

spatial/temporal resolution required by the numerical code via standard linear interpolation schemes.660

661

Defining the active movement component to motion requires specifying the speed/turning rate (s,λ ) param-662

eters and the concentration/dominant direction (κ,ννν) parameters demanded by the von Mises distribution.663

Hatchlings are capable of sustaining speeds of 0.72 km/hr (see [51] and references therein) and, based on664

this, we suppose the average daily swim length varies from 0-10 km/day, corresponding to between 0 and665

∼14 hours per day of active swimming. Of course, whether a hatchling would be capable of maintaining666

active swimming at the upper end of this spectrum is somewhat debatable. For the turning rate, we assume a667

value of 50 per day, although it is noted that modifying this parameter has very little bearing on the overall668

results. Given this turning rate and assuming each turtle remains in the simulated region for the order of 100669

days, we obtain an average of 5000 turns per trajectory. For average swimming speeds ranging between 0-10670

km/day, turtles swim up to 1000 km over the simulation timecourse, implying spatial scales of the order 100-671

1000 km as suitably macroscopic. We remark that the comparisons between the individual and continuous672
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simulations suggest the veracity of the continuous limit as a suitable approximation.673

674

Concentration parameters/dominant directions can be drawn directly from the hatchling orientation datasets675

illustrated in Figure 2. For region (NE) we utilise the dataset indicated by position 3: fitting a von Mises676

distribution via standard methods (e.g. see [2]) allow us to obtain estimates κNE ≈ 0.874 and νννNE ≈677

(0.307,−0.952), the latter representing a true bearing of 162◦. The region (SW) employs position 7 and678

yields κSW ≈ 0.797 and νννSW ≈ (0.070,0.998), representing a true bearing of 4◦. We assume these values are679

constant in space and time over the respective regions.680

4.2.2 Results681

In Figure 9 we compare the density distribution predicted by the parametrised FAAD model (46) with a682

particle distribution obtained through individual-based simulations of the stochastic velocity-jump process.683

The close correlation between the continuous density distribution (as reflected by the colormap) and the684

distribution of individual particles (white dots) indicates that the FAAD model provides a highly acceptable685

approximation for the turtle distribution. Further simulations (not shown) confirm this close correspondence,686

and we therefore exploit the FAAD model for its computational advantages in the subsequent simulations.687

688

Figure 10 compares density distributions for the same region at the same time points under three choices for689

the amount of active swimming: 0 km/day (i.e. only passive drifting occurs), 2 km/day and 10 km/day. A690

shift towards a greater amount of active swimming has a clear impact on the density distribution, pushing691

it in an expected southerly direction such that a greater density becomes absorbed by the “success” boundary.692

693

Finally, we plot the results from a more extended analysis, following a parameter sweep for each of the two694

regions, classifying the data obtained in terms of the following simple “success measure”:695

Success at time T =
Total density hitting success boundary by time T

Total density hitting success and failure boundaries by time T
.

The above clearly approaches 1 for a successful population and 0 for an unsuccessful population. In the sim-696

ulations here we set T = 500 for a population continuously released at x0 from t = 0 (midnight, 01/01/2016)697

to the end of 2016 (t = 366); the continuation until T = 500 ensures that by the end of the simulation only a698

negligible fraction of the released population has failed to hit one of the absorbing boundaries. Simulations699

are plotted in Figure 11 for each of the two regions, under a range of daily active swimming distances and700

for three values of the concentration parameter: the value obtained by the data fitting and perturbations of701

×2 and ×1/2 these values. The simulations clearly show that increasing the amount of active swimming, or702

increasing the certainty of orientation, nudges a greater proportion of the population towards the successful703

boundary, supporting the hypothesis that oriented responses can help maintain hatchling movement within704

the Gyre (e.g. [28, 51]). Extensions of the study to consider movement throughout the full circulatory path705

would allow more detailed evaluations into the extent to which oriented swims aid route maintenance: we706

remark that this would be a focus for a future study and refer to [28] for such an analysis for an individual-707

based model.708
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Fig. 9 Comparison between the FAAD model (46) and individual-based stochastic simulations of the velocity-jump model
for the problem of North Atlantic turtle hatchling movement. In each frame we plot both the continuous population density
distribution u(x, t) (reflected by the colour map, where grey indicates negligible density and blue to yellow reflects increasing
density) and the individual dots generated by the velocity-jump simulations. Here, top and bottom boundaries respectively
define the “failure” and “success” boundaries, and the individual particles are colour coded according to whether they are
still moving (white dots) or have hit either the failure (black crosses) or success (green crosses) boundary. Underlying ocean
currents are indicated by the red arrows. For this simulation we use region (NE) and release particles continuously from position
x0 = (25◦W,44.5◦N) with γ = 5/day. The total daily swim is set at s = 2 km/day, with λ = 50/day, κNE ≈ 0.874 and νννNE ≈
(0.307,−0.952). Note that the von Mises distribution for these values is visualised by the dashed red line in the inset figure to
the left hand frame of Figure 11. Simulations (in terms of ocean currents utilised) start on 01/01/2016 (midnight) with solutions
displayed on the days following as indicated.
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Fig. 10 Comparison of population density distributions under varying amounts of active swimming per day. In each frame we
plot the turtle density distribution (color density map, as described in Figure 9) at the two separate times (left) +100 days and
(right) +300 days for (top row) s = 0 km/day, (middle row) s = 2 km/day and (bottom row) s = 10 km/day. The strength and
direction of ocean currents is indicated by the red arrows. All other parameters and details as in Figure 9.

Fig. 11 Success is plotted as a function of daily swimming distance for the two regions and for different concentration pa-
rameters. All other parameters and details as in Figure 9. Red dashed line indicates a choice of κ as taken directly from the
data fitting, with blue solid and black dot-dashed respectively showing choices of ×2 and ×1/2 these values. Insets plot the
corresponding von Mises distributions used for each simulation set.

5 Conclusions709

In this chapter we have described the use of fully-anisotropic advection-diffusion models as a way of mod-710

elling animal and cell movement behaviour. We have described the derivation of these models from two711

fundamental stochastic random walks, position-jump and velocity-jump processes, thereby connecting the712

macroscopic parameters and terms to the statistical inputs at the individual level. Utilising two distinct713

datasets, we have shown how the models can be parametrised either directly at the population level, or714
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by starting at the individual/stochastic random walk model. Beyond the applications presented here, we note715

that similar methods have been applied in a number of other applications in ecology and cell movement,716

including seismic-line following behaviour of wolves and caribou populations [33, 22], butterfly hilltopping717

[44], and anisotropic glioma growth [45, 56].718
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Appendix: Numerical methods822

Stochastic Velocity-Jump Process823

The stochastic random walk simulations assume each individual performs a velocity-jump random walk in824

either a static (cell movement) or flowing (turtles) medium. Particle motion therefore derives from an ori-825

ented and active movement component that describes the individual’s self motility (crawling, swimming,826

flying etc), the details of which are encoded in the velocity-jump random walk, and a passive drift due to827

movement of the medium (e.g. air or water flow). The passive drift is described by a velocity vector field828

b(x, t) (x is position and t is time) that could be either imposed (e.g. obtained from public-domain datasets)829

or separately modelled (e.g. Navier-Stokes equation). Note that we implicitly assume that the individuals830

have negligible impact on the flow of the surrounding medium.831

832

For an individual i at position xi(t) and time t, travelling with active velocity vi(t) = s(cosαi(t),sinαi(t))833

where angle αi(t) denotes the active heading, then at time t +∆ t (where ∆ t is small) we have:834

xi(t +∆ t) = xi(t)+∆ t(vi(t)+b(t,xi)) ;

vi(t +∆ t) =
{

v′i(t +∆ t) with probability λ∆ t ,
vi(t) otherwise .

(47)

where v′i(t +∆ t) is the new velocity chosen at time t +∆ t if a reorientation has occurred, randomly chosen835

according to the given probability distribution for the turning kernel of the velocity jump random walk.836

The time discretisation ∆ t used in simulation is suitably small, in the sense that simulations conducted837

with smaller timesteps generate near identical results. For the selection of new active headings via the von838

Mises distribution we employ code (circ vmrnd.m) from the circular statistics toolbox [4]. Currents and839

the inputs required for the active heading choice are interpolated from the native spatial/temporal resolu-840

tions in the saved variables to the individual particle’s continuous position x and time t via a simple linear841

interpolation scheme.842

Continuous Model843

As described earlier, moment closure analysis for the velocity-jump random walk generates a continuous844

model of FAAD form845

u(x, t)t +∇ · ((a(x, t)+b(x, t))u(t,x)) = ∇∇(D(x, t)u(x, t)) . (48)

where a(x, t) and D(x, t) depend on the statistical inputs of the random walk (mean speed, turning rates,846

moments of the turning distribution).847
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Numerical methods for solving (48) are adapted from our previous studies (e.g. see [43]). We adopt a848

simple Method of Lines (MOL) approach, first discretising in space (using a fixed lattice of space ∆x) to849

create a large system of ordinary differential equations (ODEs) which are subsequently integrated over time.850

The “fully anisotropic” diffusion term, is expanded into an advective and standard anisotropic-diffusion851

component. This advective component, along with advection terms arising from ocean currents and active852

directional swimming, are solved via a third-order upwinding scheme, augmented by flux-limiting to ensure853

positivity of solutions (e.g. see [24]). The choice of finite-difference discretisation for the anisotropic diffu-854

sion term is more specific: naive discretisations can lead to numerical instability for sufficiently anisotropic855

scenarios (high κ values). The method of [58] allows greater flexibility in the choice of κ: in this scheme,856

finite difference derivatives are calculated and combined along distinct axial directions: the axes of the dis-857

cretisation lattice and the major and minor axes of the ellipse corresponding to the anisotropic diffusion858

tensor. Under the moderate levels of anisotropy encountered here we obtain a stable scheme. Time discreti-859

sation here is performed via a simple forward Euler method with a suitably small time step.860


