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2 Systems of 1st order and higher order ODEs

2.1 General remarks

In many applications we need several real-valued functions of one real variable to

describe a system. Examples are the temperature and pressure as a function of time,

or the concentrations of two chemicals in a solution as a function of time, or the three

position coordinates of a particle as a function of time. In this section we are going

to change notation: the independent variable will be called t, and the independent

functions x1, . . . , xn. Each of these functions obeys a differential equation, which may

in turn depend on the other functions, e.g.

dx1

dt
= tx1 + x2

dx2

dt
= x2

1 − 4t2x2. (2.1)

More generally, we might have

ẋ1(t) = F1 (t, x1(t), x2(t), · · · , xn(t)) (2.2)

ẋ2(t) = F2(t, x1(t), x2(t), · · · , xn(t)) (2.3)
... (2.4)

ẋn(t) = Fn(t, x1(t), x2(t), · · · , xn(t)) (2.5)

(2.6)

Such a set of coupled equations is called a system of differential equations.

Clearly, it makes sense to use vector notation. Defining

x : R → Rn, x(t) =




x1(t)
...

xn(t)


 (2.7)

F : Rn+1 → Rn, F (t,x) =




F1(t, x1, · · · , xn)
...

Fn(t, x1, · · · , xn)


 (2.8)

we can write the system of differential equations as one equation

dx(t)

dt
= F (t,x(t)) (2.9)

For example, the equation (2.1) can be written

dx(t)

dt
= F (t,x(t)), (2.10)

with

x =

(
x1

x2

)
, F (t,x) =

(
tx1 + x2

x2
1 − 4t2x2

)
. (2.11)
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Although the general form (2.9) seems to involve only a first derivative, it includes

differential equations of higher order as a special case. An nth order differential equa-

tion of the form

dnx

dtn
= f(t, x,

dx

dt
, . . . ,

dn−1x

dtn−1
) (2.12)

can be written as a first order equation for the vector-valued function x in (7.1) as

d

dt




x1

x2

...

xn


 =




x2

x3

...

f(t, x1, . . . , xn)


 . (2.13)

We recover the differential equation (2.12) by identifying x1 = x. Then the first n− 1

components of (2.13) tell us that

x2 =
dx

dt
, x3 =

dx2

dt
=

d2x

dt2
, . . . , xn =

dn−1x

dtn−1
(2.14)

so that the last component is precisely the equation (2.12).

Example 2.1. Write the following differential equations as first order systems.

(a)
d2x

dt2
+

dx

dt
+ 4x = t2

(b) xẍ + (ẋ)2 = 0.

(c)
d2x

dt2
= −x + y,

d2y

dt2
= x + 2y.

For (a) we need a two-component vector x =

(
x1

x2

)
. We identify x1 with x and

want our equation to ensure that x2 = ẋ = ẋ1. The required equation is(
ẋ1

ẋ2

)
=

(
x2

−4x1 − x2 + t2

)
(2.15)

(b) can be written as (
ẋ1

ẋ2

)
=

(
x2

−x2
2

x1

)
. (2.16)

For (c) we need a four component vector. We identify x1 with x and x3 with y. Our

equation should include ẋ = ẋ1 = x2 and ẏ = ẋ3 = x4. The required equation is

d

dt




x1

x2

x3

x4


 =




x2

−x1 + x3

x4

x1 + 2x3


 (2.17)
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When F (t,x) is a linear function of x1, x2, · · · , xn, we can write the rhs of (2.9) in

the form A(t)x(t) + b(t), where A(t) : R → Rn2
is a n× n matrix valued function and

b(t) : R → Rn is a vector valued function. For example, we can write (2.15) as

d

dt

(
x1

x2

)
=

(
0 1

−4 −1

) (
x1

x2

)
+

(
0

t

)
. (2.18)

2.2 Existence and uniqueness of solutions of systems of ODEs

Picard’s theorem generalises to systems
dx(t)

dt
= F (t,x) as follows

Theorem 2.2. Suppose F : Rn+1 → Rn is continuous in some region I × U , where

I = (t1, t2) is an open interval and U ⊂ Rn is an open set, and that the partial

derivatives in the derivative matrix

DF =




∂F1

∂x1
. . . ∂F1

∂xn
...

...
∂Fn

∂x1
. . . ∂Fn

∂xn


 (2.19)

are also continuous there. Then, for every t0 ∈ I and x0 ∈ U , the initial value problem

dx(t)

dt
= F (t,x(t)), x(t0) = x0 (2.20)

has a unique solution in some open interval containing t0

Example 2.3. Compute the derivate matrix, and hence show the existence and unique-

ness of a solution for the initial value problem consisting of (2.1) and the initial con-

dition x(0) =

(
1

0

)
.

The derivative matrix is given by

DF =

(
∂F1

∂x1

∂F1

∂x2
∂F2

∂x1

∂F2

∂x2

)
=

(
t 1

2x1 −4t2

)
(2.21)

which is continuous in an open set in R3 that contains t = 0, x =

(
1

0

)
.

We will not prove this version of Picard’s theorem either, but note a corollary for

linear systems of the form

dx(t)

dt
= A(t)x(t) + b(t). (2.22)

The derivative matrix is now simple DF (t) = A(t), and so if A and b are continuous

functions of t, the conditions of Picard’s theorem are satisfied for all initial conditions

x(t0) = x0. Hence we have

Corollary 2.4. If A : R → Rn2
is a continuous matrix-valued function and and b :

R → Rn is a continuous vector-valued function then the linear differential equation

(2.22) has a unique solution for all initial conditions x(t0) = x0 and this solution

exists for all t ∈ R.
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2.3 Linear systems of ODEs

In this section we develop a general theory of linear systems of the form

dx

dt
(t) = A(t)x(t) + b(t), (2.23)

where A is a n×n matrix-valued function and b is Rn-valued function of t. Both A and

b are assumed to be continuous functions on all of R, so that, according to Corollary 2.4,

there is unique solution of (2.23) satisfying a given initial condition x(t0) = x0.

2.3.1 Homogeneous linear systems

For a given continuous n × n matrix-valued function A of t we define the differential

operator

L[x] =
dx

dt
− Ax (2.24)

and note that L is a linear operator:

L(αx + βy) = α
dx

dt
+ β

dy

dt
− αAx− βAy = αL[x] + βL[y]. (2.25)

The equation

L[x] =
dx

dt
− Ax = 0 (2.26)

is called a homogeneous linear equation. The space of solutions of (2.26) is characterised

by the following theorem (you may find it helpful to consult the revision notes on vector

spaces given in Appendix A):

Theorem 2.5. (Solution space for homogeneous linear systems) The space

S = {x ∈ C1(R, Rn)|L[x] = 0} (2.27)

of solutions of the homogeneous equation (2.23) is a vector space of dimension n since

the evaluation map

Evt0 : S → Rn, x 7→ x(t0) (2.28)

is a vector space isomorphism.

Proof : The fact that S is a vector space follows from the linearity of L (i.e. x,y ∈
S =⇒ αx + βy ∈ S). To show that Evt0 is a vector space isomorphism, we first note

that it is a linear map:

Evt0 [αx + βy] = αx(t0) + βy(t0) = αEvt0 [x] + βEvt0 [y].

Picard’s theorem implies that it is bijective: it is surjective since, for any given x0 ∈ Rn,

there exists solution x ∈ S so that x(t0) = x0. It is injective since this solution is

unique. Hence Evt0 is a bijective linear map, i.e. a vector space isomorphism. ¤
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Definition 2.6. (Fundamental sets solutions for homogeneous systems) A basis

{y(1), . . . ,y(n)} of the set S defined in (2.27) is called a fundamental set of solutions

of (2.26).

The following lemma is an immediate consequence of Theorem 2.5.

Lemma 2.7. (Determinant for fundamental sets ) A set of n solutions y(1), . . . ,y(n)

of the homogeneous linear equation (2.26) forms a fundamental set of solutions if and

only if the matrix

Y (t) =




y
(1)
1 (t) . . . y

(n)
1 (t)

...
...

y
(1)
n (t) . . . y

(n)
n (t)


 (2.29)

has a non-zero determinant det(Y (t)) at one value t = t0 (and hence for all values of

t).

Note, that if the determinant is non-zero at one value t = t0, then using Ev−1
t0 , this

establishes that y(1), · · · ,y(n) are a basis of S. But we can then use Evt, to obtain

another set of basis vectors of Rn with determinant non-zero. Hence, if the determinant

is non zero for one value t0, it is also non-zero for all values of t.

Example 2.8. Find a fundamental set of solutions for the homogeneous equation

d

dt

(
x1

x2

)
=

(
0 1

1 0

) (
x1

x2

)
. (2.30)

To solve (2.30) we try a solution of the form

x(t) = eλtv. (2.31)

Inserting into (2.30) we find that this is a solution if

λv =

(
0 1

1 0

)
v, (2.32)

so that (2.31) is a solution if λ is an eigenvalue of and v an eigenvector of the

matrix

(
0 1

1 0

)
. A short calculation shows that the eigenvalues are 1 and −1, with

eigenvectors v(1) =

(
1

1

)
and v(2) =

(
1

−1

)
. Hence we obtain the solutions

y(1)(t) =

(
et

et

)
, y(2)(t) =

(
e−t

−e−t

)
. (2.33)

Clearly, y(1)(0) and y(2)(0) are linearly independent since

det

(
1 1

1 −1

)
= −2 6= 0.
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Hence, {y(1),y(2)} form a fundamental set. Note that fundamental sets are not unique:

we can take linear combinations to obtain other fundamental sets, e.g.

1

2
(y(1)(t) + y(2)(t)) =

(
cosh t

sinh t

)
,

1

2
(y(1)(t)− y(2)(t)) =

(
sinh t

cosh t

)
. (2.34)

As we have seen, homogeneous linear n-th order equations

dnx

dtn
+ an

dn−1x

dtn−1
+ . . . + a1x = 0 (2.35)

are a special case of linear homogeneous systems (2.26). Here we define

s = {x ∈ Cn(R, R)|d
nx

dtn
+ an

dn−1x

dtn−1
+ . . . + a1x = 0} (2.36)

In this case, the evaluation map takes the form

evt0 : s → Rn, x 7→




x(t0)
dx
dt

(t0)
...

dn−1x
dtn−1 (t0)


 (2.37)

which assigns to each solutions the vector made out of the values of the function x and

its first n−1 derivatives at t0. Theorem 2.5 then states that this map is a vector space

isomorphism. This is sometimes useful for checking linear independence of solutions of

an n-th order homogeneous linear equation: two solutions are independent if and only

if their images under evt0 are independent in Rn. For the two solutions y(1)(t) = cos t

and y(2)(t) = sin t of ẍ + x = 0, the evaluation map at t0 = 0 gives

ev0(y
(1)) =

(
1

0

)
, ev0(y

(2)) =

(
0

1

)
. (2.38)

These vectors, and hence y(1)(t) and y(2)(t) are linearly independent since

det

(
1 0

0 1

)
= 1 6= 0.

The FSS {y(1), · · · ,y(n)} of a homogeneous linear system

dx(t)

dx
= A(t)x(t) (2.39)

has three main uses. Firstly, we can write the general solution of (2.39) as y(t) =

c1y
(1)(t) + · · ·+ cny

(n)(t) for constants c1, · · · , cn. Secondly, we can find the particular

values of c1, · · · , cn that give the unique solution of the initial value problem specified

by (2.39) and the condition x(t0) = x0. Thirdly, as we shall see in Section 2.3.4, we can

use the FSS in order to construct a particular solution of the inhomogeneous problem
dx(t)

dt
= A(t)x(t) + b(t).
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Example 2.9. Find the general solution of

d

dt

(
x1

x2

)
=

(
0 1

1 0

) (
x1

x2

)
, (2.40)

and hence find the solution of the initial value problem specified by (2.40) and the initial

condition x(0) =

(
0

1

)
.

We have already found the FSS for this problem; hence the general solution is

x(t) = c1

(
et

et

)
+ c2

(
e−t

−e−t

)
=

(
c1e

t + c2e
−t

c1e
t − c2e

−t

)
. (2.41)

The solution of the initial value problem is given by the choice(
c1 + c2

c1 − c2

)
=

(
0

1

)
, (2.42)

with solution c1 = 1/2, c2 = −1
2
. Hence the solution is

x(t) =

(
sinh(t)

cosh(t)

)
. (2.43)

2.3.2 Matrix methods for finding the FSS

In practice, the FSS can only be found explicitly in rare happy cases. An example is

the case where the matrix A is constant, and this is the case we study in some detail

this section. Consider the system of linear equations

ẋ(t) = Ax(t), (2.44)

where x : R → Rn and A is a constant, real n× n matrix. To find solutions we make

the ansatz (=inspired guess)

x(t) = eλtv. (2.45)

Inserting into (2.44) we obtain

Av = λv (2.46)

so that (2.45) is a solution iff v is an eigenvector. If A has n real linearly independent

eigenvectors v(1), . . . ,v(n) with real eigenvalues λ1, . . . , λn (which need not be distinct),

a fundamental set of solutions is given by

y(1)(t) = eλ1tv(1), . . . ,y(n)(t) = eλntv(n). (2.47)
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However, as discussed in Appendix B, not all real n×n matrices have a basis of n real

linearly independent eigenvectors. Let us consider the different situations which can

arise:

(i) n distinct real eigenvalues

In this case, we do get n linearly independent eigenvectors and the FSS is given by

(2.47)

Example 2.10. Consider the equation (2.44) for n = 2 and

A =

(
1 4

1 1

)
(2.48)

This matrix has eigenvalue λ if det(A − λI) = (1 − λ)2 − 4 = 0 i.e. if λ = −1 or

λ = −3. The vector v(1) =

(
v1

v2

)
is an eigenvector for eigenvalue −1 if

v1 + 4v2 = −v1, and v1 + v2 = −v2. (2.49)

Hence v(1) =

(
2

−1

)
is eigenvector for eigenvalue−1. Similarly we find that v(2) =

(
2

1

)
is eigenvector for eigenvalue 3. The solutions

y(1)(t) = e−t

(
2

−1

)
, y(2)(t) = e3t

(
2

1

)
(2.50)

are independent and form a fundamental set.

(ii) Repeated real eigenvalues.

If a given eigenvalue has algebraic multiplicity m (i.e. it is repeated m times) it will

have 1 ≤ q ≤ m linearly independent eigenvalues. Let us consider the cases q = m,

and q < m separately.

• q = m

Example 2.11. Find the FSS of (2.44) for

A =

(
2 0

0 2

)
(2.51)

A has v(1) =

(
1

0

)
and v(2) =

(
0

1

)
as eigenvectors for the repeated eigenvalue 2.

In this case we find a fundamental set of solutions:

y(1)(t) = e2t =

(
1

0

)
, y(2)(t) = e2t

(
0

1

)
. (2.52)
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• q < m. As we have said, a matrix may fail to have a basis of eigenvectors if an

eigenvalue is repeated. Suppose for simplicity that a real eigenvalue λ1 has multiplicity

m = 2 (i.e. the characteristic polynomial contains a factor (λ−λ1)
2) and that v is the

only eigenvector for this eigenvalue (i.e. q = 1). Then y(1)(t) = eλ1tv is a solution of

(2.44). To find a second solution we try

y(2)(t) = teλ1tv + eλ1tw. (2.53)

Inserting into (2.44) we find that this is a solution if

eλt(λ1tv + v + λ1w) = eλ1A(tv + w) (2.54)

i.e. if

(A− λ1I)w = v. (2.55)

One can show that this equation can always be solved for w. Since (A − λ1I)w 6= 0

but (A− λ1I)2w = 0, w is sometimes called a generalised eigenvector of A.

Example 2.12.

A =

(
1 9

−1 −5

)
. (2.56)

We find that λ is an eigenvalue if (λ + 2)2 = 0. Hence −2 is a repeated eigenvalue.

The only eigenvector is

v =

(
−3

1

)
(2.57)

so that one solution of (2.44) is

y(1)(t) = e−2t

(
−3

1

)
. (2.58)

To find the second solution we need to solve

(A + 2I)w = v ⇔
(

3 9

−1 −3

)
w =

(
−3

1

)
. (2.59)

With elementary row operations we find

w =

(
−1

0

)
(2.60)

so that a second solution is given by

y(2)(t) = e−2tt

(
−3

1

)
+ e−2t

(
−1

0

)
= e−2t

(
−1− 3t

t

)
. (2.61)
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(iii) Complex eigenvalues

If the real matrix A in (2.44) has a complex eigenvalue λ = α+iβ with corresponding

complex eigenvector v = v(1) + iv(2), then y(t) = eλtv is a complex solution (note that

y∗(t) = eλ∗tv∗ is another solution). However, since A is real we have

dRe(y(t))

dt
= Re(

dy(t)

dt
) = Re(Ay(t)) = A Re(y(t))

dIm(y(t))

dt
= Im(

dy(t)

dt
) = Im(Ay(t)) = A Im(y(t))

So Re(y(t)) and Im(y(t)) are both real solutions. Thus we obtain two real solutions

by taking the real and imaginary parts of y(t).

Example 2.13. Find the FSS of (2.44) with

A =

(
−1 −5

1 3

)
. (2.62)

The eigenvalues are 1± i, with eigenvectors

(
−2± i

1

)
. Thus we have the complex

solution

y(t) = e(1+i)t

(
−2 + i

1

)

= et(cos t + i sin t)

(
−2 + i

1

)

= et

(
−2 cos t− sin t

cos t

)
+ iet

(
cos t− 2 sin t

sin t

)
(2.63)

so that a fundamental set of solutions is

y(1)(t) = et

(
−2 cos t− sin t

cos t

)
, y(2)(t) = et

(
cos t− 2 sin t

sin t

)
. (2.64)

Note, that the other complex solution is

y∗(t) = e(1−i)t

(
−2− i

1

)

and we have Re(y∗(t)) = y(1)(t), Im(y∗(t)) = −y(2)(t). Thus, in order to obtain 2 real

solution, we only need to deal with one of the pair of complex conjugate solutions, and

it doesn’t matter which one.
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2.3.3 The Fundamental Matrix

IF {y(1), · · · , y(n)} is a FSS, the non-singular matrix

Y (t) =




y
(1)
1 y

(2)
1 · · · y

(n)
1

...
...

...

y
(1)
n y

(2)
n · · · y

(n)
n




is called the fundamental matrix. The general solution of the homogeneous linear

ODE ẋ(t) = A(t)x(t) is then

x(t) = c1y
(1)(t) + c2y

(2)(t) + · · · cny(n)(t), (2.65)

where c1, · · · , cn are t-independent constants. (2.65) can be written in the form

x(t) = Y (t) c, where c =




c1

c2

...

cn


 . (2.66)

The solution to the initial value problem consisting of ẋ(t) = A(t)x(t) and the initial

condition x(0) = x0 is given by (2.66) with c specified by

x0 = Y (t0)c, such that c = Y −1(t0)x0. (2.67)

Thus we can write

x(t) = Y (t)Y −1(t0)x0. (2.68)

Note that Y −1(t) exists since det(Y (t)) 6= 0. (2.68) is not of much practical use as a

way to compute the solution - it is usually easier just to find c from x0 = Y (t0)c by

row reduction of Y (t0). It is however conceptually important and of interest in the

next section.

Another useful property of Y (t) is that it satisfies

Ẏ (t) = A(t)Y (t). (2.69)

This follows since the i’th column of both sides is simply




ẏ
(i)
1
...

ẏ
(i)
n


 = A(t)




y
(i)
1
...

y
(i)
n .



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2.3.4 Inhomogeneous linear systems

We return to the more general form

dx

dt
(t) = A(t)x(t) + b(t), (2.70)

of linear system with b 6= 0. Such systems are called inhomogeneous linear systems.

Using again the linear operator L defined in (2.24) we have the following analogue of

Theorem 2.5.

Theorem 2.14. (Solution space for inhomogeneous linear systems) Let {y(1), . . . ,y(n)}
be a fundamental set of solution for the homogeneous equation ẋ = Ax. Then any so-

lution of the inhomogeneous equation (2.70) is of the form

x(t) =
n∑

i=1

ciy
(i) + xp, (2.71)

where xp is a particular solution of (2.70) and c1, . . . , cn are real constants.

Proof : It is easy to check that (2.71) satisfies the inhomogeneous equation (2.70), using

the fact that each of the y(i) satisfy ẏ(i) = Ay(i). To show that every solution can be

written in this way, suppose that x is a solution of (2.70). Then x − xp satisfies the

homogeneous equation d
dt

(x− xp) = A(x− xp) and therefore can be expanded

x− xp =
n∑

i=1

ciy
(i) (2.72)

for some real constants c1, . . . , cn. ¤
The most systematic way of finding a particular solution of an inhomogeneous linear

equation is called the method of variation of the parameters. The idea is to look

for a particular solution of the form

xp(t) =
n∑

i=1

ci(t)y
(i)(t), (2.73)

where {y(1), . . . ,y(n)} is a fundamental set of the homogeneous equations as before,

but, crucially, the ci are now functions of t. As above, we can write (2.73) in terms of

the fundamental matrix Y as

xp = Y c. (2.74)

Using the product rule and the fact that Ẏ = AY we deduce

ẋp = Ẏ c + Y ċ = AY c + Y ċ. (2.75)

Hence

ẋp = Axp + b ⇔ AY c + Y ċ = AY c + b

⇔ ċ = Y −1b. (2.76)

We can now compute c by integration - at least in principle. We summarise this result

as follows.
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Theorem 2.15. (Method of variation of the parameters) Let {y(1), . . . ,y(n)} be

a fundamental set of solutions of ẋ = Ax and let Y be the matrix constructed from

{y(1), . . . ,y(n)} according to (2.29). Then

xp(t) = Y (t)

∫ t

t0

Y −1(τ)b(τ)dτ (2.77)

is a particular solution of the inhomogeneous equation ẋ = Ax + b

The formula (2.77) is very general, and therefore very powerful. To get a feeling for

how it works we need to study further examples - see Problem Sheet 4.

Example 2.16. Find a particular solution of the equation

ẋ =

(
2 1

2 3

)
x +

(
0

et

)

The fundamental matrix is

Y (t) =

(
et e4t

−et 2e4t

)
and Y −1(t) =

1

3

(
2e−t −e−t

e−4t e−4t

)

Thus (2.77) tells us that a particular solution is given by

xp(t) = Y (t)

∫
Y −1(t)

(
0

et

)
dt.

Note, since changing the value of t0 in (2.77) just changes the particular solution by

a complementary function (i.e., a solution of the homogeneous equation), we can just

use the indefinite integral as we do here. Evaluating the integral, we find

xp(t) = −1

3
et

(
t + 4

3

−t− 1
3

)
.

Let us consider the n = 1 case of (2.77) in more detail and show that equation

(2.77) reduces to the formula for the solution of a linear first order equations in terms

of the integrating factor. With the conventions of this section, we consider the first

order differential equation

ẋ(t) = a(t)x(t) + b(t) ⇔ ẋ(t)− a(t)x(t) = b(t) (2.78)

and note that the homogeneous equation

ẋ(t) = a(t)x(t) (2.79)

has the solution

y(t) = exp(

∫ t

t0

a(τ)dτ), (2.80)
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which is the inverse of the integrating factor

I(t) = exp(−
∫ t

t0

a(τ)dτ) (2.81)

for (2.78). Thus the formula

xp(t) = y(t)

∫ t

t0

y−1(τ)b(τ)dτ = I(t)−1

∫ t

t0

I(τ)b(τ)dτ (2.82)

for the particular solution is precisely the solution we would obtain using the integrating

factor y−1(t).

2.4 Higher order ODEs

Recall, that an nth order differential equation of the form

dnx

dtn
= f(t, x,

dx

dt
, . . . ,

dn−1x

dtn−1
) (2.83)

can be viewed as a system of systems of ODEs by identifying

x1 = x, x2 =
dx

dt
, x3 =

dx2

dt
=

d2x

dt2
, . . . , xn =

dn−1x

dtn−1
(2.84)

Then we have

d

dt




x1

x2

...

xn


 =




x2

x3

...

f(t, x1, . . . , xn)


 . (2.85)

where the last component is precisely the equation (2.83). The initial value problem

corresponds to (2.85) and a condition x(t0) = x0. For the equation (2.83) this is

equivalent to specifying

x(t0),
dx(t0)

dt
,
d2x(t0)

dt2
, . . . ,

dn−1x(t0)

dtn−1
, (2.86)

i.e. the function and its first (n− 1) derivatives.

All of the results of Section 2 specialise to the case of n’th order ODES.In this

Section we consider some of these specialisations.

2.4.1 Picard’s Theorem

The derivative matrix for (2.85) is

DF =




0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...

0 0 0 · · · 0 1
∂f
∂x1

∂f
∂x2

∂f
∂x3

· · · ∂f
∂xn−1

∂f
∂xn




.
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Thus (2.85) satisfies the conditions of Picard’s theorem if the function f and the partial

derivatives

∂f

∂x1

, . . . ,
∂f

∂xn

(2.87)

are continuous. In that case there will be a unique solution, at least locally, if we

specify x(t0), i.e., i.e. the function x(t0) and its first (n− 1) derivatives.

Example 2.17. Show that x(t) = t2 can not be a solution of the initial value problem

d2x

dt2
= t

(
dx

dt

)2

+ x3, x(0) = 0,
dx(0)

dt
= 0.

The function f(t, x, dx
dt

) on the right-hand side and the two partial derivatives ∂f
∂x

=

3x2, ∂f
∂ẋ

= 2ẋ, are continuous at t = 0, x = 0, ẋ = 0. The initial value problem therefore

has a unique solution from Picard’s Theorem. One solution is x(t) = 0 (such that we

also have ˙x(t) = 0). Therefore, there can not be another solution of the form given.

2.4.2 The FSS and the Wronskian

A linear n’th order ODE is one of the form system

dnx

dtn
+ an(t)

dn−1x

dtn−1
+ . . . + a1(t)x = b(t). (2.88)

The equation is said to be homogeneous when b(t) = 0.

n linearly independent y(1), y(2)(t), .., y(n)(t) solutions of the homogeneous linear equa-

tion constitute a Fundamental Solution Set.

The counterpart of Lemma 2.7 has a special name for n-th order equations:

Lemma 2.18. (Wronskian for n-th order linear homogeneous equations ) A

set of n solutions y(1), . . . , y(n) of the n-th order homogeneous linear equation (2.35)

forms a fundamental set of solutions if and only if the matrix

Y =




y(1) . . . y(n)

dy(1)

dt
. . . dy(n)

dt
...

...
dn−1y(1)

dtn−1 . . . dn−1y(1)

dtn−1


 (2.89)

has a non-zero determinant W=det(Y ) at one value t = t0 (and hence for all values of

t). The determinant W of Y is called the Wronskian of y(1), . . . , y(n).

Example 2.19. The Wronskian of two solutions y(1), y(2) of the second order equation

ẍ + a2ẋ + a1x = 0 is W = y(1)ẏ(2) − y(2)ẏ(1).

If we have n solutions of a homogeneous, linear n’th order ODE, and we want to

check for linearly independence, we simply have to evaluate the Wronskian at any value

of t (or whatever the variable is called).
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Example 2.20. Two solutions of the equation
d2y

dx2
+ 4y = 0 are cos(2x) and sin(2x).

Show that these two solutions constitute a FSS.

The Wronskian is W = cos(2x) cos(2x) + sin(2x) sin(2x) = 1, hence the solutions

are linearly independent and are a FSS.

2.4.3 The FSS for equations with constant coefficients

Consider the linear homogeneous equation

dxn

dt
+ an

dn−1x

dtn−1
+ . . . + a1x = 0 (2.90)

in the case when an, · · · , a1 are constant coefficients. Then, we may write the equation

in matrix form (after identifying x = x1 as)

dx

dt
= Ax(t), where A =




0 1 . . . 0 0
...

...

0 0 . . . 0 1

−a1 −a2 . . . −an−1 −an


 . (2.91)

As above, we can press on a solve this equation by finding the eigenvalues λ that

satisfy det(A − λI) = 0. It is simple exercise (see Problem Sheet 3) to show that this

equation reduces to the characteristic equation

λn + anλ
n−1 + · · · a2λ + a1 = 0. (2.92)

For n real, distinct solutions λ1, · · · , λn, n linearly independent solutions of (2.91) are

given by by 


eλ1t eλ2t · · · eλnt

λ1e
λ1t λ2e

λ2t · · · λne
λnt

...
...

λn−1
1 eλ1t λn−1

2 eλ2t · · · λn−1
n eλnt




The corresponding solutions of (2.90) are just eλ1t, · · · , eλnt.

Of course there is a far easier way of deriving these results for the (2.90). We just

try a solution of the form eλt and substitute into (2.90) to get the equation (2.92) as we

would do for the n = 2 case. The solutions are then eλit for distinct eigenvalues. How-

ever, it is hopefully illuminating to see how these results can be found by specialising

from the matrix methods discussed earlier.

Example 2.21. Find the general solution of

d4x

dt4
+

d3x

dt3
− 7

d2x

dt2
− dx

dt
+ 6x = 0.

Hence, find the solution that satisfies the initial conditions

x(0) = 1,
dx

dt
(0) = 0,

d2x

dt2
(0) = −2,

d3x

dt3
(0) = −1.
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The characteristic equation is λ4 + λ3 − 7λ2 + 6 = 0, with roots λ = 1,−1, 2,−3.

Hence the general solution is

x(t) = c1e
t + c2e

−t + c3e
2t + c4e

−3t.

The solution to the initial value problem is given by the choice of the ci such that

satisfies

c1 + c2 + c3 + c4 = 1

c1 − c2 + 2c3 − 3c4 = 0

c1 + c2 + 4c3 + 9c4 = −2

c1 − c2 + 8c3 − 27c4 = −1,

which we solve to give

c1 =
11

8
, c2 =

5

12
, c3 = −2

3
, c4 = −1

8
.

Thus the solution is

x(t) =
11

8
et +

5

12
e−t − 2

3
e2t − 1

8
e−3t.

Repeated eigenvalues: If real λ is repeated m times, we just take eλt, teλt, · · · , tm−1eλt

as solutions. See Problem Sheet 4.

Complex eigenvalues: If a root λ = α + iβ is complex, we get 2 real solutions by

taking the real and imaginary parts of eλt. i.e. two solutions are given by eαt cos βt

and eαt sin(βt).

2.4.4 Inhomogeneous linear n’th order ODES - variation of parameters

We now return to the linear inhomogeneous equation (2.88), which we can write in the

form

d

dt




x1

x2

...

xn


 =




x2

x3

...

−a1(t)x1 − a2(t)x2 · · · − an(t)xn


 +




0

0
...

b(t)


 . (2.93)

If we have a FSS y(1), · · · , y(n), we can immediately write down a particular solution

of the system (2.93) using the variation of parameters method as

xp(t) = Y (t)

∫ t

t0

Y −1(τ)b(τ)dτ (2.94)
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where Y (t) is the fundamental matrix given by given (2.89), and b is the vector

b(t) =




0

0
...

b(t)


 .

The particular solution xp(t) is just given by the 1st component of this vector.

Formula (2.94) is a rather formal result for general n, but simplifies and becomes

a practical method when n = 2. The starting point is the formula for the inverse of a

2× 2 matrix:

If A =

(
a b

c d

)
, then A−1 =

1

det(A)

(
d −b

−c a.

)
(2.95)

Thus we have

Y −1 =
1

W (y(1), y(2))

(
ẏ(2) −y(2)

−ẏ(1) y(1)

)
, and Y −1b =

b

W (y(1), y(2))

(
−y(2)

y(1)

)

where the Wronskian is given by W (y(1), y(2)) = y(1)ẏ(2) − ẏ(1)y(2). Thus we arrive at

the formula

xp(t) =

∫ t

t0

y(1)(τ)y(2)(t)− y(1)(t)y(2)(τ)

W (y(1)(τ), y(2)(τ))
b(τ) dτ. (2.96)

Example 2.22. Use the method of variation of parameters to find a particular solution

of the equation

d2x

dt2
− dx

dt
− 2x = 2e−t

First, we must find a FSS. The characteristic eqn is λ2−λ− 2 = (λ− 2)(λ+1) = 0

with roots λ = 2,−1. Thus a FSS is y(1)(t) = e2t, y(2)(t) = e−t. From above, a

particular solution is given (with the arbitrary choice t0 = 0) by

x(t) = c1(t)y
(1)(t) + c2(t)y

(2)(t),

c1(t) = −
∫ t

0

y(2)(τ)

W (y(1)(τ), y(2)(τ))
2e−τ dτ,

c2(t) =

∫ t

0

y(1)(τ)

W (y(1)(τ), y(2)(τ))
2e−τ dτ.

The Wronskian is given by

W (y(1)(τ), y(2)(τ)) = et(−1− 2) = −3et

and so

c1(t) =

∫ t

0

2

3
e−3tdτ = −2

9
(e−3t − 1)

c2(t) = −
∫ t

0

2

3
dτ = −2

3
t.
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Thus the solution is

x(t) =
2

9
e2t − 2

9
e−t(1 + 3t).

Note that this solution is not unique, −2
3
te−t is another particular solution (that we

could obtain more simply by the method of ‘undetermined coefficients’ that we discuss

in Section 3). In fact we can always add arbitrary constants to c1 and c2 obtained

from (2.96) and still obtain a particular integral. Put another way we can in general

obtain c1 and c2 from the indefinite integrals. Thus the final statement of the method

of variation of parameters for n = 2, is that a particular solution is given by

x(t) = c1(t)y
(1)(t) + c2(t)y

(2)(t), with

c1(t) = −
∫

y(2)(t)

W (y(1)(t), y(2)(t))
b(t) dt,

c2(t) =

∫
y(1)(t)

W (y(1)(t), y(2)(t))
b(t) dt.

Example 2.23. Find the general solution of

y′′ + y = tan x. (2.97)

A fundamental system of y′′ + y = 0 is given by y(1)(x) = cos x and y(2)(x) = sin x.

The Wronskian is W = 1. We find

c1(x) = −
∫

sin2 x

cos x
dx =

∫
(cos x− sec x)dx (2.98)

c2(x) =

∫
sin x dx (2.99)

In computing c1 we encounter the integral
∫

sec x dx - slightly tricky, but standard with

the substitution t = tan(x/2). The answer is

c1(x) = sin x− ln(sec x + tan x) (2.100)

The integration for c2 is easier:

c2(x) = − cos x (2.101)

The general solution of (2.97) is therefore

y(x) = A cos x + B sin x− ln(sec x + tan x) · cos x. (2.102)


