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7 Phase Planes

7.1 Introduction

As we have discussed in detail in Section 2, a system of N ODEs can be expressed as

ẋ(t) = F (t,x(t))

where

x : R → RN , x(t) =




x1(t)
...

xN(t)


 (7.1)

F : RN+1 → RN , F (t,x) =




F1(t, x1, · · · , xN)
...

FN(t, x1, · · · , xN)


 (7.2)

A system is called autonomous if it is of the form

ẋ(t) = F(x(t)) (7.3)

i.e., if there is no explicit t dependence on the right hand side.

Example 7.1. (i) ẋ(t) = t x(t) is not autonomous.

(ii) ẋ(t) = x2(t) is autonomous.

(iii) The equation ẍ(t) + ẋ(t) + sin (x(t)) = 0 can be expressed as the autonomous

system

ẋ1(t) = x2(t)

ẋ2(t) = − sin (x1(t))− x2(t).

where x(t) = x1(t).

If we assume that F is sufficiently smooth, then Picard’s theorem tells us that the

solution to the initial value problem

ẋ(t) = F(x(t)), x(t0) = x0 (7.4)

is unique.

Definition 7.2. The set of points in x(t) ∈ RN satisfying (7.4) is called the trajectory

for (7.4) passing through x0.



F1.3YT2/YF3 68

•

x2

x1

x

Physical Interpretation (N=2)

When N = 2, we tend to use the notation (x, y) instead of (x1, x2). So we have a

systems of autonomous equations of the form

ẋ(t) = f(x(t), y(t))

ẏ(t) = g(x(t), y(t))
(7.5)

An interpretation of these equations is that they specify the two components of the

velocity of a particle moving in the x − y plane. The particle’s velocity at the point

(x, y) is given by (f(x, y), g(x, y)).

Definition 7.3. The phase plane of (7.3) consists of RN with the trajectories of (7.3)

drawn through each point.

Example 7.4. The phase plane of (7.5) shows all possible paths which can be followed

by the particle for different starting positions. This might be of the form
y

x

The arrows indicate the direction of increasing t.

It is often possible to draw the phase plane for autonomous equations without solving

the equations completely, and then deduce the qualitative nature of of the solutions

from the phase plane.
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Definition 7.5. x0 ∈ RN is called an equilibrium point of (7.3) if F (x0) = 0.

If x0 is an equilibrium point of (7.3), x(t) ≡ x0 is a constant solution of (7.3). Hence

the trajectory of (7.3) through x0 is equal to {x0}; that is, the trajectory is the single

point x0.

The first step in finding the phase plane is to find all the equilibrium points.

Example 7.6. Find the phase plane of the equation ẋ(t) = x(t) (corresponding to the

case (N = 1, f(x) = x)

Solution: First, we note that 0 is the only equilibrium point. Then it follows that if

x > 0 we have ẋ > 0. Similarly if x < 0 we have ẋ < 0. The phase plane consists of

the set of possible trajectories in R and is of the form

•
0

Note that in this simple case we can write the solution exactly x(t) = x(0)et.

Example 7.7. Find the phase plane of the equation ẋ(t) = f(x(t)) where f has the

graph (N = 1)

x1 x2

Solution: The equilibrium points are x = x1 and x = x2

If x < x1, f(x) < 0 and so ẋ < 0. If x1 < x < x2, f(x) > 0 and so ẋ > 0. If

x > x2, f(x) < 0 and so ẋ < 0. Hence we have the phase plane

x1 x2
• •

and so we can deduce that solutions have graphs of the form
x

t

x1

x2
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Example 7.8. Find the phase plane of ẍ(t) = −x(t))

(This is the equation of the simple harmonic oscillator with general solution x(t) =

A cos(t)+B sin(t) - but we are interested in understanding the qualitative nature of the

solution.)

Solution: The equation may be written as the system

dx

dt
= y

dy

dt
= −x

The only equilibrium point is (x, y) = (0, 0).

We seek trajectories of the form y = y(x).

Then we must have

dy

dx
=

dy
dt
dx
dt

= −x

y

ie y dy = −xdx and so x2 + y2 = c

Hence the trajectories are circles centred on (0, 0) and the phase plane is

x

y

•

The fact that dx
dt

> 0 when y > 0 gives the direction of the arrows in this picture.

Since the trajectories are closed they correspond to periodic solutions of the form

x

y

t

x1

3

4 2

1

2

3

4

Example 7.9. Find the phase plane of ẍ(t) = −x3(t))
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Solution: The equation may be written as the system

dx

dt
= y

dy

dt
= −x3

Again the only equilibrium point is (x, y) = (0, 0).

Any trajectory of the form y = y(x) must satisfy

dy

dx
=

dy
dt
dx
dt

= −x3

y

ie ydy = −x3dx and so 1
2
y2 = −1

4
x4 + c

i.e. y2 = −1
2
x4 + c

Let us consider the trajectory through the point (0, a > 0). We have

y2 = −1

2
x4 + a2. (7.6)

As we increase x from 0, y2 and hence y will decrease until it reaches 0 at the point

when x = b := (2a2)1/4. The corresponding trajectory in the first quadrant is

x

y

(0,a)

(b,0)

The angles of intersection of the trajectory with the axes can be obtained by considering
dy
dx

when x = 0 and when y = 0.

The equation for the trajectory (7.6) is symmetric with respect to the x and y axes

(i.e., if (x, y) is a point in the trajectory, then (−x, y), (x,−y), (−x,−y) are also points

in the trajectory). Thus we obtain the full trajectory

(0, a) y

(b, 0)

x

(0,−a)

(−b, 0)
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Hence the phase plane is

x

y

and all solutions are periodic.

The pendulum equation

Consider the following diagram of forces:

x

mg

mg cos(x)
mg sin(x)

light rigid rod length `

particle of mass m

Considering the motion perpendicular to the rod, we have the pendulum equation

m ¨(`x) = −mg sin x or

ẍ = −k2 sin(x) where k2 =
g

l

Remark 7.10. If x is small, sin x ≈ x and the equation can be approximated by

ẍ = −k2x (7.7)

which is the simple harmonic oscillator equation.

Example 7.11. Find the phase plane of the pendulum equation equation ẍ = −k2 sin(x).

Solution: The pendulum equation may be written as the system

ẋ = y

ẏ = −k2 sin x

The equilibrium points are (x, y) = (nπ, 0) for n = 0,±1,±2,. . . corresponding to

equilibrium positions

n even n odd
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Any trajectory of the form y = y(x) must satisfy

dy

dx
=

dy
dt
dx
dt

= −k2 sin x

y

ie y dy = −k2 sin xdx and so

y2 = 2k2 cos x + c. (7.8)

Thus the trajectory passing through (0, a) where a > 0 has the equation

y2 = 2k2(cos(x)− 1) + a2 (7.9)

The function 2k2(cos(x)− 1) decreases from 0 to −4k2 as x increases from 0 to π. The

form of the trajectory will thus depend upon whether a2 < 4k2 , a2 > 4k2 a2 = 4k2,

and we consider theses cases separately.

a2 < 4k2

As x increases from 0 towards π, y2 decreases until it reaches y2 = 0 at a value of x

such that cos x = 2k2−a2

2k2 = 1− a2

2k2 .

The corresponding trajectory in the first quadrant is

x

y

(0, a)

(cos−1(1− a2/2k2), 0)

Since equation (7.9) for the trajectory is symmetric with respect to the x and y axes,

(ie if (x, y) ∈ T ⇒ (−x, y), (x,−y), (−x,−y) ∈ T )) the full trajectory is

x

y

(0, a)

(b, 0)

where b = cos−1(1 − a2/2k2). The corresponding solution is periodic - the pendulum

oscillates between x = ±b (like the simple harmonic oscillator).

a2 > 4k2

As x increases from 0 to π, y2 decreases fro a2 to a minimum value of a2 − 4k2 when

x = π. Hence we obtain the trajectory
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x

y

π

The gradient at x = π is obtained from dy
dx

= −k2 sin(π)/
√

a2 − 4k2 = 0. By symmetry

in x and y and 2π periodicity in x we obtain

x

y

These trajectories correspond to solutions where the pendulum describes complete rev-

olutions. (Every parents nightmare at the swing park!)

a2 = 4k2

Then (7.9) becomes y2 = 2k2(cos x + 1).

Hence as x → π , y → 0 , ie the trajectory approaches the equilibrium point (π, 0)

x

y

This trajectory corresponds to the pendulum starting from

and approaching

as t →∞.

By symmetry we obtain the trajectories
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Since all trajectories are periodic in x with period 2π we finally obtain the phase

plane

x

y

Hence we obtain the following graphs of solutions
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x

t

a2 < 4k2

t

x

a2 > 4k2

t

x

π

−π

a2 = 4k2

7.2 Phase Planes for Linear Systems

7.2.1 Types of Equilibrium Points

Consider

ẋ(t) = ax(t) + by(t)

ẏ(t) = cx(t) + dy(t)

which we can write in the form

ẋ(t) = Ax(t) (7.10)

with A =

(
a b

c d

)
.
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We have shown that if λ is an eigenvalue of A with corresponding eigenvector v,

then x(t) = eλtv is a solution of (7.10). Hence we can find the general solution of

(7.10) and so draw its phase plane. Clearly, (0, 0) is always an equilibrium point of

(7.10) and will appear in this phase plane.

In Section 2, we have discussed the different possibilities that occur for the eigen-

values λ1, λ2 of a real matrix A (we still assume A is real). Each of these possibilities

will give a different type of phase plane, and we consider them separately.

(a)λ1 < λ2 < 0 (i.e. eigenvalues negative and distinct).

The general solution of (7.10) is

x(t) = c1e
λ1tv1 + c2e

λ2tv2. (7.11)

First, note that any will solution will → (0, 0) as t →∞.

Suppose, we have c1 > 0, c2 = 0. Then the trajectory corresponding to this solution

will point along the ray in the direction of v1, with the arrow pointing towards the

origin. If c1 < 0, c2 = 0, the trajectory will point along the ray in the direction of

−v1, with the arrow pointing towards the origin. Similarly, if c1 = 0, c2 > 0 (< 0),

the trajectory will point along the ray in the direction of v2, (−v2), with the arrow

pointing towards the origin. The situation is

v1

v2

Now consider the trajectory corresponding to the general solution (7.11). Clearly

the corresponding trajectory will head into the equilibrium point (0, 0) as t →∞. For

t >> 0, the c2e
λ2tv2 term will dominate and so the direction of approach to (0, 0) will

be parallel to the direction of v2. Similarly, when t → −∞ the first term c1e
λ1tv1

dominates, and the direction of the trajectory will approach that of v1. The phase

plane will have the following form

v1

v2

In this case (0,0) is called a stable node.
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(b) 0 < λ1 < λ2 (ie eigenvalues positive and distinct).

The general solution is again given by (7.11). In this case all trajectories will move out

from the (0, 0) equilibrium point. At t →∞ the c2e
λ2tv2 term will dominate and so the

direction of any trajectory will approach that of v2.At t → −∞ the c1e
λ1tv1 term will

dominate and so the direction of any trajectory will approach that of v1. The phase

diagram will have the form

v1

v2

In this case (0, 0) is called an unstable node.

Example 7.12. Sketch the phase plane for the system

ẋ = −2x + y

ẏ = x− 2y

and hence determine the graphs of x and y as functions of t where x and y are the

solutions satisfying x(0) = 1, y(0) = 0.

Solution: The system may be written as

ẋ =

(
−2 1

1 −2

)
x = Ax

λ is an eigenvalue of A iff (−2− λ)2 − 1 = 0 ie λ + 2 = ±1 ie λ = −3, −1.

Hence (0, 0) is a stable node.

The eigenvector corresponding to λ = −3 is

(
−1

1

)
.

The eigenvector corresponding to λ = −1 is

(
1

1

)
.

Hence the general solution is x(t) = c1e
−3t

(
−1

1

)
+ c2e

−t

(
1

1

)
.

Thus the phase plane is
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(
1
−1

)

(
1
1

)

Graphs of solutions satisfying x(0) = 1, y(0) = 0 (ie solutions corresponding to

trajectory through (1, 0)) are

t

x

y

1

(c) λ1 < 0 < λ2 (eigenvalues real and of opposite sign).

The general solution is again given by (7.11).

If c1 = 0, the trajectory is outwards along the ray in the direction of c2v2. If If

c2 = 0, the trajectory is inwards along the ray in the direction of c1v1.

More generally, when t → ∞ the solution is dominated by c2e
λ2tv2, and, when

t → −∞ the solution is dominated by c1e
λ1tv1. Thus the phase plane is of the form

v1

v2

In this case (0, 0) is called a saddle point.

Example 7.13. Find the phase plane of

ẋ = x + y

ẏ = 4x + y

Solution:We may write this system as

ẋ =

(
1 1

4 1

)
x = Ax
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Then λ is an eigenvalue of A iff (1− λ)2 − 4 = 0 ie iff λ = −1, 3.

Hence (0, 0) is a saddle point.

Eigenvector corresponding to λ = −1 is

(
1

−2

)
.

Eigenvector corresponding to λ = 3 is

(
1

2

)
.

Thus general solution is x(t) = c1e
−t

(
1

−2

)
+ c2e

3t

(
1

2

)
.

Thus the phase plane is

y

x

(d) λ1 = λ2 = λ < 0 (eigenvalues real and equal).

(i) Let us first suppose that there is only one linearly independent eigenvector v corre-

sponding to λ. Then general solution is x(t) = c1e
λtv+c2e

λt(tv+w), where w satisfies

(A− λI)w = v.

If c2 = 0, we have a solution with a trajectory along the direction of c1v with

direction towards the origin.

The general solution will be dominated by c2e
λttv as t → ±∞. Hence, we know

that all trajectories approach (0, 0) as t →∞ in the direction of c2e
λttv. In fact there

are two possible ‘S-shaped’ behaviours of the phase plane depending on the relative

orientation of v and w.

v

or



F1.3YT2/YF3 81

v

The simplest way to work out which one, is to go back to the original system of

equation and consider ẋ = ax + by. If b > 0, then ẋ > 0 for x = 0, y >> 0, and we

must have the 1st S-like picture. If b < 0, then ẋ < 0 for x = 0, y >> 0, and we must

have the 2nd S-like picture.

(0, 0) is called a stable improper node in both cases.

(ii) If there are two linearly independent eigenvectors v1 and v2 corresponding to λ,

then the general solution is

y(x) = eλt(c1v1 + c2v2).

Trajectories are in-going rays, and the phase diagram is

which is called a stable star.

(e) If λ1 = λ2 = λ > 0 we obtain a similar phase diagram to the above, but with

|x(t)| → ∞ as t → ∞ and x(t) → (0, 0) as t → −∞. We find that (0, 0) is an

unstable improper node or unstable star depending on whether there one or two

linearly independent eigenvectors.

(f) Complex eigenvalues λ = α + iβ, λ∗ = α− iβ.

Suppose that the eigenvector corresponding to λ is v = u + iw.

The system of ODEs has two linearly independant real solutions obtained by taking

the real and imaginary parts of x(t) = eλtv. x(t) has components

x(t) = eλt(u1 + iw1) = R1e
λteiθ1 = R1e

αtei(βt+θ1)

y(t) = eλt(u2 + iw2) = R2e
λteiθ2 = R2e

αtei(βt+θ2)
(†)

where Ri =
√

u2
i + w2

i ; θi = tan−1

(
wi

ui

)
So taking real parts, we get the solution

x(t) = R1e
αt cos(βt + θ1)

y(t) = R2e
αt cos(βt + θ2)



F1.3YT2/YF3 82

Note, that these function have the ‘quasi’ periodicity

x(t +
2π

|β|) = e
2πα
|β| x(t)

y(t +
2π

|β|) = e
2πα
|β| y(t).

This means that when t → t + 2π/|β|, the radial direction of a point a trajectory is

maintained, but the distance from the origin changes by the factor e2πα/|β|.
Hence we find that that the trajectory is

(i) an outwards spiral if α > 0.

(ii) an inwards stable point if α < 0.

(iii) a periodic orbit if α = 0.

For these different cases the equilibrium point (0, 0) is referred as a

(i) unstable spiral point (α > 0)

x x

yy

or

(ii) stable spiral point (α < 0)

x x

yy

or

(iii) centre (α = 0)

x x

yy

or

To works out the clockwise or anticlockwise orientations of each of these possibilities,

we consider ẋ at (x, y) = (0, 1).

ẋ = ax + by = b at (0, 1). So if b > 0, our trajectories will be clockwise, and if b < 0

they are anticlockwise.
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Remark 7.14. If we take the imaginary part of eλtv we find the solution

x(t) = R1e
αt sin(βt + θ1)

y(t) = R2e
αt sin(βt + θ2)

This gives the same trajectories. There is nothing new. Either is sufficient to give all

trajectories.

Example 7.15. Find the phase plane of

ẋ = 3x− y

ẏ = 5x− y

Solution:We can write the system as

ẋ =

(
3 −1

5 −1

)
x = Ax

λ is an eigenvalue of A iff ∣∣∣∣∣ 3− λ −1

5 −1− λ

∣∣∣∣∣ = 0

ie (λ− 3)(λ + 1) + 5 = 0 ie λ2 − 2λ + 2 = 0 ie λ = 2±√4−8
2

= 1± i

Hence (0, 0) is an unstable spiral point . Note that direction of spiral is determined

by the fact that ẋ < 0 on the positive y axis (at (0, 1) for example). The spiral can

be elongated, and skewed with respect to the axes. A rough idea of the shape may be

gained by looking at dy
dx

at the intersects with the x and y axis. We have

dy

dx
=

ẏ

ẋ
=

5x− y

3x− y
.

Thus on the x axis (corresponding to y = 0 and x 6= 0) we have dy
dx

= 5
3
. On the y axis

(corresponding to x = 0 and y 6= 0) we have dy
dx

= 1. Thus, the phase plane is of the

form

x

y
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(g) λ1 = 0 (ie one eigenvalue = 0)

If v1 is the eigenvector corresponding to λ1, Av1 = 0. Hence x(t) = cv1 is a solution

of ẋ = Ax(t) for all c.

Hence cv1 is an equilibrium point for all c.

Also, A has det(A) = 0, is not invertible and its rows are multiples of each other.

This latter fact makes it possible to find equations of the trajectories in the form

y = ax + b.

Example 7.16. Find the phase plane for the system

ẋ = x− y

ẏ = 2x− 2y

Solution: Clearly

A =

(
1 −1

2 −2

)

has 0 determinant, and so 0 is an eigenvalue of A.

(1− λ)(−2− λ) + 2 = 0 ⇒ λ = 0, λ = −1.

(x, y) is an equilibrium point iff

x− y = 0

2x− 2y = 0

ie iff x = y

Thus x = y is a line of equilibrium points.

Also y = y(x) is a trajectory for the system iff

dy

dx
=

dy
dt
dx
dt

=
2x− 2y

x− y
= 2

ie iff y = 2x + c.

Hence we have the phase plane

x

y

The direction of the arrows comes from the observation that ẋ < 0 when y > x and

ẋ > 0 when y > x.
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7.2.2 Stability

Consider the autonomous system of equations

ẋ(t) = F(x(t)) (7.12)

Roughly speaking an equilibrium point x0 of (7.12) is stable if any solution which starts

close to x0 at t = 0 stays close to x0 for all t > 0.

Definition 7.17. x0 is a stable equilibrium point of (7.12) if for every ε > 0 there

exists a δ > 0 such that whenever x is a solution of (7.12) with |x(0) − x0| < δ then

|x(t)− x0| < ε for all t ≥ 0 (| | denotes distance in RN).

Clearly for linear systems

(i) stable nodes, stable improper nodes, stable stars, stable spiral points and centres

are stable equilibrium points.

(ii) unstable nodes, unstable improper nodes, unstable stars, unstable spiral points

and saddle points are unstable equilibrium points.

(iii) (0, 0) is a stable equilibrium point of ẋ(t) = Ax(t) iff real parts of all eigenvalues

of A are ≤ 0.

If x0 is a stable equilibrium point and x(0) is close to x0 it is not necessarily true that

lim
t→∞

x(t) = x0, e.g., if x0 is a centre.

Definition 7.18. x0 is an asymptotically stable solution of (7.12) if x0 is a stable

solution of (7.12) and there exists δ > 0 such that whenever x is a solution of (7.12)

with |x(0)− x0| < δ then lim
t→∞

x(t) = x0.

Clearly stable nodes, stable improper nodes, stable stars and stable spiral points

are asymptotically stable equilibrium points for linear systems. Centres are stable, but

not asymptotically stable.
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Summary of Stability Properties (detA 6= 0)

Eigenvalue Type Stability Lin. Thm?

(a) λ1 < λ2 < 0 stable node Asym. Stable X

(b) 0 < λ1 < λ2 unstable node unstable X

(c) λ1 = λ2 < 0 stable improper node or stable star Asym. Stable ×
λ1 = λ2 > 0 unstable improper node or unstable star Unstable ×

(d) λ1 < 0 < λ2 saddle point Unstable X

(e) λ1,2 = α± iβ

α < 0 stable spiral point Asym. Stable X
α > 0 unstable spiral point Unstable X

(f) λ1,2 = ±iβ centre Stable ×


