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6 Sturm Liouville Problems

6.1 General comments

In this section, we consider homogeneous linear boundary value problems of the type

—(p(x)y') +q(x)y = Xy, Baly] =0, Byly] =0,

where p(z),q(x) : [a,b] — [0,00) are continuous functions, p’(x) is continuous, and
A € R. As in the previous section we have boundary conditions of the form

Baly] = any(a) + B1y/'(a) and  Byly] = azy(b) + Bay/ (b). (6.47)

Such problems are called Sturm-Liouville problems and their solutions have a rich
structure as we shall see.

Example 6.1. The problem

—y'(x) = My(z), y(0) =y(L)=0
is a simple example of a S-L problem corresponding to the choice p(z) =1, q(z) = 0.

Before studying such equations in detail, we must first recall some details about
inner product spaces.

6.2 Inner product spaces
Let V' be a vector space over the field R.

Definition 6.2. A map (, ): V xV — R is called an inner product on V if for all
u,v,w eV and v € R

(1) (v,v) >0 and (v,v) = 0 if and only if v = 0;

(“) <u7'U> = <U7u>;

(i) (u+v,w) = (u,w) + (v, w);

(v) {au,v) = alu,v).
Example 6.3. If V = RN, we have an inner product
T Y1
(1 : o ) = T1y1 + Tays + - + TNYN-
IN YN

Definition 6.4. An inner product space is a vector space equipped with an inner
product.

Example 6.5. Let V' be the space of piecewise continuous functions [a,b] — R. Then
we can equip V' with an inner product

(f(x),g(x»:/ f(x)g(z)dx.
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Definition 6.6. Let V' be an inner product space. We say that
(i) w and v are orthogonal if (u,v) = 0;
(i) S is an orthogonal set of vectors in V if (u,v) =0 for all u,v € S with u # v.

Lemma 6.7. Let {u,...,u,} be an orthogonal set of non-zero vectors in an inner
vV, Us

product space V', and suppose v = X7 c;iu;. Then ¢; = << Z>> .
Ujy Ug

Proof We have that v = cyuy + coug + - - - + c Uy,
Hence (v, u;) = (cruy + coug + -+ - + cpin, u;)
= c1{uq, u;) + coug, u;) + + -+ + ¢, {up, u;) since the inner product is linear
= ¢;(u;,u;) since (uj,w;) = 0 whenever j # i.
Thus ¢; = (o) :
<ui7 ul)
Lemma 6.7 makes it very simple to express any vector as a combination of vectors
in an orthogonal basis (an orthogonal basis is an orthogonal set whose elements are
linearly independent and spanning).

1 1
Example 6.8. R? has an orthogonal basis {( ) ) : ( ) )} = {u,us}.

g 1 1 n 1
uppose v = =c c .
pp 9 1 1 2 _q

3

Then ¢; = (v, 1)

(uy,uy) 2 (ug, us) 2

()50)()

More generally, the theorem tells how to compute coefficients if an expansion of a
particular element in V' in terms of a particular orthogonal set (which needn’t be a
basis) exists.

Example 6.9. Let V' be the function space of Example 6.5 and suppose that { f1, f2, -, fn}
is an orthogonal set in V' (it certainly won’t be a basis of V if N is finite). Then sup-
posing that we can write

u=-cifitefot+-oenfn

it then follows that

(w f) _ Jy u@) filw) do

Ci: =

(fis i) fab [ (x)dx
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6.3 Eigenvalues, eigenfunctions and eigenfunction expansions
Let us now return to the Sturm-Liouville problem,
—(p(2)y")" + q(x)y = Ay,  Buly] = Byly] = 0. (6.48)

We shall see that non-zero solutions to this problem exist for particular values of
A which we call eigenvalues (in analogy to the eigenvalues associated with a finite-
dimensional matrix).

Example 6.10. Find all values of A € R for which

—y"(z) = Ay(z), y(0) =0=y(L) (6.49)
has non-zero solutions.

Solution: First note that (6.49) has the solution y(z) = 0 - we are interested in other
possible solutions. Let us examine the three possibilities A < 0, A = 0, A > 0 separately.

Suppose A < 0

Then we can let A = —k? for some k > 0 and the equation becomes
y// — ka

which has the general solution y(z) = Acosh(kx) + Bsinh(kz). The two boundary
conditions impose the further conditions

y(0) = 0 A=0
y(L) = 0< B=0.
The two equations imply that A = B = 0. Hence, y(x) = 0 is the only solution of

(6.49) when A < 0. [Alternative solution: The general solution can be written in the
form y(z) = Aek® + Be~**. The two boundary conditions impose the further conditions

y(0) = 0 A+B=0 = A=-B
y(L) = 0o Ae"t + Be "l =0 — A= —Be %

The two equations imply that A = B = 0. Hence, y(z) = 0 is the only solution of
(6.49) when A < 0.]

Suppose A =0
The equation is then y” = 0 which has the general solution y(z) = Az + B.

y(0) = 0= B=0
y(L) = 0< AL=0.

The two equations imply that A = B = 0. Hence, y(z) = 0 is the only solution of
(6.49) when A = 0.

Suppose A > 0
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Then we can let A = k? for some k£ > 0 and the equation becomes
y// — _k,2y

which has the general solution y(z) = Acos(kz) + Bsin(kz). The two boundary
conditions impose the further conditions

y(0) = 0 A=0

y(L) = 0< Bsin(kL)=0< B=0 or sin(kL) =0 B=0 or kL=nm,ne{1,2,---

Hence, we find that (6.49) has non-zero solutions when k = n%, ie, A\ = % for
n € {1,2,---}. These non-zero solutions are

. (m:) . 2rx . 3rx
sin ) sin ) sin )

Definition 6.11. The values of A for which non-zero solutions of (6.48) exist are called
eigenvalues, the corresponding non-zero solutions are called eigenfunctions.

One of the key properties of eigenfunctions of (6.48) is that they are orthogonal. We
shall prove this result, but first a simple Lemma. Suppose we write the Sturm-Liouville
problem in the form

Lly) = Ay, Buly] = 0= By[y],

Lyl == =) + qy, Balyl = ary(a) + Biy'(a), Byly] = asy(b) + Bay/ (b). (6.50)

then we have the following:

Lemma 6.12 (Lagrange’s identity). Let u and v be functions with continuous 2nd
derivatives on the interval [a, b] that satisfy the boundary conditions B,[y] = 0 = By[y].
Then

(L(u),v) = (u, L(v)), where {f,g) = / f(2)g(z) de.

Proof Using integration by parts, we have

b b
- / (P (@) o(e)de = —ple) (@@’ + / pe)d (@) (2)

}.
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The last step follows after writing v'(b) = —%v(b)7 u'(b) = —%u(b) and similar
2 2

expressions for v'(a) and u'(a). The four boundary terms cancel. The lemma then
follows.

Remark: Since (L(u),v) = (u, L(v)), the Sturm-Liouville problem (6.50) is called
a symmetric problem (or sometimes self-adjoint, although this term has a wider
meaning).

Lemma 6.13. Suppose that w and v are eigenfunctions of (6.50) corresponding to
distinct eigenvalues A and p. Then uw and v are orthogonal, i.e.,

b
(u,v) = / u(z)v(z) dx = 0.
Proof: From Lagrange’s identity, We have

Mu,v) = (L(u),v) = (u, L(v)) = (u, v)p.
Hence, (A — p){u,v) =0 and so (u,v) = 0.

Many more results can be proved about the eigenfunctions and eigenvalues of (6.48).
The key additional ones (which we state without proof) are:

(i) The eigenvalues are simple; that is to each eigenvalue there corresponds one linearly
independent eigenfunction.

(ii)) The eigenvalues form an infinite sequence A\; < Ay < A3 < --- such that A, — oo
as n — oo.

(iii) Let {¢,}, n € {1,2,-- -}, denote the corresponding set of eigenfunctions (which we
know to be orthogonal from the above Lemma). Let f and f’ be piecewise continuous
functions [a,b] — R. Then the series

Z Cnn (),  Cp = éi’ CZS (6.51)

n=1

converges to (f(zy)+ f(x_))/2 for all x € (a,b) (in particular, the series will converge
to the value f(z) if the function is continuous at x € (a,b)).

(6.51) is know as an eigenfunction expansion of the function f.
Example 6.14. —y” = \y, y(0)=0=y(L).

This is the example we considered above. We have
a2 4n? 9
L2y L2 [2)

Eigenfunctions: sin(%2), sin(#£), sin(27%), - -

Eigenvalues:

Eigenfunction expansion: The eigenfunction expansion of a function f : [0, L] — R is
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¢, sin(22 c, = (f,sin(nmz/L)) fo )sin(nmx/L) dx
; n S0 ( L7 " (sin(nmz/L),sin(nwx/L)) fo SmQ(nﬂx/L)dg; :

Let us compute the denominator of ¢,. We have

1

Jngn%nwx/L)¢x::§jﬁLa,—coq2nwx/L»(h;:_§

)

and hence the eigenfunction expansion of f(x) is

ch sin(— mrx / f(z)sin(nmz/L) dz

This particular eigenfunction expansion of f(x) : [0, L] — R is called the Fourier
sine series. You will consider such Fourier series in detail in other courses - here they
appear as examples of eigenfunction expansions associated with the boundary value
problem of Example 6.14.

Example 6.15. Find the Fourier sine series of the function f(x) = x on the interval

[0, 1].
Solution: We have
> [Cwsminma e = 2 costumally+ [ 2 costunr)a
Cp = rsin(nrx)dr = —— cos(nmx — cos(nmz) dx
0 nmw 0 0 nm
B 2(_1)n+1
N nr

Thus the Fourier sine series of f(x) = x is
— 2(—1)"*! 2 1 1
Z sin(nrx) = — (sin(wx) b sin(2mx) + 3 sin(3rzx) — - - ) :

v
n=1

Since, f(x) = x is continuous, we know that this series should converge to f(z) for
all z € (0,1) and this is indeed the case. Taking x = 3, we can equate

1 2 . 1+1
2 T 3 5

which gives us the rather nice series expansion of 7:

Note however, that the series converges to 0 at z =1 ¢ (0,1).
Example 6.16. Find the eigenvalues and eigenfunctions of the boundary value problem
—y"(z) = My(z), ¢'(0)=0=1y'(L) (6.52)

and find the associated eigenfunction expansion of a function g : [0, L] — R, which is
piecewise continuous and for which ¢’ is piecewise continuous.
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Solution: To find the eigenvalues, let us exam the three possibilities A < 0, A =0, A > 0
separately.

Suppose A < 0

Then we can let A = —k? for some £ > 0 and the equation becomes
y// — ka

which has the general solution y(z) = Acosh(kxz) + Bsinh(kz). The two boundary
conditions impose the further conditions

J0) = 0= B=0
y(L) = 0& A=0, since ksinh(kL) #0 for k> 0.

The two equations imply that A = B = 0. Hence, y(z) = 0 is the only solution of
(6.49) when A < 0, and there are no eigenvalues A < 0.

Suppose A =0

The equation is then y” = 0 which has the general solution y(z) = Az + B.

y(0) = 0 A=0

y(L) = 0 A=0.
The two equations clearly imply that A = 0. However, B is arbitrary, and so A = 0 is
an eigenvalue with corresponding eigenvector y(x) = 1 (since the differential equation

and boundary conditions are both linear, the eigenfunctions are only defined up to an
overall multiplicative constant; we choose y(z) = 1 for simplicity).

Suppose A > 0

Then we can let A = k? for some k£ > 0 and the equation becomes
y// — kQ y

which has the general solution y(z) = Acos(kz) + Bsin(kx). The two boundary
conditions impose the further conditions

J(0) = 0 B=0
y(L) = 0& —Aksin(kL)=0< A=0 or sin(kL) =0 A=0 or kL =nm,n e {1,2,---}.

Hence, we find that (6.52) has eigenvalues

n’m?

)\:?, n€{0,1,2,~-},

and corresponding eigenfunctions

nmwx

COS<T>, ne{0,1,2,---}
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The eigenfunction expansion of g(x) is then

ap + il a, cos(nmz /L), (6.53)
with -
w = 02 [y
fin>1 (Cos(éi’;/olsl()tl:(jcs/(ijrlc/ll)) - % /OLg(x) cos(nmz/L) dr.

Here, we have used the integral

1

L L
/ cos*(nwx/L) dv = 5/ (1 + cos(2nmz/L) dx =
0 0

L
5"
(6.53) is know as the Fourier cosine series expansion of ¢g(z) : [0, L] — R.
Example 6.17. Determine all the eigenvalues and eigenfunctions of
—y"(x) = Ay(z), »(0)=0, y(1)+y(1)=0 (6.54)

and find the associated eigenfunction expansion of a function f(z).

Solution: To find the eigenvalues, let us exam the three possibilities A < 0, A =0, A > 0
separately.

Suppose A < 0

Then we can let A = —k? for some k > 0 and the equation becomes
y// — k2y

which has the general solution y(z) = Acosh(kx) + Bsinh(kz). The two boundary
conditions impose the further conditions

y(0) = 0 A=0
y(1)+4'(1) = 0< B(sinh(k) 4+ kcosh(k)) =0« B=0or — k= tanh(k).
Thus we will only obtain an eigenvalue if there is a solution & > 0 of the equation
—Fk = tanh(k). It is sufficient to sketch the graphs of the two functions —k and tanh(k)

and see if there are any intersection points. Clearly, from Figure 6.3, there are no
intersection points k£ > 0 and hence no eigenvalues A < 0.

Suppose A =0

The equation is then y” = 0 which has the general solution y(x) = Az + B.

y(0) = 0o B=0
y(1)+ /(1) = 0&24=0.
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Figure 6.3: The graphs of —k and tanh(k)

tanh(k)

The two equations clearly imply that A = B = 0. Hence, there is no A = 0 eigenvalue.

Suppose A > 0

Then we can let A = k2 for some k£ > 0 and the equation becomes
y// — _ k?2 y

which has the general solution y(z) = Acos(kx) + Bsin(kx). The two boundary
conditions impose the further conditions
y(0) = 0 A=0
y(1)+¢'(1) = 0« B(sin(k) + kcos(k)) =0« B =0 or — k = tan(k).
Thus we will only obtain an eigenvalue if there is a solution & > 0 of the equation

—k = tan(k). Again, we can sketch the graphs of the two functions —k and tan(k)
and see if there are any intersection points. Clearly, from Figure 6.4, there are an

Figure 6.4: The graphs of —k and tan(k)
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infinite number of intersection points 0 < ky < kg < k3 < -+, with 7/2 < k; < 37/2,
31/2 < ko < 57w/2 ete. Thus we obtain an infinite number of eigenvalues

A=kl ne{l,2,3---},

with corresponding eigenfunctions sin(k,x).
A function f(z) : [0,1] — R that is piecewise continuous with piecewise continuous
derivative f’(z) has an eigenfunction expansion

i e sin(kn), (f(z),sin(k,x))

= Gsin(knz), sin(kpz))

The denominator of ¢, is given by

/l'%k)d —*l/ul—wd% Vo =+ = L gin@ho)|
| sine)de = o | wt))dz = 5 — e sin(2hn)|
1 1 1 1
L sin(2ka) = = [1— —si
> I sin(2k,z) 5 ( o sin(k,x) cos(knm))
1
= 3 (1 + cos?(k,)) .

In the last step, we have used the fact that —k, = tan(k,). Thus we arrive at the
following eigenfunction expansion for f(z):

o0

9 1
ch sin(k,x), ¢, = HTW/O f(x)sin(k,z) dz.

n=1



