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4 Laplace transforms

4.1 Definition and basic properties

The Laplace transform is a useful tool for solving differential equations, in particular

initial value problems. It also provides an example of integral transforms, which play

an important role in various branches of mathematics. It is named after Pierre-Simon

Laplace (1749-1827).

Definition 4.1. Let f : [0,∞) → R. We define the Laplace transform of f as

f̄(s) =

∫ ∞

0

f(t)e−stdt. (4.1)

Sometimes we write L[f(t)] for f̄ .

Note that the integral defining the Laplace transform converges for s > s0 provided

|f(t)| ≤ Kes0t for some constant K.

4.1.1 Examples

(i) Let f(t) ≡ 1. Then

f̄(s) =

∫ ∞

0

e−stdt =
1

s
. (4.2)

(ii) Let f(t) = eαt. Then

f̄(s) =

∫ ∞

0

e−(s−α)tdt =
1

s− α
(4.3)

for s > α.

(iii) Let f(t) = sin(αt). Then

f̄(s) =

∫ ∞

0

sin(αt)e−stdt = Im

∫ ∞

0

eiαte−stdt

= Im

∫ ∞

0

e−(s−iα)tdt = Im
1

s− iα
=

α

s2 + α2
. (4.4)

Similarly one shows that if f(t) = cos(αt) then f̄(s) =
s

s2 + α2
.

(iv) If f(t) = t then f̄(s) =
1

s2
. You should be able to prove (by induction) that if

f(t) = tn then f̄(s) =
n!

sn+1

4.1.2 Simple properties of Laplace transforms

It is easy to check that the Laplace transform is linear in the sense that

L[f1(t) + f2(t)] = L[f1(t)] + L[f2(t)] and L[αf(t)] = αL[f(t)]. (4.5)



F1.3YT2/YF3 38

For us it is particularly important to work out the Laplace transform of the derivative

of a function:

L[f ′(t)] =

∫ ∞

0

f ′(t)e−stdt = f(t)e−st|t=∞t=0 + s

∫ ∞

0

f(t)e−stdt

and hence

L[f ′(t)] = sf̄(s)− f(0). (4.6)

It follows that

L[f ′′(t)] = sL[f ′](s)− f ′(0) = s2f̄(s)− sf(0)− f ′(0), (4.7)

and, by induction,

L[f (n)(t)] = snL[f ]− sn−1f(0)− sn−2f ′(0)...− f (n−1)(0). (4.8)

4.2 Solution of initial value problems

Consider the initial value problem

y′′ − 3y′ + 2y = e3t, y(0) = 1, y′(0) = 0. (4.9)

Taking Laplace transforms we obtain

s2ȳ(s)− sy(0)− y′(0)− 3(sȳ(s)− y(0)) + 2ȳ(s) =
1

s− 3
. (4.10)

Inserting the initial values and re-arranging terms yields

(s2 − 3s + 2)ȳ(s) =
1

s− 3
+ s− 3 (4.11)

and hence

ȳ(s) =
s2 − 6s + 10

(s− 1)(s− 2)(s− 3)
. (4.12)

Our next goal is to invert the Laplace transform, i.e. to find the function y(t) whose

Laplace transform is (4.12). To achieve this we write the right hand side of (4.12) in

terms of partial fractions

s2 − 6s + 10

(s− 1)(s− 2)(s− 3)
=

A

s− 1
+

B

s− 2
+

C

s− 3
. (4.13)

Then

s2 − 6s + 10 = A(s− 2)(s− 3) + B(s− 1)(s− 3) + C(s− 1)(s− 2). (4.14)
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Setting in turn s = 1, s = 2 and s = 3 we find

A =
5

2
, B = −2, C =

1

2
. (4.15)

Thus

ȳ(s) =
5

2

1

(s− 1)
− 2

1

(s− 2)
+

1

2

1

(s− 3)
. (4.16)

Now we find y(t) by comparing (4.16) with (4.3). Using the linearity of the Laplace

transform you can check that

y(t) =
5

2
et − 2e2t +

1

2
e3t (4.17)

has the Laplace transform (4.16). One can show that that the Laplace transform

of a function is (essentially) unique. It is thus possible to invert Laplace transforms

by “guessing” or “inspection”. There is a more systematic method based on contour

integrals, but in many applications the method of inspection is the quickest. It is the

one we will use in this course.

To sum up, the three steps in solving a differential equation using the method of

Laplace transfroms are:

1. Apply the Laplace transform to the differential equation for y(t).

2. Solve the resulting algebraic equation for ȳ(s).

3. Invert the Laplace transform to find y(t).

Why do this when we already have two ways of computing a particular solution to

ODEs of the type considered above? Firstly, y(s) is given by the solution to a simple

algebraic problem rather a diffferential equation. Secondly, this technique gives us the

solution to the initial value problem directly; we don’t need to find a general solution in

the fom y(x) = yp(x) + c1y
(1)(x) + c2y

(2)(x) and then find c1 and c2 that give y(0) = α,

y′(0) = β.

Of the three steps mentioned, the last step is often the trickiest. We therefore

devote a special subsection to it.

4.3 Inverting Laplace transforms

Finding the inverse Laplace transform of ȳ(s) by inspection is sometimes facilitated by

expanding ȳ(s) in partial fractions. The example in the previous section contained

the simplest sort of partial fraction. The following example is designed to remind you

of some possible additional complications, such as repeated factors.
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Example 4.2. Find y(t) when ȳ(s) =
2s2 + 2s + 1

s2(s2 + 1)
.

Solution: Remember that the theory of partial fractions allows us to rewrite proper

rational functions (functions that are the ratio of two polynomials in which the degree

of the denominator is strictly less than the degree of the numerator). Such a function

can be rewritten as the the sum of proper rational functions; the denominators of the

partial fractions are the irreducible factors of the denominator of the original function.

In the present case, we let

2s2 + 2s + 1

s2(s2 + 1)
=

As + B

s2
+

Cs + D

s2 + 1

and multiply by s2(s2 + 1) to obtain

2s2 + 2s + 1 = As(s2 + 1) + B(s2 + 1) + (Cs + D)s2

= B + As + (B + D)s2 + (A + C)s3. (4.18)

Now compare coefficients of powers of s:

s0 : B = 1

s1 : A = 2

s2 : B + D = 2 ⇒ D = 1

s3 : A + C = 0 ⇒ C = −2 (4.19)

Thus

ȳ(s) =
2

s
+

1

s2
− 2

s

s2 + 1
+

1

s2 + 1
(4.20)

and hence

y(t) = 2 + t− 2 cos t + sin t (4.21)

A second important tool is provided by the following

Lemma 4.3. Let g(t) = ectf(t). Then ḡ(s) = f̄(s− c).

Proof : This is a simple computation:

ḡ(s) =

∫ ∞

0

e−(s−c)tf(t)dt = f̄(s− c). (4.22)

The following example illustrates this result:

L[t] =
1

s2
⇒ L[te2t] =

1

(s− 2)2

L[cos(2t)] =
s

s2 + 4
⇒ L[et cos(2t)] =

(s− 1)

(s− 1)2 + 4
(4.23)
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More importantly we can use the lemma (4.3) to invert Laplace transforms:

Example: Find y(t) when (i) ȳ(s) =
1

s2 + 2s + 3
(ii) ȳ(s) =

1

s(s2 + 2s + 3)
.

(i) Since ȳ(s) =
1

(s + 1)2 + 2
=

1√
2

√
2

(s + 1)2 + 2
we deduce y(t) = 1√

2
e−t sin(

√
2t)

(ii) Now use

1

s(s2 + 2s + 3)
=

1

3s
− 1

3

s + 2

(s2 + 2s + 3)
(by partial fractions)

=
1

3s
− 1

3

s + 1

(s + 1)2 + 2
− 1

3
√

2

√
2

(s + 1)2 + 2
.

Thus we deduce

y(t) =
1

3
− 1

3
e−t cos(

√
2t)− 1

3
√

2
e−t sin(

√
2t).

4.4 ODE’s involving discontinuous functions

Let me start by presenting you with two 2nd order ODEs with direct physical meaning:

m
d2x

dt2
+ γ

dx

dt
+ kx = F (t).

This is the equation of a vibrating spring system, where m is the mass, γ the damping

coefficient, k the spring constant, and F (t) the applied force.

L
d2I

dt2
+ R

dI

dt
+

1

C
I =

dV

dt
.

This is the equation for the current I in an electric circuit with inductance L, resistance

R and capicitance C. V is the applied voltage.

In both of these cases the inhomogeneous term on the right-hand-side represents

an external applied force. In engineering, physics, and electronics one is unfortunately

often interested in discontinous forces, that is, ones that you turn on by flicking a

switch, or ones that you apply instantaneously by hitting your system with a hammer.

In this section we shall see how to use Laplace transforms to tackle ODEs that involve

such discontinuous functions.

4.4.1 The Step Function

The function defined by

uc(t) =

{
0 if t < c

1 if t ≥ c
(4.24)

is called the unit step function or Heaviside function (named after Oliver Heaviside,

1859-1925).
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c

uc(t)

t

The step function is useful in describing situations where an external effect (a force,

a voltage) is suddenly switched on. Suppose for example that an external force f(t)

acting on a spring is switched on at t = c. The force experienced by the spring is

F (t) =

{
0 if t < c

f(t) if t ≥ c
(4.25)

In terms of the step function we can simply write

F (t) = uc(t)f(t). (4.26)

Similarly, if an external force is switched off at t = c, i.e.

F (t) =

{
f(t) if t < c

0 if t ≥ c
(4.27)

we can express the resulting function in terms of the step function

F (t) = (1− uc(t))f(t). (4.28)

Since step functions arise naturally in a number of applications, we would like to be

able to compute Laplace transforms of functions like (4.26) and (4.28). The following

lemma is useful for that purpose:

Lemma 4.4. L[uc(t)f(t− c)] = e−csf̄(s).

Proof : This follows again by direct computation.

L[uc(t)f(t− c)] =

∫ ∞

0

uc(t)f(t− c)e−stdt =

∫ ∞

c

f(t− c)e−stdt (4.29)

Now change variables to τ = t− c. Then

L[uc(t)f(t− c)] =

∫ ∞

0

f(τ)e−s(τ+c)dτ = e−cs

∫ ∞

0

f(τ)e−sτdτ = e−csf̄(s). (4.30)

Corollary 4.5. L[uc(t)] = e−cs

s
.

In order to illustrate the application of the lemma to situations like (4.26) and

(4.28) consider the following examples:

(i) Find the Laplace transform of

y(t) =

{
0 if 0 ≤ t < 1

t if t ≥ 1
(4.31)
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We rewrite y(t) as

y(t) = u1(t) t = u1(t)(t− 1) + u1(t). (4.32)

Now we can apply Lemma (4.4) to the first term and its corollary to the second to find

that

ȳ(s) = e−s

(
1

s2
+

1

s

)
. (4.33)

(ii) If ȳ(s) =
e−2s

s3
, find y(t).

Recall L[t2] =
2

s3
and hence write ȳ(s) as e−2sL[ t2

2
]. Then deduce from Lemma

(4.4) that

y(t) = u2(t)
1

2
(t− 2)2

.

(iii) Solve y′′ + 2y′ + y = f(t), y(0) = 1, y′(0) = 0, where

f(t) =

{
0 if 0 ≤ t < 3

t− 3 if t ≥ 3

We note that f(t) = u3(t)(t − 3) and take the Laplace transform of the equation.

Using the given initial data we find

(s2 + 2s + 1)ȳ(s)− s− 2 =
e−3s

s2

⇔ ȳ(s) =
s + 2

(s + 1)2
+

e−3s

s2(s + 1)2
(4.34)

Using

s + 2

(s + 1)2
=

(s + 1) + 1

(s + 1)2
=

1

s + 1
+

1

(s + 1)2
(4.35)

and the partial fraction expansion

1

s2(s + 1)2
= −2

s
+

1

s2
+

2

(s + 1)
+

1

(s + 1)2
(4.36)

we have

ȳ(s) =
1

s + 1
+

1

(s + 1)2
+ e−3s

(
−2

s
+

1

s2
+

2

(s + 1)
+

1

(s + 1)2

)

=
1

s + 1
+

1

(s + 1)2
+ e−3sL[−2 + t + 2e−t + te−t] (4.37)

and deduce from Lemma (4.4)

y(t) = e−t + te−t + u3(t)(−2 + (t− 3) + 2e−(t−3) + (t− 3)e−(t−3))

= e−t(1 + t) + u3(t)(−5 + t + (t− 1)e−(t−3)). (4.38)
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4.4.2 The Dirac delta function

Consider the situation where a mass is subjected to force f(t). The impulse given to

the mass is by definition

I(t) =

∫ ∞

−∞
f(t)dt.

Often, we are interested in physical situations in which a large force is applied for a

short time, for example when we hit a nail with a hammer. Let us suppose that a force

is given by the function

∆ε(t) =




1
ε

for − ε
2
≤ t ≤ ε

2

0 for |t| > ε
2

ε/2−ε/2 t

1/ε

∆ε(t)

Clearly, the impulse I(t) =
∫∞
−∞∆ε(t) dt due to this function is always equal to 1,

independent of ε. The limit of ε→ 0 of this function has a special name:

Definition 4.6. We define the Dirac delta function as:

δ(t) = lim
ε→0

∆ε(t).

The function δ(t) is named after the English physicist Paul Maurice Adrien Dirac

who lived 1902-1984. (This is the first time that this course enters the twentieth

century!) The key properties of the Dirac delta function δ(t − t0) are that it is zero

everywhere except at t0 where it is “infinite”, and that∫ ∞

−∞
δ(t− t0)dt = 1.

It’s clearly not your average function - in fact it is not a function at all in the normal

sense, but an example of a generalised function.

In terms of the delta function, the differential equation for a particle of mass m on

a spring with spring constant k immersed in a fluid with damping constant r which is

subject to an impulse P at time t = t0 is

m
dy2

dt2
+ r

dy

dt
+ ky = Pδ(t− t0). (4.39)
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In order to solve equations of this form using Laplace transforms, we need to know the

Laplace transform of the delta function. This will follow from the following important

theorem.

Theorem 4.7. For any continuous function f : R → R,∫ ∞

−∞
δ(t− t0)f(t) dt = f(t0).

Proof : Expressing the delta function in terms of the limit (4.6) we have∫ ∞

−∞
δ(t− t0)f(t) dt = = lim

ε→0

∫ ∞

−∞
∆ε(t− t0) f(t) dt

= lim
ε→0

1

ε

∫ t0+ ε
2

t0− ε
2

f(t) dt

= f(t0), (4.40)

where we used the continuity of f in the last line.

As an immediate consequence we have

Corollary 4.8. L[δ(t− t0)] = e−st0 provided t0 ≥ 0.

Proof :

L[δ(t− t0)] =

∫ ∞

0

e−stδ(t− t0) dt = e−st0

if t0 ≥ 0.

Note in particular that L[δ(t)] = 1. Armed with this corollary we can tackle the

following example.

Example 4.9. A mass of 1 kg oscillates on a spring with spring constant 1 N/m. Air

resistance may be ignored. The mass is initially at rest in equilibrium and impulses of

2N sec and 3N sec are applied instantaneously at times t = 0 and t = 1. Describe the

motion of the mass.

Solution: The equation of motion is

y′′ + y = 2δ(t) + 3δ(t− 1), y(0) = y′(0) = 0. (4.41)

Taking Laplace transforms

(s2 + 1)ȳ(s) = 2 + 3e−s (4.42)

so that

ȳ(s) = 2
1

s2 + 1
+ 3e−s 1

s2 + 1
= 2L[sin t] + 3e−sL[sin t]. (4.43)

Thus

y(t) = 2 sin t + 3u1(t) sin(t− 1) =

{
2 sin t if 0 ≤ t < 1

2 sin t + 3 sin(t− 1) if t ≥ 1
(4.44)
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One final useful property of the Dirac delta function comes from the observation

that we can write the ∆ε(t) in terms of the step function as

∆ε(t− c) =
1

ε
(uc−ε/2(t)− uc+ε/2(t)).

Using the property uc(t− α) = uc+α(t) we may rewrite this as

∆ε(t− c) =
1

ε
(uc(t + ε/2)− uc(t− ε/2)).

In the limit ε → 0 the right-hand-side is the derivative of the step function. Thus we

have

δ(t− c) = u′c(t). (4.45)

In fact this expression (4.45) is sometimes taken as a definition of the Dirac delta

function.

4.5 The convolution integral

Definition 4.10. Let f, g : [0,∞) → R. We define the convolution f∗g of the functions

f and g as the function

f ∗ g (t) =

∫ t

0

f(t− τ)g(τ)dτ. (4.46)

As an elementary example, consider f(t) = sin t and g(t) ≡ 1. Then

f ∗ g (t) =

∫ t

0

sin(t− τ)dτ =

∫ t

0

sin v dv = 1− cos t, (4.47)

where we have changed variables to v = t − τ . A basic property of the convolution is

that it is commutative:

Lemma 4.11. Let f, g : [0,∞) → R. Then

f ∗ g (t) = g ∗ f (t). (4.48)

Proof : Changing integration variables from τ to v = t − τ in the definition (4.46) we

find

f ∗ g (t) = −
∫ 0

t

f(v)g(t− v)dv =

∫ t

0

g(t− v)f(v)dv = g ∗ f (t) . (4.49)

A further remarkable property is the behaviour of the convolution under Laplace

transforms. It is summed up in the convolution theorem:

Theorem 4.12. (The Convolution Theorem) For two functions f and g

f ∗ g (s) = f̄(s)ḡ(s) (4.50)
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Thus the Laplace transform of a convolution of two function is the ordinary product

of the Laplace transforms!

Proof :

f ∗ g (s) =

∫ ∞

0

(f ∗ g)(t)e−stdt

=

∫ ∞

0

(∫ t

0

f(t− τ)g(τ)dτ

)
e−stdt

=

∫ ∞

0

g(τ)

(∫ ∞

τ

f(t− τ)e−stdt

)
dτ (4.51)

where we have changed the order of integration in the last step. Note that the limits

are such that we integrate over the region 0 ≤ τ ≤ t <∞.

Next we change variables in the inner integral from t to v = t− τ . Then

f ∗ g (s) =

∫ ∞

0

g(τ)

(∫ ∞

0

f(v)e−s(v+τ)dv

)
dτ

=

∫ ∞

0

f(v)e−svdv

∫ ∞

0

g(τ)e−sτdτ

= f̄(s)ḡ(s) (4.52)

This theorem is useful in a number of ways. For us, its prime use is in inverting

Laplace transforms.

Example 4.13. Find y(t) when ȳ(s) =
6

s4(s2 + 1)
.

Solution: It is useful to think of ȳ(s) as the product of f̄(s) = 6/s4 and ḡ(s) = 1/(s2+1),

for which we have f(t) = t3 and g(t) = sin(t). Thus, by the convolution theorem we

have

y(t) =

∫ t

0

τ 3 sin(t− τ)dτ = t3 + 6 sin(t)− 6t.

You can check this by using partial fractions

6

s4(s2 + 1)
=

A

s
+

B

s2
+

C

s3
+

D

s4
+

E + Fs

s2 + 1
= · · · = 6

s4
+

6

s2 + 1
− 6

s2
.

However, you can see that the convolution theorem is somewhat easier in this case.

The convolution theorem is also useful for obtaining integral expressions for the

solution of initial value problems, such as

y′′(t) + y(t) = f(t), y(0) = y′(0) = 0. (4.53)

Taking Laplace transforms

s2ȳ(s) + ȳ(s) = f̄(s) (4.54)
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we deduce

ȳ(s) = f̄(s)
1

s2 + 1
= L[f(t)]L[sin t]. (4.55)

From the convolution theorem we deduce

y(t) = (f ∗ sin)(t) =

∫ t

0

f(t− τ) sin τdτ. (4.56)

This a convenient form of writing down a particular solution of the equation (4.53) for

general f(t).

4.6 Linear Systems of ODEs

Taking the Laplace transform changes a linear system of ODEs into a set of simulta-

neous equations.

Example 4.14. Solve the initial value problem

ẋ(t) = Ax(t), A =

(
1 −3

−2 2

)
, x(0) =

(
0

5

)
.

Solution:Writing the equations

ẋ1(t) = x1(t)− 3x2(t)

ẋ2(t) = −2x1(t) + 2x2(t)

we may take the Laplace transform to give

sx̄1(s)− x1(0) = x̄1(s)− 3x̄2(s)

sx̄2(s)− x2(0) = −2x̄1(s) + 2x̄2(s)

i.e.,

(s− 1)x̄1(s) + 3x̄2(s) = 0 (1)

2x̄1(s) + (s− 2)x̄2(s) = 5 (2).

(2)× (s− 1)− 2× (1) gives [(s− 1)(s− 2)− 6]x̄2(s) = 5(s− 1), i.e.,

x̄2(s) =
5(s− 1)

s2 − 3s− 4
=

5(s− 1)

(s− 4)(s + 1)
=

3

s− 4
+

2

s + 1
.

Hence x2(t) = 3e4t + 2e−t.

(1)× (s− 2)− (2)× 3 gives [(s− 1)(s− 2)− 6]x̄1(s) = −15. i.e.

x̄1(s) =
−15

(s− 4)(s + 1)
=

−3

s− 4
+

3

s + 1
.

Hence, x1(t) = −3e4t + 3e−t.
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Example 4.15. Solve the system

ẋ1(t) = −x1(t) + 5x2(t), x1(0) = 2

ẋ2(t) = −x1(t) + 3x2(t), x2(0) = 1

Solution: Taking Laplace transforms gives

sx̄1(s)− x1(0) = −x̄1(s) + 5x̄2(s)

sx̄2(s)− x2(0) = −x̄1(s) + 3x̄2(s)

i.e.,

(s + 1)x̄1(s)− 5x̄2(s) = 2 (1)

x̄1(s) + (s− 3)x̄2(s) = 1 (2).

(2)× (s + 1)− (1) gives [(s + 1)(s− 3) + 5]x̄2(s) = s + 1− 2, i.e.,

x̄2(s) =
(s− 1)

(s− 1)2 + 1
.

Hence x2(t) = et cos(t).

(1)× (s− 3) + (2)× 5 gives [(s + 1)(s− 3) + 5]x̄1(s) = 2(s− 3) + 5. i.e.

x̄1(s) =
2s− 1

(s− 1)2 + 1
= 2

s− 1

(s− 1)2 + 1
+

1

(s− 1)2 + 1
.

Hence, x1(t) = 2et cos(t) + et sin(t).


