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5 Boundary Value Problems

5.1 General Comments

Many of the lectures so far have been concerned with the initial value problem

L[y] = f(x), y(x0) = α, y′(x0) = β, (5.1)

where L is the differential operator

L[y] =
d2y

dx2
+ a1(x)

dy

dx
+ a0(x)y. (5.2)

From Picard’s’ theorem we know that, if a1 and a0 are smooth everywhere, then a

unique solution of (5.1) exists everywhere. We have also developed an arsenal of meth-

ods for finding that solution.

In this section of the course we look at boundary value problems, where we solve

a differential equation subject to conditions imposed at two different points x = a and

x = b. The most general boundary value problem we will consider is

L[y] = f(x), Ba[y] = 0, Bb[y] = 0, (5.3)

where we have used the abbreviation

Ba[y] = α1y(a) + β1y
′(a) and Bb[y] = α2y(b) + β2y

′(b). (5.4)

Choosing, for example, β1 = β2 = 0 and α1 = α2 = 1 we obtain the condition that y

vanishes at a and b. This boundary condition arises physically for example if we study

the shape of a rope which is fixed at two points a and b. Choosing α1 = α2 = 0 and

β1 = β2 = 1 we obtain y′(a) = y′(b) = 0. The general conditions we impose at a and b

involve both y and y′.
Unlike initial value problems, boundary value problems do not always have

solutions, as the following example illustrates. Suppose we try to solve

y′′ + y = f(x), y(0) = y(π) = 0. (5.5)

Multiplying the equation by sin x and integrating yields∫ π

0

f(x) sin x dx =

∫ π

0

y′′(x) sin x dx +

∫ π

0

y(x) sin x dx

= y′(x) sin x|π0 −
∫ π

0

y′(x) cos x dx +

∫ π

0

y(x) sin x dx

= −y(x) cos x|π0 −
∫ π

0

y(x) sin x dx +

∫ π

0

y(x) sin x dx (5.6)

= 0. (5.7)

Thus a necessary condition for (5.5) to have a solution is∫ π

0

f(x) sin x dx = 0 (5.8)
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This is not satisfied, for example, if f(x) = x.

Before, we present a general method for boundary value problems, let us first recall

some facts about linearly independent functions and Wronskians. Two functions f and

t are said to be linearly dependent on an interval I if there exist 2 constants k1 and

k2, both non-zero, such that

k1f(t) + k2g(t) = 0 (5.9)

for all t ∈ I. The functions are linearly independent if they are not linearly de-

pendent - equivalently (5.9) holds for all t ∈ I only if k1 = k2 = 0. Note that

linear dependence implies that the two functions are proportional, i.e., we can write

f(t) = λg(t) for a constant λ. Now consider the 2nd order linear homogeneous ODE

L[y] = 0. It follows from Lemma 2.18, that two solutions y(1) and y(2) are linearly

independent and hence form a fundamental solution set if and only if the Wronskian

W (y(1), y(2)) 6= 0 at one value of t, and hence all values of t.

5.2 Green’s functions

After this revision of some of the necessary tools, we shall now explain how to find solu-

tions to boundary value problems in the cases where they exist. Our main tool will be

Green’s functions, named after the English mathematician George Green (1793-1841).

A Green’s function is constructed out of two special choices of linearly independent

solutions y(1) and y(2) of the homogeneous equation

L[y] = 0. (5.10)

More precisely, let y(1) be the unique solution of the initial value problem

L[y] = 0, y(a) = β1, y′(a) = −α1 (5.11)

and y(2) be the unique solution of

L[y] = 0, y(b) = β2, y′(b) = −α2. (5.12)

These solutions thus satisfy

Ba[y
(1)] = 0 and Bb[y

(2)] = 0, (5.13)

where we use the notation (6.47). In fact y(1) and y(2) are essentially the only solutions

satisfying the boundary conditions at, respectively, a and b:

Lemma 5.1. A function u satisfies

L[u] = 0 and Ba[u] = 0 (5.14)

if and only if u = λy(1) for some real number λ
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Proof : Consider

Ba[u] = α1u(a) + β1u
′(a) = −y′

1(a)u(a) + y(1)(a)u′(a) = W (y(1), u)(a).(5.15)

Hence, Ba[u] = 0 ⇔ W (y(1)(a), u(a)) = 0. W (y(1)(a), u(a)) = 0 is in turn ⇔ y(1) =

λu.

Clearly one can similarly prove that any solution u of L[u] = 0 and Bb[u] = 0 must

be a multiple of y(2). It might of course happen that y(1) and y(2) are dependent. The

following simple check follows directly from the fact that Ba[y
(2)] = W (y(1), y(2)).

Corollary 5.2. The solutions y(1) and y(2) are linearly independent if and only if

Ba(y
(2)) 6= 0.

For our construction of the Green’s function, the starting point is two solutions y(1)

and y(2) of L[y] = 0, which obey Ba[y
(1)] = 0 = Bb[y

(2)] and are linearly independent.

The next ingredient we require is a particular solution of the homogeneous equation

L[y] = f. (5.16)

This is a problem we solved in section 2.5.2 using the method of variation of parameters.

The particular solution constructed there is of the form

yp(x) = c1(x)y(1)(x) + c2(x)y(2)(x) (5.17)

with

c1(x) = −
∫ x

a

y(2)(s)f(s)

W (y(1), y(2))(s)
ds

c2(x) =

∫ x

a

y(1)(s)f(s)

W (y(1), y(2))(s)
ds. (5.18)

Note, that we have deliberately chosen the lower limit if the integral to be a. Hence,

we have the particular solution

yp(x) =

∫ x

a

(
y(1)(s)y(2)(x)− y(1)(x)y(2)(s)

)
f(s)

W (y(1), y(2))(s)
ds (5.19)

with the property yp(a) = 0. The next step is to differentiate to obtain

y′
p(x) =

y(1)(x)f(x)

W (y(1), y(2))(x)
y(2)(x) +

∫ x

a

y(1)(s)f(s)

W (y(1), y(2))(s)
ds y(2)′(x)

− y(2)(x)f(x)

W (y(1), y(2))(x)
y(1)(x)−

∫ x

a

y(2)(s)f(s)

W (y(1), y(2))(s)
ds y(1)′(x)

=

∫ x

a

(y(1)(s)y(2)′(x)− y(1)′(x)y(2)(s))f(s)

W (y(1), y(2))(s)
ds (5.20)

It follows that yp(a) = y′
p(a) = 0 and hence it follows trivially that

Ba[yp] = 0. (5.21)
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Thus we have a managed to find a particular solution that satisfies one boundary

condition. On the other hand

Bb[yp] =

∫ b

a

(y(1)(s)Bb[y
(2)]−Bb[y

(1)]y(2)(s))f(s)

W (y(1), y(2))(s)
ds

= −Bb[y
(1)]

∫ b

a

y(2)(s)f(s)

W (y(1), y(2))(s)
ds

6= 0. (5.22)

Thus yp satisfies the boundary condition at a but not at b. In order to satisfy the

boundary condition at b we thus turn to the most general solution of L[y] = f(x).

According to the theory of inhomogeneous differential equations this is

y(x) = Ay(1)(x) + By(2)(x) + yp(x). (5.23)

It thus remains to determine the constants A and B so that the boundary conditions

are satisfied. Since Ba[y
(1)] = Ba[yp] = 0 but Ba[y

(2)] 6= 0 we have

Ba[y] = 0 ⇒ B = 0. (5.24)

Similarly using Bb[y
(2)] = 0, Bb[y

(1)] 6= 0 and equation (5.22) we deduce

Bb[y] = 0 ⇒ A =

∫ b

a

y(2)(s)f(s)

W (y(1), y(2))(s)
ds. (5.25)

Inserting the values for A and B into (5.23) and using the form (5.19) for yp we obtain

the solution

y(x) =

∫ b

a

y(1)(x)y(2)(s)f(s)

W (y(1), y(2))(s)
ds +

∫ x

a

(y(1)(s)y(2)(x)− y(1)(x)y(2)(s))f(s)

W (y(1), y(2))(s)
ds

=

∫ x

a

y(1)(s)y(2)(x)f(s)

W (y(1), y(2))(s)
ds +

∫ b

x

y(1)(x)y(2)(s)f(s)

W (y(1), y(2))(s)
ds. (5.26)

To write this solution in a convenient form, define the Green’s function

G(x, s) =




y(1)(s)y(2)(x)

W (y(1), y(2))(s)
if a ≤ s ≤ x ≤ b

y(1)(x)y(2)(s)

W (y(1), y(2))(s)
if a ≤ x ≤ s ≤ b

(5.27)

so that (5.26) is

y(x) =

∫ b

a

G(x, s)f(s) ds. (5.28)

In our derivation, the Green’s function only appeared as a particularly convenient

way of writing a complicated formula. The importance of the Green’s function stems

from the fact that it is very easy to write down. All we need is fundamental system of

the homogeneous equation. Thus the quickest way of solving boundary problems like

(5.3)is to proceed in the following four steps:
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1. Find a fundamental system {u1, u2} of L[y] = 0.

2. By taking suitable linear combinations of u1 and u2 find

solutions y(1) and y(2) of L[y] = 0 satisfying Ba[y
(1)] = 0 and Bb[y

(2)] = 0

(often possible by inspection).

3. Define the Green’s function G according to (5.27).

4. Compute the solution according to (5.28).

To illustrate the properties and use of the Green’s function consider the following

examples.

Example 5.3. Find the Green’s function for the following boundary value problem

y′′(x) = f(x), y(0) = 0, y(1) = 0. (5.29)

Hence solve y′′(x) = x2 subject to the same boundary conditions.

Solution: The homogeneous equation y′′ = 0 has the fundamental solutions u1(x) = 1

and u2(x) = x. Take y1(x) = x and y(2)(x) = 1− x to satisfy the boundary conditions

B0[y] = y(0) = 0 and B1[y] = y(1) = 0 respectively. Then W (y(1), y(2))(x) = −1 and

therefore

G(x, s) =

{
s(x− 1) if 0 ≤ s ≤ x

x(s− 1) if x ≤ s ≤ 1
(5.30)

Thus solve (5.29) with

y(x) =

∫ x

0

sf(s) ds (x− 1) +

∫ 1

x

(s− 1)f(s) ds x. (5.31)

Inserting f(s) = s2 and carrying out the integration yields

y(x) =
1

12
(x4 − x). (5.32)

Example 5.4. Find the Green’s function for the boundary value problem

y′′(x) + y(x) = f(x), y(0) = 0, y′(1) = 0. (5.33)

Solution: The equation y′′ + y = 0 has the fundamental system u1(x) = sin x and

u2(x) = cos x. To satisfy B0[y] = y(0) = 0 take y(1)(x) = sin x and to satisfy B1[y] =

y′(1) = 0 take y(2)(x) = cos(x−1). Then check that W (y(1), y(2))(x) = − cos 1 and find

G(x, s) =



−sin s cos(x− 1)

cos 1
if 0 ≤ s ≤ x

−sin x cos(s− 1)

cos 1
if x ≤ s ≤ 1.

(5.34)
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Example 5.5. Consider the Green’s function found in Example 5.3. Show that

∂2G

∂x2
(x, s) = δ(x− s). (5.35)

Solution:We have

G(x, s) =

{
s(x− 1) if 0 ≤ s ≤ x

x(s− 1) if x ≤ s ≤ 1
(5.36)

Differentiating, we obtain

∂G

∂x
(x, s) =

{
s if 0 ≤ s ≤ x

s− 1 if x ≤ s ≤ 1
(5.37)

which we can write in terms of the Heaviside function as

∂G

∂x
(x, s) = s− 1 + us(x). (5.38)

Then using the definition of the Dirac delta function as the derivative of the Heaviside

function we obtain (5.35).

This result suggests a new way of understanding the fundamental formula (5.28).

According to that formula, the solution of (5.29) in terms of the Green’s function (5.30)

is

y(x) =

∫ 1

0

G(x, s)f(s) ds (5.39)

Differentiating twice with respect to x and using (5.35) we find immediately

d2y

dx2
=

∫ 1

0

∂2G

∂x2
(x, s)f(s)ds =

∫ 1

0

δ(s− x)f(s)ds = f(x), (5.40)

where we used theorem (4.7) about integrals involving the Dirac delta function.

The equation (5.35) also shows that we can view the Green’s function as the response

function to an instantaneous unit impulse at x = s. As we have seen, it then follows

immediately that (5.39) solves the inhomogeneous equation (5.29). This point of view

provides useful intuition when dealing with Green’s functions and is important in the

further development of the theory.

Example 5.6. Show that the condition∫ π

0

f(x) sin x dx = 0 (5.41)

is a sufficient condition to ensure that

y′′(x) + y(x) = f(x), y(0) = 0, y(π) = 0 (5.42)

has a solution.



F1.3YT2/YF3 56

Solution:We know from our discussion at the beginning of this section that (5.41)

is necessary for (5.42) to have a solution. In order to show that this condition is

also sufficient we construct an explicit solution of (5.42). Using again the fundamental

system u1(x) = sin x and u2(x) = cos x we find that sin x satisfies both B0[y] = y(0) = 0

and B1[y] = y(π) = 0. Thus y(1) = y(2) = sin x and we cannot construct a Green’s

function. In order to write down the solution, we therefore return to first principles.

Using the method of variation of the parameters we seek a particular solution of the

form

yp(x) = c1(x) sin x + c2(x) cos x. (5.43)

Inserting y(1)(x) = sin x and y(2)(x) = cos x into the formulae (5.18) we find (note that

the Wronskian is −1 in this case):

c1(x) =

∫ x

0

f(s) cos s ds

c2(x) = −
∫ x

0

f(s) sin s ds. (5.44)

Thus we have the particular solution

yp(x) =

∫ x

0

f(s) cos s ds sin x−
∫ x

0

f(s) sin s ds cos x (5.45)

Clearly yp(0) = 0, and

yp(π) = − cos π

∫ π

0

f(s) sin s ds (5.46)

which is zero by (5.41). Thus the condition (5.41) is sufficient to ensure that yp solves

the boundary value problem (5.42).


