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3 Solvable 2nd order ODEs

3.1 General remarks

So far, we have developed aspects of a general theory of systems of ODEs, which we

have then specialised to higher order ODES. Most of the results we have obtained have

been for linear systems or linear higher order ODES, first homogeneous and then inho-

mogeneous. In this section, we will specialise one step further to consider specifically

2nd order ODEs, i.e., equations of the form

y′′ = f(x, y, y′). (3.1)

The theory of second order ODEs is an extensive and highly developed part of math-

ematics, not least because of its numerous applications in the physical sciences. For

example, Newton told us, with impressive foresight, that the radial motion of the space

shuttle is governed by the equation

d2r

dt2
= −MG

r2
, (3.2)

where M is the mass of the earth and G is the gravitational constant. As another

sample, a vibrating spring of mass m obeys the equation

m
d2x

dt2
+ γ

dx

dt
+ kx = F (t),

where γ is a damping coefficient, k the spring constant, and F (t) the applied force.

In the previous chapter, we have developed an arsenal of techniques, and shown

how some of them specialise to 2nd order equations; most importantly, we have shown

how the method of variation of parameters gives a practical method of solving linear

inhomogeneous 2nd order equations. In this section, we shall try not to repeat ourselves,

but consider instead a range of new techniques that work best specifically for 2nd order

ODEs.

First of all though let us indeed repeat ourselves once, and consider the specialisa-

tion of Picard’s Theorem to the initial value problem

d2y

dx2
= f(x, y, y′), y(x0) = α, y′(x0) = β. (3.3)

Theorem 3.1. Suppose f : R3 → R is continuous in some cube |x− x0| ≤ a, |y−α| ≤
b, |y′ − β| ≤ c and that the partial derivatives ∂f

∂y
and ∂f

∂y′ are also continuous there.

Then there is some interval |x − x0| ≤ h ≤ a in which the initial value problem (3.3)

has a unique solution.

As very elementary example, consider the simple harmonic oscillator problem

y′′ = −y. (3.4)
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The function f(x, y, y′) = −y is clearly continuous in x, y, y′ and the conditions of

Picard’s Theorem are met. You may recall (or simply check) that both sinx and cos x

solve this equation. More generally, the superposition

y(x) = c1 cos x + c2 sin x, (3.5)

where c1 and c2 are two arbitrary constants, also solves (3.4). The constants, and hence

the solution, are determined uniquely if we specify

y(x0) = α, y′(x0) = β. (3.6)

Now we shall go on to consider the range of promised new techniques that are most

useful for 2nd order systems.

3.2 Reduction of order

Sometimes a second order equation can be reduced to a first order equation and can

then hopefully be solved:

3.2.1 Equations that do not depend on y

For equations of the form

y′′ = f(x, y′) (3.7)

we define z = y′. Then y′′ = z′ and the equations becomes first order:

z′ = f(x, z). (3.8)

Example 3.2. Find the general solution of y′′ + 2y′ = e−x.

Solution: Letting z = y′, we have z′ + 2z = e−x, which is linear and can be solved by

the integrating factor e2x, to give

z = e−x + Ae−2x.

Integrating once more gives the general solution

y = −e−x + Be−2x + C.

3.2.2 Equations that do not depend on x

Consider equations of the form

y′′ = f(y, y′) (3.9)

In that case, let z = y′ and regard z as a function of y. Then

y′′ =
d

dx
(
dy

dx
) =

dz

dx
=

dz

dy

dy

dx
= z

dz

dy
. (3.10)
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Hence equation (3.9) becomes

z
dz

dy
= f(y, z) (3.11)

which is again of first order.

Example 3.3. Find the general solution of

yy′′ + (y′)2 = 0 (3.12)

Solution: Letting z = y′ gives

yz
dz

dy
+ z2 = 0 (3.13)

which is separable and solved by

z =
A

y
(3.14)

for some constant A. Recalling that z =
dy

dx
and integrating once again we obtain the

general solution of (3.12):

1

2
y2 = Ax + B. (3.15)

3.2.3 The general linear homogeneous equation

Consider the equation

y′′ + a(x)y′ + b(x)y = 0.

Suppose we know one solution u(x) of this equation. Then letting y = uw, we obtain

y′ = u′w + uw′, y′′ = u′′w + 2u′w′ + uw′′.

Substituting into the equation, we obtain

u′′w + 2u′w′ + uw′′ + a(x)(u′w + uw′) + b(x)uw = 0.

Rearranging, gives

(u′′ + a(x)u′ + b(x)u)w + uw′′ + (a(x)u + 2u′)w′ = 0.

The first term is zero, and the 2nd term gives

uw′′ + (a(x)u + 2u′)w′ = 0.

Writing z = w′ as above, we then have a first order ODE

u z′ + (a(x) + 2u′)z = 0,

which is linear and can be solved by an integrating factor. So, in principle, we can find

the 2nd solution y(x) = u(x)w(x).



F1.3YT2/YF3 32

Example 3.4. One solution of y′′ − 2αy′ + α2y = 0 is y(x) = eαx. Use the method of

reduction of order to show that the general solution is given by y(x) = Aeαx + Bxeαx.

Solution: Letting, y(x) = eαxw(x), we have y′ = u′w + uw′, y′′ = u′′w + 2u′w′ + uw′′

and so substituting into the equation gives

2u′w′ + uw′′ − 2αuw′ = 0,

which gives w′′ = 0 (since u′ = αu). Integrating twice (we don’t really need the z = w′

substitution for this trivial case) gives w = C + Dx. Hence, the 2nd solution is of the

form y(x) = (C + Dx)eαx, and the general solution is as specified.

Example 3.5. One solution of x2y′′− (x2 + 2x)y′ + (x + 2)y = 0 is y(x) = x. Use the

method of reduction of order to find a 2nd solution and hence write down the general

solution.

Solution: Letting y = xw, we get y′ = w +xw′, y′′ = (2w′+xw′′). Substituting into the

equation gives w′′−w′ = 0, which we can solve by letting z = w′, such that z′− z = 0.

The solution of this equation is z = Aex. Integrating again gives w = Aex + B. Thus

a 2nd solution is y = x(Aex + B). The general solution is therefore

y(x) = Cx + Dxex.

3.3 Euler equations (L. Euler, 1707-1783)

These are equations of the form

x2 d2y

dx2
+ a1x

dy

dx
+ a0y = 0 (3.16)

where a0 and a1 are constants. Remarkably, this equation can be transformed into a

linear ODE with constant coefficients by writing it in terms of the variable u = ln x.

Then

dy

dx
=

dy

du

du

dx
=

1

x

dy

du
(3.17)

and

d2y

dx2
=

d

dx

(
1

x

dy

du

)
= − 1

x2

dy

du
+

1

x

d

dx

dy

du
(3.18)

= − 1

x2

dy

du
+

1

x

du

dx

d2y

du2
= − 1

x2

dy

du
+

1

x2

d2y

du2
(3.19)

Hence, we have

x
dy

dx
=

dy

du
, x2 dy

dx
=

d2y

du2
− dy

du
.

The equation (3.16) becomes

d2y

du2
+ (a1 − 1)

dy

du
+ a0y = 0, (3.20)

which has constant coefficients, as promised.
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Example 3.6. Find a fundamental set of solutions of

x2 d2y

dx2
+ 2x

dy

dx
+ y = 0. (3.21)

Solution: In terms of the variable u = ln x the equation becomes

d2y

du2
+

dy

du
+ y = 0, (3.22)

which we can solve with the techniques of the previous section. The characteristic

equation is

λ2 + λ + 1 = 0 (3.23)

with solutions λ1 = −1
2

+
√

3
2

i and λ2 = −1
2
−

√
3

2
i. Hence a fundamental system of

(3.22) is

y(1) = e−
u
2 cos(

√
3

2
u), y(2) = e−

u
2 sin(

√
3

2
u). (3.24)

Transforming back to x we obtain a fundamental system for (3.16):

y(1)(x) = x−
1
2 cos(

√
3

2
ln x), y(2)(x) = x−

1
2 sin(

√
3

2
ln x). (3.25)

3.4 Method of undetermined coefficients

The method of variation of parameters works in principle for any linear 2nd order ODE

of the form

d2x

dt2
+ a2(t)

dx

dt
+ . . . + a1(t)x = b(t) (3.26)

as well as for higher order ODEs and general linear inhomogeneous systems.

When a1 and a2 are constants, and b(t) is a polynomial, exp, sin or cos, there is a

simpler method to obtain a particular solution that you have met in previous courses,

and which we here call the method of undetermined coefficients. The idea is to

choose a particular solution that has a ‘similar form’ to b(t).. The following table gives

recipes involving unknown coefficients which one can determine by substituting into

the equation. There is no deep reason for these recipes other than that they work. In

the table I have abbreviated homogeneous equation by HE.
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b(t) particular solution

b0 + b1t + ...bntn c0 + c1t + ...cntn

eλt eλt is not a solution of HE ⇒ try ceλt

eλt is a solution of HE ⇒ try ct exp(λt)

eλt and teλt solutions of HE ⇒ try ct2 exp(λt)

sin(ωt) or cos(ωt) sin(ωt), cos(ωt) are not solutions of the HE

⇒ try c1 sin(ωt) + c2 cos(ωt)

sin(ωt), cos(ωt) are solutions of the HE

⇒ try c1t sin(ωt) + c2t cos(ωt)

Table 2

To illustrate the recipes given in the table, we consider some examples, beginning

with the polynomial case.

ÿ + y = t2. (3.27)

We try

yp(t) = c0 + c1t + c2t
2, (3.28)

and find by inserting into (3.27)

(2c2 + c0) + c1t + c2t
2 = t2 (3.29)

Comparing coefficients yields

c2 = 1, c1 = 0, c0 = −2 (3.30)

so that

yp(t) = t2 − 2. (3.31)

Continuing with the exponential case, consider

d2x

dt2
− dx

dt
− 2x = 2e−t (3.32)
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We have already found a particular solution of this equation using the method of

variation of parameters. Let us repeat the exercise using the current method of un-

determined coefficients. The roots of the characteristic polynomial are λ = −1 and

λ = 2. Thus the table tells us to try

xp(t) = cte−t.

Substituting into the equation, we find

c = −2

3
.

Thus, a particular solution is xp(t) = −2
3
te−t. This is the same result as before, but

you can see that the method of undetermined coefficients is somewhat simpler in this

case.

Finally we turn to the recipe for the oscillatory case f(t) = cos ωt given in the

last row of table 2. Suppose we want to solve

ÿ + a1ẏ + a0y = cos(ωt). (3.33)

This equation is that of the damped, driven, simple harmonic oscillator (if you didn’t

take the 2nd year Oscillations and Waves course don’t worry, it doesn’t matter). We

could just use the recipe from the table, but it perhaps interesting to consider how it

arises from the exponential case. Since cos ωt is the real part of exp(iωt) we could try

to solve

ÿ + a1ẏ + a0y = eiωt. (3.34)

first and then take the real part of the solution we obtain. This turns out to be an

efficient method. Suppose that iω is not a solution of the characteristic equation. Then

try y(t) = C exp(iωt). Inserting into (3.34) yields

Ceiωt(−ω2 + ia1ω + a0) = eiωt. (3.35)

Dividing by exp(iωt) and solving for C we find

C =
1

−ω2 + ia1ω + a0

=
eiφ√

(a0 − ω2)2 + a2
1ω

2
(3.36)

where

tan φ =
−a1ω

a0 − ω2
(3.37)

Taking the real part of y(t) = C exp(iωt) we therfore find the solution

yp(t) =
1√

(a0 − ω2)2 + a2
1ω

2
cos(ωt + φ). (3.38)
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Since cos(ωt + φ) = cos φ cos(ωt)− sin φ sin(ωt) this solution can also be written as

yp(t) =
cos φ√

(a0 − ω2)2 + a2
1ω

2
cos(ωt)− sin φ√

(a0 − ω2)2 + a2
1ω

2
sin(ωt) (3.39)

which is of the form given in the last row of table 2. You can read of the coefficients

c1 and c2 - note that they depend on the frequency ω! One can repeat this exercise in

the case that iω is a solution of the characteristic equation (try it!).

In summary, in the cases when the coefficients a2(t), a1(t) in (3.32) are independent

of t, and b(t) is one of the forms given in Table 2, it usually easier to use the method

of undetermined coefficients. Otherwise we must resort to the more general method of

variation of parameters.


