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The movement of organisms and cells can be governed by occasional long distance runs,
according to an approximate Lévy walk. For T cells migrating through chronically-
infected brain tissue, runs are further interrupted by long pauses and the aim here is to
clarify the form of continuous model equations that describe such movements. Starting
from a microscopic velocity-jump model based on experimental observations, we include
power-law distributions of run and waiting times and investigate the relevant parabolic
limit from a kinetic equation for resting and moving individuals. In biologically relevant
regimes we derive nonlocal diffusion equations, including fractional Laplacians in space
and fractional time derivatives. Its analysis and numerical experiments shed light on
how the searching strategy, and the impact from chemokinesis responses to chemokines,
shorten the average time taken to find rare targets in the absence of direct guidance
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information such as chemotaxis.
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1. Introduction

Modelling biological movement has received significant attention, with a large body

of work devoted to deriving macroscopic (PDE) equations for the mean behaviour

of some underlying microscopic movement model. A common description assumes

movement follows a velocity-jump random walk, an alternating sequence of runs

(movement with a fixed velocity) and reorientations (choosing a new velocity).

When the movement is subject to an external bias, such as a chemical attrac-

tant, a series of studies dating to Patlak34 has generated solid understanding on

how microscopic detail translates into a diffusion-advection type equation.3,32 Many

derivations follow a fairly standard set of assumptions on individual behaviour, such

as negligible waiting times between jumps and that the distribution of runtimes fol-

lows a Poisson distribution, as observed for classic studies on cells such as E. coli.5

Under these assumptions, the macroscopic diffusion is of classic Fickian form.

Yet these assumptions do not apply universally, such as when searching for

sparsely distributed targets. Recent years have witnessed reports on the tendency

towards long-range diffusion, where a particle’s motion follows the characteristics of

a Lévy flight: occasional non-localised flights that interrupt local movements. Intu-

itively, the probability of remaining stuck in non-productive regions decreases and

the mean time taken to find rare targets is reduced. Non-Brownian search strategies

have been reported for microorganisms, including E. coli 24 and Dictyostelium,26 im-

mune cells,20 and large organisms (e.g. mussels,8 marine predators21,37 and mon-

keys36). The natural strategies have been adopted for robots.25

Motivated by the movements of immune cells in chronically infected brain tis-

sue,20 here we derive the macroscopic model for a microscopic velocity-jump random

walk (Section 3) in which both the runtime distance and waiting time between re-

orientations follow long-tail (approximate Lévy) distributions. The delay is the key

new ingredient from a modelling perspective, observed in experiments.20,31 We de-

rive the appropriate kinetic-transport equation, where the “collision” term describes

the nonlocal motion. Solving an equation for the resting population introduces a

nonlocal delay in time for the moving population and, via a perturbation argument

and appropriate space/time scaling, obtain the following nonlocal equation for the

population density (utot):

C
t D

κutot = ∇ ·
(
Cα,κ∇α−1utot

)
. (1.1)

In the above, C
t D

κ is the fractional time derivative in the sense of Caputo, κ ∈
(0, 1), while ∇α−1 denotes a fractional gradient for α ∈ (1, 2), see the Definition in

Appendix A.1. In the physical regime α
κ ∈ [1, 2]: this ranges from ballistic motion
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for α = κ = 1, with a resulting fractional heat equation governed by a Lévy process,

to standard diffusion for α = 2, κ = 1. The population is governed by a diffusion

term with coefficient Cα,κ (defined at the end of Section 5) that represents a random

component to motility. As described in greater detail below, experimental data on

immune cell movements lead to α = 1.15 and κ = 0.7.20 While our approach is

often applied in the context of chemotaxis, it is noted that (1.1) does not contain a

chemotactic component; this is in agreement with Ref. 20 where the immune cells do

not appear to exhibit directional migration on the experimental time/length scales.

The simple structure of Eq. (1.1) allows analytic insights not directly visible

from the microscopic model. In particular, in Section 5.1 we explicitly write down

the fundamental solution in R
d and, as direct applications, we discuss hitting and

mean first passage times. Numerical experiments are presented in Section 6, allowing

efficient quantitative description and a basis for parametric studies into immune cell

search strategies.

2. Background and data

Toxoplasma gondii (T. gondii) is a species-crossing parasitic pathogen6 with high

seroprevalence in humans. Acute infection is followed by chronic infection, with the

parasite taking up lifetime residence in the hosts central nervous system (CNS).

While regarded as generally symptomless, infected individuals with compromised

immune systems are at greater risk of life-threatening recurrence and chronic in-

fection has also been linked to altered neurological behaviour.33 Long term immu-

nity and control of chronic T. gondii infection primarily relies on CD8+ T cells,22

which continuously search for and eliminate infected cells through contact. A re-

cent study of CD8+ dynamics in infected brain tissue has revealed a number of in-

sights into their chemical control and movement patterns.20 At a chemical level, the

CXCL10/CXCR3 chemokine signalling system controls both the initial recruitment

and subsequent maintenance of a CD8+ population20: anti-CXCL10 treatments

lower the resident population of T cells and increase parasite densities. Further,

CXCL10 appears to act as a chemokinetic agent during the chronic phase, with

anti-CXCL10 treatment reducing average cell velocities.20

Analyses of CD8+ T cell tracks in Ref. 20 suggests that they follow a gener-

alised Lévy walk. We reproduce the mean squared distances showing superdiffusive

behaviour (〈x2〉 ∼ t1.4) in Figure 1a. Yet, dependence of the spatial scaling on time

(Figure 1b) is inconsistent with a Lévy walk in the absence of waiting times. In

Ref. 20 various models for T cell migration are examined, including random walks,

persistent random walks and Lévy walks, with the conclusion that the experimental

results are best described by a generalized Lévy walk. The microscopic description

is as follows: (1) cells make straight runs with fixed velocity but random orientation,

where the run distance is chosen randomly from a Lévy distribution (Lµ(ℓ) ∼ ℓ−µ)

with exponent µrun = 2.15; (2) following each run, cells pause for a time that is

also distributed according to a Lévy distribution with exponent µpause = 1.7. Lévy
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Fig. 1: Reproduction of CD8+ T cell tracking data in20, indicating generalized Lévy

diffusive behaviour in the central nervous system. (a) mean squared distance for

CD8+ T cells in control tissue (blue) and two treatments that impact on chemokine

signalling (mice treated with anti-CXCL10 antibodies, red, and mice treated with

PTX, a chemokine signalling inhibitor, black). (b) Spatial scaling factor of the self-

similar diffusion.

distributions for the distance ℓ and times τ are drawn from the following expressions

Zµ =
sin((µ− 1)X)

(cosX)1/(µ−1)

(
cos((2 − µ)X)

Y

)(2−µ)/(µ−1)

where X is a uniform random variable on the interval [−π/2, π/2] and Y = − lnX ′.

For runs, once a distance ℓ is chosen, the walker moves in a randomly chosen direc-

tion for a time ℓ/v, where v is the velocity of the walker. For pauses, once a time τ

is chosen, the walker remains stationary for that length of time.

While anti-CXCL10 treatments reduce CD8+ T cell speed and/or increase

pauses, other migration statistics of the T cells remain the same: µrun = 2.15

and µpause = 1.7, as in the control case. Thus, CXCL10 appears to operate as a

chemokinetic agent through increasing the rate at which patrolling CD8+ T cells

encounter their sparsely distributed targets, with CXCL10 (and other chemokines)

shortening capture time through faster movement speeds.20

3. Microscopic model description

We model a population of CD8+ T cells moving in a medium in R
n. It is noted

that for the experimental system of Ref. 20, the resident T cell population numbers

somewhere between 300, 000 and 450, 000 across a volume of 3.2− 4.4 × 1011µm3,

motivating a continuum description for their collective movement. Microscopically,

we assume each individual performs a generalized Lévy walk with the following

properties:

(1) The interactions between individuals are taken to be negligible. This assumption

appears reasonable, given the relatively low densities of T cells.
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(2) Starting at position x and time t, we assume an individual runs in direction

θ for some time τ , called the “run time”. This run time is selected from a

distribution ψ.

(3) During runs, individuals are assumed to move with constant forward speed c

and take a straight line motion between reorientations.

(4) Each time the individual stops it selects a new direction η according to a dis-

tribution k(x, t, θ; η) which only depends on |θ− η|, after waiting for some time

r. The choice of new direction is taken to be independent of chemical concen-

trations/gradients.

(5) The reorientation time r follows a Lévy distribution ψr(r).

Note that assumptions (3-4) derive from the experimental conditions of CD8+ T

cells in Ref. 20: while the speed c is a function of CXCL10, other walk statistics are

unaffected. Without explicit data stating otherwise CXCL10 is assumed here to be

(approximately) uniformly distributed at the spatial scale of observed tissue, and

hence c is taken as spatially constant. Investigations into the impact of anti-CXCL10

treatments can be recreated through changing the size of c.

3.1. Turn angle distribution

To describe the motion of T cells we assume, following Ref. 20, that the new direction

is chosen independently of the target’s position. Thus, we take

k(x, t, θ; η) = ℓ(x, t, |η − θ|) (3.1)

where the new direction η is symmetrically distributed with respect to the previous

direction θ, according to the symmetric distribution ℓ.2 |η− θ| denotes the distance
between two directions on the unit sphere S. More generally, immune cells can orient

in response to environmental factors, such as attractant gradients or the structure

of the extracellular matrix. In the absence of data suggesting that such guidance

cues play any (significant) role in the behaviour observed in Ref. 20, we presently

exclude this possibility.

3.2. Running probability and resting times

As described in Ref. 20, the motion of CD8+ T cells is characterized by long runs,

distributed according to a Lévy distribution, combined with resting times r. Within

our microscopic description, we therefore assume the following power-law distribu-

tion for the running probability

ψ(x, τ) =

(
τ0(x)

τ0(x) + τ

)α

, for 1 < α < 2 , (3.2)

while resting times are distributed according to

ψr(r) =

(
r0

r0 + r

)κ

for 0 < κ < 1 . (3.3)
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ψ describes the probability that a moving cell stops after time τ . The resting time

distribution, ψr, gives the probability that a cell does not move for a time r.

The running and waiting probabilities, ψ and ψr, are related to the stopping

and waiting frequency β and βr, via

ψ(x, τ) = exp

(
−
∫ τ

0

β(x + csθ, s)ds

)
and (3.4)

ψr(r) = exp

(
−
∫ r

0

βr(s)ds

)
. (3.5)

Moreover, explicit expressions for both rates, β(x, τ) and βr(r), can be computed

from the relations:

β(x, τ) =
ϕ(x, τ)

ψ(x, τ)
=

−∂τψ
ψ

=
α

τ0 + τ
, (3.6)

βr(r) =
φ(r)

ψr(r)
=

−∂rψr

ψr
=

κ

r0 + r
. (3.7)

4. Modelling equations

Considering the assumptions in Section 3 and following the approach of Ref. 2,

densities of moving σ(x, t, θ, τ) and resting σ0(x, t, θ, τ) populations are described

by the following system of equations:

(∂τ + ∂t + cθ · ∇)σ(·, θ, τ) = −β(x, τ)σ(·, θ, τ) , (4.1)

(∂t − ∂τ )σ0(·, θ, τ) = Tβ(x, τ)σ(·, θ, τ) , (4.2)

σ(·, θ, 0) = σ0(·, θ, 0) , (4.3)

where the dot denotes dependence in space, x, and time t. Here the turn angle

operator T , given by

Tφ(η) =

∫

S

k(·, θ; η)φ(θ)dθ , (4.4)

describes the effect of changing from direction θ to a new direction η. The initial

condition for the particles that start a new run at τ = 0 is given by

σ(·, η, 0) =
∫ t

0

φ(r)

∫ t−r

0

dτ

∫

S

β(x, τ)σ(x, t − r, θ, τ)k(·, θ; η)dθdr . (4.5)

The left hand side of equation (4.1) describes the temporal variation and transport

of the density σ(·, θ, τ), while the right hand side gives the density of individuals that

are left behind due to reorientation. These particles reappear in the resting mode

described by (4.2), where stopping with frequency β(x, τ ) eventually generates a

new run (τ = 0) following a pause of some time r, with a probability given by the

probability density function φ(r). This is described by equations (4.3) and (4.5).

Using the method of characteristics we find the solution of (4.1),

σ(·, θ, τ) = σ(x − cθτ, t− τ, θ, 0) exp

(
−
∫ τ

0

β(x+ csθ, s)ds

)
. (4.6)
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We can rewrite expression (4.5) as

σ(·, η, 0) =
∫

S

k(·, θ; η)
[∫ t

0

dτ

∫ t−τ

0

φ(r)β(x, τ)σ(x, t − r, θ, τ)dr

]
dθ , (4.7)

after changing the limits of integration. Then, integrating (4.1) and (4.2) with re-

spect to τ and substituting (4.3) and (4.7), we obtain

∂tσ̄ + cθ · ∇σ̄ = T

∫ t

0

β(x, τ )

(∫ t−τ

0

φ(r)σ(x, t − r, θ, τ)dr

)
dτ

−
∫ t

0

β(x, τ)σ(x, t, θ, τ)dτ , (4.8)

∂tσ̄0 = T

∫ t

0

β(x, τ)σ(x, t, θ, τ)dτ

− T

∫ t

0

β(x, τ )

(∫ t−τ

0

φ(r)σ(x, t − r, θ, τ)dr

)
dτ . (4.9)

Here σ̄ and σ̄0 are defined as

σ̄(·, θ) =
∫ t

0

σ(·, θ, τ)dτ, σ̄0(·, θ) =
∫ t

0

σ0(·, θ, τ)dτ . (4.10)

From (4.8) and (4.9) we can define the arrival rate of particles at a point (x, t),

after waiting for time r, as

j(·, θ) =
∫ t

0

β(x, τ)

(∫ t−τ

0

φ(r)σ(x, t − r, θ, τ)dr

)
dτ

and the density of cells leaving the point x for all times τ from 0 to t, also called

the escape rate, as

i(·, θ) =
∫ t

0

β(x, τ)σ(x, t, θ, τ)dτ . (4.11)

Using (4.6) and the relations in (3.6), we can write

i(·, θ) =
∫ t

0

B(x, t− s)σ̄(x− cθ(t− s), s, θ)ds ,

as derived in Ref. 12, where B is given, in the Laplace space

B̂(x, λ+ cθ · ∇) =
ϕ̂(x, λ + cθ · ∇)

ψ̂(x, λ+ cθ · ∇)
+ l.o.t.. (4.12)

To rewrite j(·, θ) in terms of σ̄ we use (4.6) again and let s = t− τ . Hence,

j(·, θ) =
∫ t

0

β(x, τ)

(∫ t−τ

0

φ(r)σ(x − cθτ, t− τ − r, θ, 0)ψ(x, τ)dr

)
dτ

=

∫ t

0

β(x, t− s)ψ(x, t− s)e−(t−s)cθ·∇

(∫ s

0

φ(s− r)σ(x, r, θ, 0)dr

)
ds

=

∫ t

0

ϕ(x, t− s)e−(t−s)cθ·∇ (φ(s) ∗ σ(x, s, θ, 0)) ds .
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Note that j(·, θ) is still written in terms of σ instead of σ̄. So, taking the Laplace

transform of j(·, θ) and using the relation,

ˆ̄σ(x, λ, θ) = σ̂(x, λ, θ, 0)ψ̂(x, λ + cθ · ∇)

which was obtained from (4.10) and (4.6) (see Ref. 12 for details), we can rewrite

as,

ĵ(x, λ, θ) = ϕ̂(x, λ+ cθ · ∇)φ̂(λ)σ̂(x, λ, θ, 0) =
ϕ̂(x, λ+ cθ · ∇)

ψ̂(x, λ + cθ · ∇)
φ̂(λ)ˆ̄σ(x, λ, θ) .

Equations (4.8) and (4.9) now can be written as

∂tσ̄ + cθ · ∇σ̄ = T

∫ t

0

B(x, t− s)

(∫ s

0

φ(s − r)σ̄(x− cθ(t− s), r, θ)dr

)
ds

−
∫ t

0

B(x, t− s)σ̄(x − cθ(t− s), s, θ)ds , (4.13)

∂tσ̄0 = T

∫ t

0

B(x, t− s)σ̄(x− cθ(t− s), s, θ)ds

− T

∫ t

0

B(x, t− s)

(∫ s

0

φ(s− r)σ̄(x− cθ(t− s), r, θ)dr

)
ds . (4.14)

4.1. Scaling

Consider macroscopic space and time scales X and T respectively. We assume that

the mean run time τ̄ and the mean waiting time r̄ are small compared to the

macroscopic time, i.e. τ̄ /T and r̄/T are equal to εpower ≪ 1. We scale as follows,

tn = εt , xn =
εx

s
, cn = ε−γc0 , rn = ε̺r , and τn = τεµ , (4.15)

for µ > 0, γ > 0 and ̺ > 0. The scaling here is of parabolic type. It corresponds

to a limit of the physical system with small average waiting and run times, small

spatial run lengths, and large velocities compared to the macroscopic scales of an

experiment. The values of the parameters γ, ̺, µ are specified in Section 5.

Introducing this scaling we have,

ψε(x, τ) =

(
εµτ0

εµτ0 + τ

)α

, ϕε(x, τ) =
α (εµτ0)

α

(εµτ0 + τ)
α+1

and

φε(r) =
κ (ε̺r0)

κ

(ε̺r0 + r)κ+1
.

Moreover, (4.13) is given by

ε∂tσ̄ + ε1−γc0θ · ∇σ̄ = T

∫ t

0

B(x, t− s)

(∫ s

0

φε(s− r)σ̄(x− cθ(t− s), r, θ)dr

)
ds

−
∫ t

0

B(x, t− s)σ̄(x− cθ(t− s), s, θ)ds . (4.16)
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Computing the Laplace transform of the above expression we obtain
(
ελ+ ε1−γc0θ · ∇

)
ˆ̄σ(x, λ, θ) − εσ̄0(x, θ)

≃ −
(
1− φ̂ε (ελ) T

)
B̂ε

(
x, ε1−γc0θ · ∇

)
ˆ̄σ(x, λ, θ) , (4.17)

where we have assumed B̂ε(x, ελ+ ε1−γc0θ · ∇) ≃ B̂ε(x, ε
1−γc0θ · ∇) for 1 > 1− γ.

The Laplace transform of the resting time density function φε, is given by

φ̂ε(ελ) = κ (aλ)
κ
Γ(−κ, aλ)eaλ

where a = ε̺+1r0. Using the following asymptotic expansion for the incomplete

Gamma function9

Γ(b, z) = Γ(b)

(
1− zbe−z

∞∑

k=0

zk

Γ(b+ k + 1)

)
, (4.18)

where b is positive non-integer, and recalling that bΓ(b) = Γ(b + 1), we get

φ̂ε(ελ) = 1− ε(1+̺)κrκ0λ
κ +O(aλ) (4.19)

since 0 < κ < 1. Note that in the above we have considered eaλ = 1 + O(aλ) and

this approximation is valid for (1 + ̺)κ > 0.

Hence, substituting (4.19) into (4.17) we obtain the following,

(ελ+ ε1−γc0θ · ∇)ˆ̄σ(x, λ, θ) − εσ̄0(x, θ)

≃ −
(
1− (1− rκ0 ε

(1+̺)κλκ)T
)
B̂ε

(
x, ε1−γc0θ · ∇

)
ˆ̄σ(x, λ, θ) . (4.20)

Transforming back to the (x, t)-space we get

ε∂tσ̄(·, θ) + ε1−γc0θ · ∇σ̄(·, θ) ≃ −(1− T )Bε(x, ε
1−γc0θ · ∇)σ̄(·, θ)

− rκ0 ε
(1+̺)κT tD

κBε(x, ε
1−γc0θ · ∇)σ̄(·, θ) . (4.21)

Here we have used the fact that the Laplace transform of the Riemann-Liouville

fractional derivative tD
κ is given by Ref. 23

L{tDκf(t)} = λκf̂(λ)−
n−1∑

m=0

λm lim
t→0

tD
κ−m−1f(0+) for, n− 1 < κ < n ,

where we assumed f(0+) = 0, since there is no scattering at time zero.

Scaling (4.14) and changing the order of integration, the particles at rest satisfy

the following equation

ε∂tσ̄0(·, θ) = T

∫ t

0

B(x, t− s)σ̄(x− cθ(t− s), s, θ)ds

− T

∫ t

0

φε(t− s)

(∫ s

0

B(x, t− s′)σ̄(x − cθ(t− s′), s′, θ)ds′
)
ds . (4.22)

The Laplace transform of this expression is

ελˆ̄σ0(x, λ, θ) − εσ̄0
0(x, θ) = rκ0 ε

(1+̺)κλκT B̂ε(x, ε
1−γc0θ · ∇)ˆ̄σ(x, λ, θ) , (4.23)
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and if we assume that 1 > 1− γ as before we get

ε∂tσ̄0(·, θ) = rκ0 ε
(1+̺)κT tD

κBε(x, ε
1−γc0θ · ∇)σ̄(·, θ) . (4.24)

4.2. Conservation of particles

From the system (4.1)-(4.3) we can obtain a particle conservation equation, consid-

ering σtot(x, t, θ) = σ̄(x, t, θ) + σ̄0(x, t, θ), where σ̄ and σ̄0 are given by (4.13) and

(4.14) respectively. The conservation equation reads

ε∂t

∫

S

σtotdθ + ε1−γc0

∫

S

θ · ∇σtotdθ = 0 ,

where S is the unit sphere. Hence, substituting (4.21) and (4.24) into the above

expression we get

ε∂t

∫

S

σtotdθ + ε1−γc0

∫

S

θ · ∇σtotdθ = −
∫

S

(1− T )Bε(x, ε
1−γc0θ · ∇)σ̄dθ

− rκ0 ε
(1+̺)κ

∫

S

TBε(x, ε
1−γc0θ · ∇)tD

κσ̄(x, t, θ)dθ

+ rκ0 ε
(1+̺)κ

∫

S

TBε(x, ε
1−γc0θ · ∇)tD

κσ̄(x, t, θ)dθ = 0 . (4.25)

Note that here we have used the conservation of particles during the tumbling phase

given in (A.1). If we consider σtot(x, t, θ) =
1
|S|

(
ū+ ū0 + εϑnθ · w̄

)
then we finally

have

ε∂t(ū + ū0) + εϑ+1−γnc0∇ · w̄ = 0 , (4.26)

where

ū0(x, t) =
1

|S|

∫

S

σ̄0(·, θ)dθ ,

and ū and w̄ are defined in Lemma Appendix A.1. The equation (4.26) is non-trivial

only for ϑ = γ.

We can define a new density, independent of the direction θ, utot(x, t) = ū+ ū0,

that takes into account the moving and resting particles. Then, the conservation

equation finally reads

∂tutot + nc0∇ · w̄ = 0 . (4.27)

5. Fractional space-time equation

Next we obtain an expression for the mean direction w̄, depending only on the

density of moving particles ū.

Multiplying (4.21) by θ and integrating over all directions we obtain

nε1+γ∂tw̄ + ε1−γc0 · ∇ū ≃ − 1

|S|

∫

S

θ(1− T )Bε (ū+ nεγθ · w̄) dθ

− rκ0 ε
(1+̺)κ

|S|

∫

S

θTBε tD
κ (ū+ nεγθ · w̄) dθ . (5.1)
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From equation (4.12) and for ϕ̂(x, ε1−γc0θ · ∇) and ψ̂(x, ε1−γc0θ · ∇) given as in

Ref. 12 we find

Bε =
ε−µ(α− 1)

τ0
− ε1−γc0θ · ∇

2− α
− τα−2

0 εµ(α−2)+(1−γ)(α−1)(1− α)2

× Γ(−α+ 1)(c0θ · ∇)α−1 +O
(
τα−1
0 εµ(α−1)λα

)
. (5.2)

Substituting Bε into (5.1), we compare the leading powers of ε. Considering that

(1 + ̺)κ > 0 as in Section 4.1, we observe that the terms involving the delay are of

lower order with the exception of the term ε−µ+(1+̺)κ
tD

κū. The physically relevant

scaling regime involves a fractional transport term in the expression for w̄, hence

we choose

µ =
1− α(1 − γ)

α− 1
and γ > 1− 1

α
(5.3)

to guarantee that µ > 0. Moreover, to ensure that the term involving a time delay

is of lower order we also choose (1+̺)κ > (α−1)(µ+1−γ). Taking these relations

into account, the right hand side of (5.1) can be rewritten as

− 1

|S|

∫

S

θ(1− T )
[
ε−µ (α− 1)ū

τ0
− ε−µ+γ (α− 1)

τ0
nθ · w̄ − τα−2

0 εµ(α−2)+(1−γ)(α−1)

× (1− α)2Γ(−α+ 1)(c0θ · ∇)α−1ū
]
dθ +O

(
εmin{−µ+(1+̺)κ, µ(α−1)}

)
. (5.4)

From the coefficient of the leading term ε−µ in (5.4) we then obtain,

0 = − 1

|S|

∫

S

θ(1− T )
α− 1

τ0
ūdθ . (5.5)

The subleading term is of order εµ(α−2)+(1−γ)(α−1) and we get

0 = − 1

|S|

∫

S

θ(1− T )
(
τα−2
0 (1 − α)2Γ(−α+ 1)cα−1

0 (θ · ∇)α−1ū

+
n(α− 1)

τ0
(θ · w̄)

)
dθ . (5.6)

Note that we have obtained the same fractional diffusion equation as in Ref. 12 and

Ref. 35 for a constant chemoattractant concentration.

From (5.6) we can obtain the mean direction w̄ after applying the operator T

to the right hand side. Therefore, we obtain

w̄ =
πτα−1

0 (α− 1)

sin(πα)Γ(α)

(n2ν1 − |S|)
n|S|(ν1 − 1)

cα−1
0 ∇α−1ū . (5.7)

Substituting w̄ into the conservation equation (4.27) we obtain

∂tutot = ∇ ·
(
Cα∇α−1ū

)
, (5.8)

where

Cα = −nπτ
α−1
0 (α− 1)

sin(πα)Γ(α)

(n2ν1 − |S|)
n|S|(ν1 − 1)

cα0 > 0 for 1 < α < 2 .
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Next we write the right hand side of (5.8) in terms of utot, and for this we return

to the resting particles equation (4.24).

Expanding the right hand side of (4.24) and choosing only the leading terms we

obtain, in the Laplace space,

λˆ̄σ0(x, λ, θ) − σ̄0
0(x, 0, θ) = rκ0λ

κ (α− 1)

τ0
ˆ̄u+O

(
ε(1+̺)κ+µ(α−2)+(α−1)(1−γ)

)
.

Here we have chosen (1 + ̺)κ = α(µ + 1 − γ) which agrees with our previous

assumption (1 + ̺)κ > (α − 1)(µ + 1 − γ). Integrating the above expression with

respect to θ we can write it in terms of the Laplace transform of ū0. Substituting

ū = utot − ū0 into the right hand side and grouping terms we obtain

ˆ̄u0(x, λ)−
1

λ
ū00(x, 0) =

ûtot
1 + τ0

rκ
0
(α−1)λ

1−κ
. (5.9)

Since λ → 0 then, applying a Taylor expansion and assuming all particles are

moving at t = 0, i.e. ū00 = 0, we have

ˆ̄u0 =

(
1− τ0λ

1−κ

rκ0 (α− 1)
+O

(
λ2(1−κ)

))
ûtot . (5.10)

Substituting the inverse Laplace transform of (5.10) back into (5.8) we get

∂tutot = ∇ ·
(
Cα∇α−1(utot − ū0)

)

= tD
1−κ∇ ·

(
Cα,κ∇α−1utot

)
(5.11)

where

Cα,κ =
τ0

rκ0 (α− 1)
Cα .

In fact, we can also write equation (5.11) using the Laplace transform as

λκûtot − λκ−1u0tot = ∇ ·
(
Cα,κ∇α−1ûtot

)
, (5.12)

and using the fact that

L
{
C
t D

κf(t)
}
= λκf̂(λ)−

n−1∑

m=0

λκ−m−1f (m)(0) ,

we have

C
t D

κutot = ∇ ·
(
Cα,κ∇α−1utot

)
. (5.13)

Remark 5.1. As previously noted, equation (5.13) does not contain a chemotactic

component: this lies in agreement with Ref. 20, where CD8+ T cells do not exhibit

directional migration on the time and length scales relevant to their experiments.

Remark 5.2. From the analysis in the previous section, relevant scaling parameters

satisfy the following relations:

µ =
1− α(1− γ)

α− 1
, ̺ =

αγ

κ(α− 1)
− 1 , (5.14)
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for 0 < κ < 1 and 1 < α < 2. From (5.3) and knowing that ̺ > 0 we conclude that

κ− κ

α
< γ < 1− 1

α
.

For α = 1.15 and κ = 0.7 as in20, 0.092 < γ < 1.15. Choosing γ = 0.5 then

µ ≈ 3.8 and ̺ ≈ 4.47.

In this regime, the scaling of the long runs (µ) and the scaling of the waiting times

(̺) are of similar order.

5.1. Fundamental solution

Assuming that the stopping rate ψ is independent of the position of the particle,

we can write (5.13) as

C
t D

κ utot = Cα,κ∇ ·
(
∇α−1utot

)
= C̃α,κ(−∆)α/2utot. (5.15)

Here, according to (A.6) in two dimensions, for 1 < α < 2,

C̃α,κ = −2
√
πCα,κ cos

(πα
2

) Γ
(
α+1
2

)

Γ
(
α+2
2

) .

Following Ref. 10, the fundamental solution of (5.15) in R
n, with initial condition

δ0 and diffusion constant Cα,κ,, can be found with the help of the Fourier-Laplace

transform

Ĝ(λ, ξ) =
λκ−1

λκ + C̃α,κ|ξ|α
. (5.16)

Note that the Laplace transform of the Mittag-Leffler function is

L Eκ(ct
κ) =

λκ−1

λκ − c
. (5.17)

Thus,

Ĝ(t, ξ) = Eκ(−C̃α,κ|ξ|αtκ). (5.18)

Using the formula for the inverse transformation of a radial function, we obtain

G(t,x) =
|x|1−n/2

(2π)n/2

∫ ∞

0

Eκ(−C̃α,κτ
αtκ)τn/2Jn/2−1(τ |x|)dτ, (5.19)

where Jr(z) is a Bessel function. Passing through the Mellin and inverse Mellin

transform we conclude

G(t,x) =
1

πn/2|x|nH
2,1
2,3

(
|x|α

2αC̃α,κtκ

∣∣∣
(1,1);(1,κ)

(n/2,α/2);(1,1);(1,α/2)

)
, (5.20)
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where H2,1
2,3 (z) is a Fox H-function. Useful identities and asymptotics may be found

in Ref. 7 and Ref. 29. In particular by Theorem 3 in Ref. 7 for 1 < α < 2, 0 < κ <

1, and α < 2κ,

G(t,x) ≃ 1

|x|n

(
|x|α

2αC̃α,κtκ

)q

(5.21)

when |x|α

C̃α,κtκ
≪ 1, where q = 1. In the limit |x|α

C̃α,κtκ
≫ 1, we have q = −1. Note that

these estimates hold in the regime of the experiments in Ref. 20 discussed above, as

well as for examples of superdiffusion without waiting times,12 relevant for certain

studies of E. coli and Dictyostelium discoideum.

Other regimes generate the exponentially small tails known for Brownian mo-

tion, including the presence of waiting times. For example, for Brownian motion

with waiting times, corresponding to α = 2 and κ < 1, we obtain the fundamental

solution

G(t,x) =
1

2πn/2|x|nH
2,0
1,2


 |x|

2

√
C̃1,κtκ/2

∣∣∣
(1,κ/2)

(1,1/2);(n/2,1/2)


 . (5.22)

It has exponentially small tails as |x|t−κ/2 → ∞:

G(t,x) ≃ 1

|x|n


 |x|

2

√
C̃2,κtκ/2




− n
2−κ

exp


2(

κ

2
− 1)κ

κ
2−κ


 |x|

2

√
C̃2,κtκ/2




2

2−κ


 .

(5.23)

In particular, the range in which the asymptotics (5.21) holds shrinks to 0 when

α and κ approach the boundary of the admissible region 1 < α < 2, 0 < κ <

1, and α < 2κ.

5.2. Hitting times

The fundamental solution of the continuummodel derived in the previous subsection

allows us to extract analytical approximations for biologically relevant quantities.

As an example, we derive an expression for the time at which a particle hits some

distant target T with radius a, in the experimentally relevant regime 1 < α < 2, 0 <

κ < 1, and α < 2κ. We seek the first time at which the density of the solution in T

reaches a certain threshold δ. That is, we seek t0 such that

δ =

∫

T

∫

Rn

G(x− y, t0)u0(y)dydx. (5.24)
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Assuming that the initial positions of the particles are given by xi, so that u0(x) =∑
i δxi

(x), we obtain

δ =
∑

i

∫

T

G(x − xi, t0)dx

=
∑

i

∫

T

1

πn/2|x− xi|n
H2,1

2,3

(
|x− xi|α

2αC̃α,κtκ0

∣∣∣
(1,1);(1,κ)

(n/2,α/2);(1,1);(1,α/2)

)
dx (5.25)

If all initial positions are at distance ≫ (C̃α,κτ
κ)1/α from the target T , we may use

the asymptotic expansion of the H-function from the previous subsection to obtain

δ ≃ 2αC̃α,κt
κ
0

πn/2

∑

i

∫

T

|x− xi|−α−ndx

≃ 2αC̃α,κt
κ
0

πn/2
vol(T )

∑

i

|x0 − xi|−α−n,

(5.26)

where x0 is a centre of the target T . Thus,

t0 ≃
(

δπn/2

2αC̃α,κvol(T )
∑

i |x0 − xi|−α−n

)1/κ

. (5.27)

This formula holds in the regime where the asymptotic expansion (5.21) is valid.

6. Numerical methods

In addition to the detailed qualitative information provided by the fundamental

solution, the space-time fractional continuum equation allows efficient quantitative

modelling of immune cell behaviour. We briefly describe the numerical approxi-

mation of the nonlocal operators. Challenges include the numerical evaluation of

the singular integrals and the lack of boundary regularity, which leads to reduced

convergence rates in naive approaches. Our numerical approximation of Equation

(5.13) uses a finite element discretisation in space as discussed, for example, in

Ref. 17 and a time stepping method based on convolution quadrature as in Ref. 1.

Let Ω ⊂ R
n be a bounded domain with polygonal boundary and let f ∈

C0([0, T )× Ω). For α ∈ (1, 2) and κ ∈ (0, 1), we consider the problem

C
t D

κu+∇ · (Cα,κ∇α−1u) = f in Ω× [0, T )

u = 0 in Ωc × [0, T ) (6.1)

u(·, 0) = u0 in Ω.

Let Th be a shape regular and quasi-uniform triangulation of the region Ω, with

triangles of diameter at most h. Let Hh be the subspace of piecewise linear functions

of H
α/2
0 (Ω) associated with Th. Then, the semidiscrete weak formulation of the

problem is as follows: Find uh ∈ C0([0, T );Hh) ∩Cκ([0, T );L2(Ω)) such that

(Ct D
κuh, v) + a(uh, v) = (f, v), (6.2)

uh(0) = u0, (6.3)
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for all v ∈ Hh. Here a(·, ·) represents the bilinear form

a(u, v) = (Cα,κ∇α−1u,∇v)

of the fractional Laplacian and, for simplicity, we assume that u0 ∈ Hh. The discrete

fractional Laplace operator Λh is defined as the unique operator satisfying

(Λhuh, vh) = a(uh, vh), for all uh, vh ∈ Hh, (6.4)

and the mass matrix Mh is given by

(Mhuh, vh) = (uh, vh), for all uh, vh ∈ Hh. (6.5)

We conclude a strong reformulation of the semidiscrete problem: Find uh ∈
C0([0, T );Hh) ∩ Cκ([0, T );L2(Ω)) such that

Mh
C
t D

κuh + Λhuh = fh in Ω× [0, T ) (6.6)

uh = 0 in Ωc × [0, T )

u(·, 0) = u0 in Ω .

For the discretisation of this equation in time we follow the approach of Ref. 1.

Dividing the time interval [0, T ) uniformly with time step τ = T/N of size hα/κ,

we seek a numerical approximation of the convolution integral K ∗ g(t) associated
with the Caputo time fractional derivative, by means of a finite sum as

K ∗ g(t) =
∫ t

0

K(s)g(t− s)ds ≈
n∑

j=0

wjg(t− jτ). (6.7)

The weights wj are computed from the Taylor expansion of K(δ(y)/τ). Here, K
is the Laplace transform of the kernel K and δ(y) is the quotient of the generat-

ing polynomials of a multistep method. The wj are calculated from the recursion

relation

w0 = τ−α/2,

wj =

(
1− α+ 2

2j

)
wj−1.

For full details see Ref. 27 and Ref. 28.

The fully discrete time stepping scheme for (6.1) is then given as follows: Find

{u1h, u2h, . . . } ⊂ Hh such that

(w0M +A)unh =M


(

n∑

j=0

wj)u
0
h −

n∑

j=1

wju
n−j
h + fn

h


 , (6.8)

where u0h is given. M,A are the mass and stiffness matrices related to the piecewise

linear basis functions ϕi of Hh defined by Mij = (ϕi, ϕj), Aij = a(ϕi, ϕj), and

fn
h =

∑
i(f(·, nτ), φi)φi is the Galerkin projection of f onto Hh at time nτ .
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To illustrate the effect of the fractional derivative in time in the biologically

relevant regime, we consider problem (6.1) in (a polygonal approximation of)

Ω = B(0, 10) with f ≡ 0 and u0(x) = max(exp(−5|x|2) − 0.2, 0), using h ≃ 0.025

and τ ≃ hα/κ. This setup corresponds to a Petri dish with an initial density of cells

in the center. The domain is large enough so that the dominant effects correspond

to diffusion rather than boundary effects, as in the experiment20. The solution at

time t = 1 is shown for α = 1.15 and κ = 0.7 in Figure 2a and for α = 1.15 and

κ = 1 in Figure 2b. The figures clearly exhibit the memory effects induced by the

fractional derivative in time. Figure 3 shows the width of the cell density as a

(a) (b)

Fig. 2: (a) Solution to (6.1) at time t = 1 for α = 1.15, κ = 0.7 (resting). (b)

Solution to (6.1) at time t = 1 for α = 1.15, κ = 1 (no resting).

function of time for different κ.

Cross-sections of solutions of Equation (5.13) with initial condition given by

u(0,x) = max(exp(−5|x|2)− 0.2, 0) are given in Figures 4 and 5, for time t = 0.02.

The time t = 0.02 is chosen in order to exhibit the long tails of the Lévy diffusion,

with their known slope. The influence of the boundary becomes more relevant for

longer times. Figure 4 shows a cross section of the solution for values of κ from 0.6

to 1, for the experimentally obtained α = 1.15 as in20. In particular, it depicts the

expected tail of the density with decay |x|−n−α = |x|−3.15, independent of κ, as

well as the Markovian limit κ→ 1. Figure 5 varies the coefficient α from 1.15 to 2,

for κ = 0.7 as in Ref. 20. As long as α < 2, the density again decays like |x|−n−α

away from the initial bump, while it exhibits the faster Gaussian decay for α = 2.

As α → 2− the onset of algebraic decay is only visible on larger and larger spatial

scales. We highlight the fact that the exponent of the decay does not depend on

κ. This is due to the fact that the decay exponent of the fundamental solution for

|x| → ∞ depends only on α, while it is independent of κ, see (5.21).
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Fig. 3: Width of solution depending on κ as a function of time for α = 1.15.
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Fig. 4: Cross-section of solution depending on κ for α = 1.15.

7. Conclusions & Outlook

In this paper we have derived effective macroscopic diffusion equations for organisms

exhibiting long-range behaviour and pauses. Beginning with a microscopic model

in which run times and waiting times followed a power-law, as observed for certain

T cell populations controlling chronic infections, we obtained a system of kinetic

equations for the moving and resting particles. The fractional diffusion equation

(5.13) emerges in a realistic limit.

The paper initiates a study into the interplay between long-range behaviour in

space and long delays between runs, contributing to recent interest in anomalous

diffusion processes. On the one hand, Lévy walks in space with short / negligible
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Fig. 5: Cross-section of solution depending on α for κ = 0.7.

delays have been suggested for the movements of organisms such as E. coli under

low nutrient levels and their macroscopic evolution has been shown to be described

by fractional Patlak-Keller-Segel equations.4,12,35 They have also inspired search

strategies for swarm robotic systems.11 On the other hand, Brownian motion with

subdiffusive behaviour in time has been investigated in the context of death pro-

cesses14 or nonlinear interactions.13,38 A discussion of resting times in velocity-jump

models is found in Ref. 39.

The macroscopic diffusion equation (5.13) permits analytical insights into the

evolution of the density. For example, it reveals that the microscopic description

enters via three parameters: the exponents α and κ of the run and waiting times and

the diffusion constant Cα,κ. Chemotactic terms are of lower order: the long-range

searching strategy is thus not disrupted by local gradient following. Of course, im-

mune cells are well known for their responses to chemoattractants19: in the context

of the T cells studied here, it is possible that their detection of a local attractant

gradient would trigger a conversion from long range searching behaviour to local

gradient following.

The fundamental solution in R
n, (5.20), provides an explicit formula for the

probability distribution for the movement of a single particle. It leads to approx-

imations for hitting times, (5.27), allows us to study the sensitivity to parameter

changes and provides a step towards the analysis of mean first passage times, see

below. On the other hand, Section 6 offers efficient and accurate numerical meth-

ods to employ the fractional PDE (5.13) for parametric studies, despite its nonlocal

nature, and more extensive modelling is addressed elsewhere.

The experiments of Ref. 20 specifically studied the effect of the CXCL10 concen-

tration on T cell velocity: CD8+ T cells in mice treated with anti-CXCL10 were, on

average, 23% slower than the cells of a control population with normal responses.
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Fig. 6: Hitting time t0 as function of α and κ in the range of validity of (5.27).

From the fundamental solution of the space-time fractional equation we observe that

velocity changes only alter the time scale of diffusion, corresponding to c
α
κ . Thus,

for the experimentally determined values α = 1.15 and κ = 0.7, a 23% reduction in

the velocity would yield an approximately 35% reduction in the diffusion timescale,

and hence less efficient searching. In the absence of data stating otherwise, here

we have assumed the CD8+ T cells migrate in an environment with homogeneous

CXCL10 levels, and therefore constant velocities c. More generally, it would be of

high interest to explore the impact of spatially-dependent velocities, resulting from

nonuniform chemical profiles. The microscopic modelling of such problems, however,

appears to be challenging even for velocity-jump models with standard Brownian

motion. The model could also be extended to include extra complexity. For exam-

ple, in bacteria, the stopping probability is linked to molecular components, which

could enter as internal variables. We refer to work in this direction by Perthame

et al.35 for the run-and-tumble of bacteria including a biochemical pathway, and a

more detailed discussion of the impact of including internal variables is provided

in.40

In the context of organisms searching for targets, a basic quantity of interest is

the mean first passage time. It is defined as the time taken for a moving organism

to reach a target or, more formally15 as

T (x) =

∫ ∞

0

∫

Ω

p(x′, t | x, 0)dx′ dt .

Here, p(x′, t | x, 0) is the probability that the particle is at x′ at time t provided

that it was at x at time 0, i.e. the Green’s function of the fractional equation. For

the diffusion equation (5.13) two regimes have been considered in one dimension:

For subdiffusion, 0 < κ < 1 and α = 2, it was shown in Ref. 41 that T (x) → ∞ for
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a target in a bounded domain, while for superdiffusion, κ = 1 and 1 < α < 2, T (x)

is finite under the same conditions.18 It is the nonlocality of the equation here that

generates the challenge, raising as it does the possibility of “leapfrogging” a target.

The analysis in higher dimensions remains open.41

Motivated by the differential movement of cells in gray and white brain mat-

ter,16 upcoming work on interface problems will consider velocities that take dif-

ferent values in distinct regions of the domain. While our current article addresses

uncorrelated run and waiting times, correlations between these are also of inter-

est. In the special case of perfect correlations between run and waiting times the

macroscopic limit coincides with the one obtained from a velocity jump model for

a correspondingly reduced velocity. Weaker forms of correlation are an interesting

topic for future research.

From a search-area coverage perspective, a long-tailed distribution of waiting

times makes little sense: Figure 6 shows that waiting only increases the hitting time,

and hence decreases the searching efficiency. Of course, such apparent contradictions

can only be explained through considering the underlying problem: following a

migration, T cells must spend a certain time controlling their local environment

for any antigen presenting (i.e. infected) cells, often detected through direct cell-

cell contact, and hence ‘waiting’ is an intrinsic component of the search/detection

process. While we have followed the data of Ref. 20 and assumed independence

between the selection of run and wait times, it is of course possible that a link

exists: for example, a T cell performs a thorough check of some environment (checks

a large number of cells) before embarking on a long run. The extent to which such

considerations impact on the subsequent PDE remain to be explored.

Appendix A. Turn angle and fractional operators

This section specifies some basic spectral properties of the turn angle operator T

defined in (4.4). Because ℓ in (3.1) is a probability distribution, it is normalized to∫
S ℓ(x, t, |θ − e1|)dθ = 1, where e1 = (1, 0, . . . , 0). We immediately observe

∫

S

(1− T )φdθ = 0 (A.1)

for all φ ∈ L2(S). Biologically, (A.1) corresponds to the conservation of the number

of organisms in the tumbling phase. We also require some more detailed information

about the spectrum of T .

Lemma Appendix A.1. Assume that ℓ is continuous. Then T is a symmetric

compact operator. In particular, there exists an orthonormal basis of L2(S) consist-

ing of eigenfunctions of T .
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With θ = (θ0, θ1, ..., θn−1) ∈ S, we have

φ0(θ) =
1

|S| is an eigenfunction to the eigenvalue ν0 = 1,

φj1(θ) =
nθj
|S| are eigenfunctions to the eigenvalue ν1 =

∫

S

ℓ(·, |η − 1|)η1dη < 1.

(A.2)

Any function σ̄ ∈ L2(Rn ×R
+ × S) admits a unique decomposition

σ̄ =
1

|S| (ū+ nθ · w̄) + ẑ, (A.3)

where ẑ is orthogonal to all linear polynomials in θ. Explicitly,

ū(x, t) =

∫

S

σ̄(x, t, θ)φ0(θ)dθ, w̄
j(x, t) =

∫

S

σ̄(x, t, θ)φj1(θ)dθ,

and w̄ = (w̄1, . . . , w̄n).

We recall some basic definitions concerning fractional differential operators, as

well as their relation to the turning operator T .

Definition Appendix A.1. For s ∈ (0, 2) and f ∈ C2(Rn) define the fractional

gradient of f as

∇sf(x) =
1

|S|

∫

S

θDs
θf(x)dθ =

1

|S|

∫

S

θ(θ · ∇)sf(x)dθ, (A.4)

where Ds
θ = (θ ·∇)s is the fractional directional derivative of order s. The fractional

Laplacian of f is given by

D
sf(x) =

1

|S|

∫

S

Ds
θf(x)dθ. (A.5)

It is easily shown that in two dimensions, for 1 < α < 2,

D
s = −2

√
π cos

(πα
2

) Γ
(
α+1
2

)

Γ
(
α+2
2

) (−∆)
s/2 . (A.6)

See Ref. 30 for further information.
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