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6 Sturm Liouville Problems

6.1 General comments

In this section, we consider homogeneous linear boundary value problems of the type

−(p(x)y′)′ + q(x)y = λy, Ba[y] = 0, Bb[y] = 0,

where p(x), q(x) : [a, b] → [0,∞) are continuous functions, p′(x) is continuous, and

λ ∈ R. As in the previous section we have boundary conditions of the form

Ba[y] = α1y(a) + β1y
′(a) and Bb[y] = α2y(b) + β2y

′(b). (6.47)

Such problems are called Sturm-Liouville problems and their solutions have a rich

structure as we shall see.

Example 6.1. The problem

−y′′(x) = λy(x), y(0) = y(L) = 0

is a simple example of a S-L problem corresponding to the choice p(x) = 1, q(x) = 0.

Before studying such equations in detail, we must first recall some details about

inner product spaces.

6.2 Inner product spaces

Let V be a vector space over the field R.

Definition 6.2. A map 〈 , 〉 : V × V → R is called an inner product on V if for all

u, v, w ∈ V and α ∈ R

(i) 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 if and only if v = 0;

(ii) 〈u, v〉 = 〈v, u〉;
(iii) 〈u + v, w〉 = 〈u,w〉+ 〈v, w〉;
(iv) 〈αu, v〉 = α〈u, v〉.
Example 6.3. If V = R

N, we have an inner product

〈




x1

...

xN


 ,




y1

...

yN


 〉 = x1y1 + x2y2 + · · ·+ xNyN .

Definition 6.4. An inner product space is a vector space equipped with an inner

product.

Example 6.5. Let V be the space of piecewise continuous functions [a, b] → R. Then

we can equip V with an inner product

〈f(x), g(x)〉 =

∫ b

a

f(x)g(x) dx.
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Definition 6.6. Let V be an inner product space. We say that

( i) u and v are orthogonal if 〈u, v〉 = 0;

( ii) S is an orthogonal set of vectors in V if 〈u, v〉 = 0 for all u, v ∈ S with u 6= v.

Lemma 6.7. Let {u1, . . . , un} be an orthogonal set of non-zero vectors in an inner

product space V , and suppose v = Σn
i=1ciui. Then ci =

〈v, ui〉
〈ui, ui〉 .

Proof We have that v = c1u1 + c2u2 + · · ·+ cnun.

Hence 〈v, ui〉 = 〈c1u1 + c2u2 + · · ·+ cnun, ui〉
= c1〈u1, ui〉+ c2〈u2, ui〉+ · · ·+ cn〈un, ui〉 since the inner product is linear

= ci〈ui, ui〉 since 〈uj, ui〉 = 0 whenever j 6= i.

Thus ci =
〈v, ui〉
〈ui, ui〉 .

Lemma 6.7 makes it very simple to express any vector as a combination of vectors

in an orthogonal basis (an orthogonal basis is an orthogonal set whose elements are

linearly independent and spanning).

Example 6.8. R2 has an orthogonal basis

{(
1

1

)
,

(
1

−1

)}
= {u1, u2}.

Suppose v =

(
1

2

)
= c1

(
1

1

)
+ c2

(
1

−1

)
.

Then c1 =
〈v, u1〉
〈u1, u1〉 =

3

2
and c2 =

〈v, u2〉
〈u2, u2〉 = −1

2

i.e.,

(
1

2

)
= 3

2

(
1

1

)
− 1

2

(
1

−1

)
.

More generally, the theorem tells how to compute coefficients if an expansion of a

particular element in V in terms of a particular orthogonal set (which needn’t be a

basis) exists.

Example 6.9. Let V be the function space of Example 6.5 and suppose that {f1, f2, · · · , fN}
is an orthogonal set in V (it certainly won’t be a basis of V if N is finite). Then sup-

posing that we can write

u = c1f1 + c2f2 + · · · cNfN

it then follows that

ci =
〈u, fi〉
〈fi, fi〉 =

∫ b

a
u(x)fi(x) dx∫ b

a
f 2

i (x) dx
.
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6.3 Eigenvalues, eigenfunctions and eigenfunction expansions

Let us now return to the Sturm-Liouville problem,

−(p(x)y′) ′ + q(x)y = λy, Ba[y] = Bb[y] = 0. (6.48)

We shall see that non-zero solutions to this problem exist for particular values of

λ which we call eigenvalues (in analogy to the eigenvalues associated with a finite-

dimensional matrix).

Example 6.10. Find all values of λ ∈ R for which

−y′′(x) = λy(x), y(0) = 0 = y(L) (6.49)

has non-zero solutions.

Solution: First note that (6.49) has the solution y(x) = 0 - we are interested in other

possible solutions. Let us examine the three possibilities λ < 0, λ = 0, λ > 0 separately.

Suppose λ < 0

Then we can let λ = −k2 for some k > 0 and the equation becomes

y′′ = k2y

which has the general solution y(x) = A cosh(kx) + B sinh(kx). The two boundary

conditions impose the further conditions

y(0) = 0 ⇔ A = 0

y(L) = 0 ⇔ B = 0.

The two equations imply that A = B = 0. Hence, y(x) = 0 is the only solution of

(6.49) when λ < 0. [Alternative solution: The general solution can be written in the

form y(x) = Aekx+Be−kx. The two boundary conditions impose the further conditions

y(0) = 0 ⇔ A + B = 0 =⇒ A = −B

y(L) = 0 ⇔ AekL + Be−kL = 0 =⇒ A = −Be−2kL

The two equations imply that A = B = 0. Hence, y(x) = 0 is the only solution of

(6.49) when λ < 0.]

Suppose λ = 0

The equation is then y′′ = 0 which has the general solution y(x) = Ax + B.

y(0) = 0 ⇔ B = 0

y(L) = 0 ⇔ AL = 0.

The two equations imply that A = B = 0. Hence, y(x) = 0 is the only solution of

(6.49) when λ = 0.

Suppose λ > 0
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Then we can let λ = k2 for some k > 0 and the equation becomes

y′′ = −k2y

which has the general solution y(x) = A cos(kx) + B sin(kx). The two boundary

conditions impose the further conditions

y(0) = 0 ⇔ A = 0

y(L) = 0 ⇔ B sin(kL) = 0 ⇔ B = 0 or sin(kL) = 0 ⇔ B = 0 or kL = nπ, n ∈ {1, 2, · · · }.

Hence, we find that (6.49) has non-zero solutions when k =
nπ

L
, i.e., λ =

nπ

L2
for

n ∈ {1, 2, · · · }. These non-zero solutions are

sin
(πx

L

)
, sin

(
2πx

L

)
, sin

(
3πx

L

)
, · · · .

Definition 6.11. The values of λ for which non-zero solutions of (6.48) exist are called

eigenvalues, the corresponding non-zero solutions are called eigenfunctions.

One of the key properties of eigenfunctions of (6.48) is that they are orthogonal. We

shall prove this result, but first a simple Lemma. Suppose we write the Sturm-Liouville

problem in the form

L[y] = λy, Ba[y] = 0 = Bb[y],

L[y] := −(py′)′ + qy, Ba[y] = α1y(a) + β1y
′(a), Bb[y] = α2y(b) + β2y

′(b).
(6.50)

then we have the following:

Lemma 6.12 (Lagrange’s identity). Let u and v be functions with continuous 2nd

derivatives on the interval [a, b] that satisfy the boundary conditions Ba[y] = 0 = Bb[y].

Then

〈L(u), v〉 = 〈u, L(v)〉, where 〈f, g〉 =

∫ b

a

f(x)g(x) dx.

Proof Using integration by parts, we have

−
∫ b

a

(p(x)u′(x))′v(x) dx = −p(x)u′(x)v(x)|ba +

∫ b

a

p(x)u′(x)v′(x)

= −p(x)u′(x)v(x)|ba + p(x)v′(x)u(x)|ba −
∫ b

a

(p(x)v′(x))′u(x) dx

= p(x) (v′(x)u(x)− u′(x)v(x)) |ba −
∫ b

a

(p(x)v′(x))′u(x) dx

= −
∫ b

a

(p(x)v′(x))′u(x) dx.
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The last step follows after writing v′(b) = −α2

β2

v(b), u′(b) = −α2

β2

u(b) and similar

expressions for v′(a) and u′(a). The four boundary terms cancel. The lemma then

follows.

Remark: Since 〈L(u), v〉 = 〈u, L(v)〉, the Sturm-Liouville problem (6.50) is called

a symmetric problem (or sometimes self-adjoint, although this term has a wider

meaning).

Lemma 6.13. Suppose that u and v are eigenfunctions of (6.50) corresponding to

distinct eigenvalues λ and µ. Then u and v are orthogonal, i.e.,

〈u, v〉 =

∫ b

a

u(x)v(x) dx = 0.

Proof: From Lagrange’s identity, We have

λ〈u, v〉 = 〈L(u), v〉 = 〈u, L(v)〉 = 〈u, v〉µ.

Hence, (λ− µ)〈u, v〉 = 0 and so 〈u, v〉 = 0.

Many more results can be proved about the eigenfunctions and eigenvalues of (6.48).

The key additional ones (which we state without proof) are:

(i) The eigenvalues are simple; that is to each eigenvalue there corresponds one linearly

independent eigenfunction.

(ii) The eigenvalues form an infinite sequence λ1 < λ2 < λ3 < · · · such that λn →∞
as n →∞.

(iii) Let {φn}, n ∈ {1, 2, · · · }, denote the corresponding set of eigenfunctions (which we

know to be orthogonal from the above Lemma). Let f and f ′ be piecewise continuous

functions [a, b] → R. Then the series

∞∑
n=1

cnφn(x), cn =
〈f, φn〉
〈φn, φn〉 (6.51)

converges to (f(x+) + f(x−))/2 for all x ∈ (a, b) (in particular, the series will converge

to the value f(x) if the function is continuous at x ∈ (a, b)).

(6.51) is know as an eigenfunction expansion of the function f .

Example 6.14. −y′′ = λy, y(0) = 0 = y(L).

This is the example we considered above. We have

Eigenvalues: π2

L2 ,
4π2

L2 , 9π2

L2 , · · ·
Eigenfunctions: sin(πx

L
), sin(2πx

L
), sin(3πx

L
), · · ·

Eigenfunction expansion: The eigenfunction expansion of a function f : [0, L] → R is
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∞∑
n=1

cn sin(
nπx

L
), cn =

〈f, sin(nπx/L)〉
〈sin(nπx/L), sin(nπx/L)〉 =

∫ L

0
f(x) sin(nπx/L) dx∫ L

0
sin2(nπx/L) dx

.

Let us compute the denominator of cn. We have∫ L

0

sin2(nπx/L) dx =
1

2

∫ L

0

(1− cos(2nπx/L)) dx =
L

2
,

and hence the eigenfunction expansion of f(x) is

∞∑
n=1

cn sin(
nπx

L
), cn =

2

L

∫ L

0

f(x) sin(nπx/L) dx.

This particular eigenfunction expansion of f(x) : [0, L] → R is called the Fourier

sine series. You will consider such Fourier series in detail in other courses - here they

appear as examples of eigenfunction expansions associated with the boundary value

problem of Example 6.14.

Example 6.15. Find the Fourier sine series of the function f(x) = x on the interval

[0, 1].

Solution:We have

cn = 2

∫ 1

0

x sin(nπx) dx = − 2x

nπ
cos(nπx)|10 +

∫ 1

0

2

nπ
cos(nπx) dx

=
2(−1)n+1

nπ
.

Thus the Fourier sine series of f(x) = x is

∞∑
n=1

2(−1)n+1

nπ
sin(nπx) =

2

π

(
sin(πx)− 1

2
sin(2πx) +

1

3
sin(3πx)− · · ·

)
.

Since, f(x) = x is continuous, we know that this series should converge to f(x) for

all x ∈ (0, 1) and this is indeed the case. Taking x = 1
2
, we can equate

1

2
=

2

π

(
1− 1

3
+

1

5
− · · ·

)

which gives us the rather nice series expansion of π:

π

4
= 1− 1

3
+

1

5
− · · ·

Note however, that the series converges to 0 at x = 1 /∈ (0, 1).

Example 6.16. Find the eigenvalues and eigenfunctions of the boundary value problem

−y′′(x) = λy(x), y′(0) = 0 = y′(L) (6.52)

and find the associated eigenfunction expansion of a function g : [0, L] → R, which is

piecewise continuous and for which g′ is piecewise continuous.
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Solution: To find the eigenvalues, let us exam the three possibilities λ < 0, λ = 0, λ > 0

separately.

Suppose λ < 0

Then we can let λ = −k2 for some k > 0 and the equation becomes

y′′ = k2y

which has the general solution y(x) = A cosh(kx) + B sinh(kx). The two boundary

conditions impose the further conditions

y′(0) = 0 ⇔ B = 0

y′(L) = 0 ⇔ A = 0, since k sinh(kL) 6= 0 for k > 0.

The two equations imply that A = B = 0. Hence, y(x) = 0 is the only solution of

(6.49) when λ < 0, and there are no eigenvalues λ < 0.

Suppose λ = 0

The equation is then y′′ = 0 which has the general solution y(x) = Ax + B.

y′(0) = 0 ⇔ A = 0

y′(L) = 0 ⇔ A = 0.

The two equations clearly imply that A = 0. However, B is arbitrary, and so λ = 0 is

an eigenvalue with corresponding eigenvector y(x) = 1 (since the differential equation

and boundary conditions are both linear, the eigenfunctions are only defined up to an

overall multiplicative constant; we choose y(x) = 1 for simplicity).

Suppose λ > 0

Then we can let λ = k2 for some k > 0 and the equation becomes

y′′ = −k2y

which has the general solution y(x) = A cos(kx) + B sin(kx). The two boundary

conditions impose the further conditions

y′(0) = 0 ⇔ B = 0

y′(L) = 0 ⇔ −Ak sin(kL) = 0 ⇔ A = 0 or sin(kL) = 0 ⇔ A = 0 or kL = nπ, n ∈ {1, 2, · · · }.

Hence, we find that (6.52) has eigenvalues

λ =
n2π2

L2
, n ∈ {0, 1, 2, · · · },

and corresponding eigenfunctions

cos
(nπx

L

)
, n ∈ {0, 1, 2, · · · }
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The eigenfunction expansion of g(x) is then

a0 +
∞∑

n=1

an cos(nπx/L), (6.53)

with

a0 =
〈g, 1〉
〈1, 1〉 =

1

L

∫ L

0

g(x) dx,

an>1 =
〈g, cos(nπx/L)〉

〈cos(nπx/L), cos(nπx/L)〉 =
2

L

∫ L

0

g(x) cos(nπx/L) dx.

Here, we have used the integral∫ L

0

cos2(nπx/L) dx =
1

2

∫ L

0

(1 + cos(2nπx/L) dx =
L

2
.

(6.53) is know as the Fourier cosine series expansion of g(x) : [0, L] → R.

Example 6.17. Determine all the eigenvalues and eigenfunctions of

−y′′(x) = λy(x), y(0) = 0, y(1) + y′(1) = 0 (6.54)

and find the associated eigenfunction expansion of a function f(x).

Solution: To find the eigenvalues, let us exam the three possibilities λ < 0, λ = 0, λ > 0

separately.

Suppose λ < 0

Then we can let λ = −k2 for some k > 0 and the equation becomes

y′′ = k2y

which has the general solution y(x) = A cosh(kx) + B sinh(kx). The two boundary

conditions impose the further conditions

y(0) = 0 ⇔ A = 0

y(1) + y′(1) = 0 ⇔ B(sinh(k) + k cosh(k)) = 0 ⇔ B = 0 or − k = tanh(k).

Thus we will only obtain an eigenvalue if there is a solution k > 0 of the equation

−k = tanh(k). It is sufficient to sketch the graphs of the two functions −k and tanh(k)

and see if there are any intersection points. Clearly, from Figure 6.3, there are no

intersection points k > 0 and hence no eigenvalues λ < 0.

Suppose λ = 0

The equation is then y′′ = 0 which has the general solution y(x) = Ax + B.

y(0) = 0 ⇔ B = 0

y(1) + y′(1) = 0 ⇔ 2A = 0.
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Figure 6.3: The graphs of −k and tanh(k)
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The two equations clearly imply that A = B = 0. Hence, there is no λ = 0 eigenvalue.

Suppose λ > 0

Then we can let λ = k2 for some k > 0 and the equation becomes

y′′ = −k2y

which has the general solution y(x) = A cos(kx) + B sin(kx). The two boundary

conditions impose the further conditions

y(0) = 0 ⇔ A = 0

y(1) + y′(1) = 0 ⇔ B(sin(k) + k cos(k)) = 0 ⇔ B = 0 or − k = tan(k).

Thus we will only obtain an eigenvalue if there is a solution k > 0 of the equation

−k = tan(k). Again, we can sketch the graphs of the two functions −k and tan(k)

and see if there are any intersection points. Clearly, from Figure 6.4, there are an

Figure 6.4: The graphs of −k and tan(k)
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infinite number of intersection points 0 < k1 < k2 < k3 < · · · , with π/2 < k1 < 3π/2,

3π/2 < k2 < 5π/2 etc. Thus we obtain an infinite number of eigenvalues

λ = k2
n, n ∈ {1, 2, 3, · · · },

with corresponding eigenfunctions sin(knx).

A function f(x) : [0, 1] → R that is piecewise continuous with piecewise continuous

derivative f ′(x) has an eigenfunction expansion

∞∑
n=1

cn sin(knx), cn =
〈f(x), sin(knx)〉

〈sin(knx), sin(knx)〉 .

The denominator of cn is given by∫ 1

0

sin2(knx) dx =
1

2

∫ 1

0

(1− cos(2knx)) dx =
1

2
− 1

4kn

sin(2knx)
∣∣∣1
0

=
1

2
− 1

4kn

sin(2knx) =
1

2

(
1− 1

kn

sin(knx) cos(knx)

)

=
1

2

(
1 + cos2(knx)

)
.

In the last step, we have used the fact that −kn = tan(kn). Thus we arrive at the

following eigenfunction expansion for f(x):

∞∑
n=1

cn sin(knx), cn =
2

1 + cos2(knx)

∫ 1

0

f(x) sin(knx) dx.


