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8 Nonlinear Systems

8.1 Linearisation

Consider

ẋ(t) = f(x(t), y(t))

ẏ(t) = g(x(t), y(t))

}
(N)

where f and g are smooth functions such that f(0, 0) = 0 = g(0, 0) i.e. (0, 0) is an

equilibrium point.

We now obtain a good linear approximation to (N) close to (0, 0). Taking a Tay-

lor expansion we have

f(x, y) = f(0, 0) + x
∂f

∂x
(0, 0) + f

∂f

∂y
(0, 0)

+
1

2!

[
x2∂2f

∂x2
(0, 0) + 2xy

∂2f

∂x∂y
(0, 0) + y2∂2f

∂y2
(0, 0)

]
+ higher powers in x and y.

≈ x
∂f

∂x
(0, 0) + y

∂f

∂y
(0, 0) if x and y are small.

Similarly

g(x, y) ≈ x
∂g

∂x
(0, 0) + y

∂g

∂y
(0, 0) if x and y are small.

Hence for (x, y) close to (0, 0), (N) is closely approximated by the linear system

ẋ(t) = ∂f
∂x

(0, 0)x + ∂f
∂y

(0, 0)y

ẏ(t) = ∂g
∂x

(0, 0)x + ∂g
∂y

(0, 0)y


 (L)

(L) is called the linearised equation of (N).

It seems likely that solutions of (N) and solutions of (L) should behave similarly,

close to (0, 0).

In fact the following can be proved

Theorem 8.1. Linearisation Theorem

Let λ and µ be eigenvalues of(
∂f
∂x

(0, 0) ∂f
∂y

(0, 0)
∂g
∂x

(0, 0) ∂g
∂y

(0, 0)

)
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If Re(λ),Re(µ) 6= 0 and λ 6= µ, then (0, 0) is the same type of equilibrium point for

both (N) and (L).

(Possible types - stable/unstable node, stable/unstable spiral point, saddle point).

Remarks

(a) If Re(λ) or Re(µ) = 0 or if λ = µ we cannot use the above theorem.

(b) If λ = µ with λ, µ < 0, then (0, 0) is a stable improper node or stable star for

(L), but it may be either the same for (N) or become a stable spiral point.

If λ = µ with λ, µ > 0, then (0, 0) is a unstable improper node or unstable star

for (L), but may be either the same or an unstable spiral point for (N).

We can’t use the theorem to tell us anything about (N) in these cases.

The theorem can be extended, and it can be also be shown that the nature of an

equilibrium point (a, b) of the nonlinear system

ẋ(t) = f(x(t), y(t))

ẏ(t) = g(x(t), y(t))

}
(N)

is the same as the equilibrium point (0,0) of the linear system

ẋ(t) = ∂f
∂x

(a, b)x + ∂f
∂y

(a, b)y

ẏ(t) = ∂g
∂x

(a, b)x + ∂g
∂y

(a, b)y


 (L)

except when Re(λ) = 0 or Re(µ) = 0 or λ = µ.

(L) is called the linearised equation of (N) at (a, b). The phase plane of (L) close

to (0, 0) gives a good approximation to the phase plane of (N) close to (a, b).

Example 8.2. Find the equilibrium points and determine their nature for the system

ẋ(t) = 2y + xy

ẏ(t) = x + y

}
(N)

and hence plot a possible phase plane.
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Solution: (x, y) is an equilibrium point iff

2y + xy = 0 (1)

x + y = 0 (2)

(1) ⇐⇒ y(2 + x) = 0⇐⇒ y = 0 or x = −2

(2) ⇐⇒ x = −y

hence equilibrium points are (0, 0) and (−2, 2).

If f(x, y) = 2y + xy, ∂f
∂x

(x, y) = y and ∂f
∂y

(x, y) = 2 + x

If g(x, y) = x + y, ∂g
∂x

(x, y) = 1 and ∂g
∂y

(x, y) = 1.

Hence the linearised equation at (0, 0) is

ẋ =

(
0 2

1 1

)
x = Ax

λ is an eigenvalue of A iff −λ(1− λ)− 2 = 0. i.e. λ2 − λ− 2 = 0.

i.e. (λ − 2)(λ + 1) = 0, i.e. λ = −1, 2. The corresponding eigenvectors are

(
−2

1

)
,(

1

1

)
.

Hence (0, 0) is a saddlepoint for (L) and so is also a saddlepoint for (N).

The linearised equation at (−2, 2) is

ẋ =

(
2 0

1 1

)
x = Ax

Since A has eigenvalues 1, 2, (0, 0) is and unstable node for (L) and so (−2, 2) is an

unstable node for (N). Further rough information about the direction of lines can be

obtained from the following facts:

(0, 0) has eigenvectors

(
−2

1

)
and

(
1

1

)
with eigenvalues −1 and 2.

(−2, 2) has eigenvectors

(
1

1

)
and

(
0

1

)
with eigenvalues 2 and 1.
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A possible phase plane for (N) is

y

x

Example 8.3. Find the equilibrium points and determine their nature for the pendulum

equation

ẍ = − sin(x) (N)

Hence, plot a possible phase plane.

Solution: The corresponding system is

ẋ = y

ẏ = − sin(x) (L)

Equilibrium points are (nπ, 0) , n = 0,±1,±2, ...

If f(x, y) = y , ∂f
∂x

(x, y) = 0 , ∂f
∂y

(x, y) = 1

If g(x, y) = − sin(x) , ∂g
∂x

(x, y) = − cos(x) , ∂g
∂y

(x, y) = 0

Hence the linearised equation at (nπ, 0) is

ẋ =

(
0 1

− cos(nπ) 0

)
x = Ax

The eigenvalues of A satisfy λ2 = − cos(nπ) = (−1)n+1.

If n is odd, λ2 = 1, i.e. λ = −1, 1 (with corresponding eigenvectors

(
1

−1

)
,

(
1

1

)
),

and so (0, 0) is a saddle point for (L) and (nπ, 0) is a saddle point for (N).

If n is even, λ2 = −1, i.e. λ = −i, i. Thus (0, 0) is a centre for (L), but we can-

not conclude from the theorem that (nπ, 0) is a centre for (N).

We showed earlier, however, by considering the equations of trajectories, that (nπ, 0)

is in fact a centre for (N).
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The phase plane is

x

y

Example 8.4. If the pendulum is subject to air resistance the equation becomes

ẍ + rẋ + sin(x) = 0, (N) (we assume weak damping with r2 < 4)

with corresponding system

ẋ = y

ẏ = − sin(x)− ry

The equilibrium points are again (nπ, 0), n = 0,±1,±2, ...

The linearised equation at (nπ, 0) is

ẋ =

(
0 1

− cos(nπ) −r

)
x = Ax

The eigenvalues of A satisfy λ(λ + r) + cos(nπ) = 0 i.e. λ2 + rλ + cos(nπ) = 0 i.e.

λ =
−r±
√

r2−4 cos(nπ)

2
.

If n is odd, λ = −r±√r2+4
2

, and so (nπ, 0) is a saddle point for (N) (as in the un-

damped case).

If n is even, λ = −r±i
√

4−r2

2
, and so (nπ, 0) is now a stable spiral point (N).

A possible phase plane is a 2π periodic repetition of

x

y

π−π
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The graph of x as a function of t for trajectory with (x(0), y(0)) = (1, 0) will be

x

t

Thus the oscillations die out as we might expect (see Problem Sheet 12 for other cases:

r = 4, r > 4)

8.2 Competing Species

8.2.1 Introduction

The growth of a single species can be modelled by

ẋ = ax

where a is the growth rate of the species. The exact solution is x(t) = x(0)eat, and

the phase plane is

a<0 a>0

with x > 0 being the physically relevant region.

The growth of a species is better modelled by the logistic equation

ẋ = ax− bx2 a > 0, b > 0

with phase plane

0 a/b

In this case crowding effects reduces growth rate to a − bx, i.e. the population grows

if 0 < x < a
b

and population decreases if x > a
b
.

Suppose now that two species live in the same region and compete for the same food

supply (e.g. red and grey squirrels).

Let x and y denote the population sizes of the two species.

Because of crowding/competition effects the growth rate of x is now given by a1−b1x−
c1y and the growth rate of y is given by a2 − b2y − c2x.
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Thus x and y satisfy

dx
dt

= x(a1 − b1x− c1y) = a1x− b1x
2 − c1xy

dy
dt

= y(a2 − b2y − c2x) = a2y − b2y
2 − c2xy


 (8.1)

Question What happens as t→∞? Do one/both/neither population die out?

Equilibrium points

(x, y) is an equilibrium point of (8.1) if

x(a1 − b1x− c1y) = 0 (8.2)

y(a2 − b2y − c2x) = 0

Hence we have equilibrium points (0, 0), (0, a2

b2
), (a1

b1
, 0) and (x, y) such that

b1x + c1y = a1

c2x + b2y = a2

}
(8.3)

Each equation in (8.3) represents a straight line of negative gradient, and so (8.3) may

or may not have a solution with x, y > 0. (Note the first straight line is through

the 2 points (0, a1/c1) and (a1/b1, 0), and the 2nd is through the points (0, a2/b2) and

(a2/c2, 0)). We have

(0, a2
b2

)

(a1
b1

, 0)

(0, a2
b2

)
(a1

b1
.0)

y

x

y

x

or

Remark

The system always has the equilibrium point (0, 0) as well as the equilibrium points

(a1

b1
, 0) and (0, a2

b2
) on the x and y axes.

Note that the x and y axes are themselves trajectories.

x

y
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Example 8.5. Find all the equilibrium points for the following system modelling com-

peting species

dx
dt

= x(1− x− y)

dy
dt

= y(1
2
− 1

4
y − 3

4
x)

and determine the nature of each.

Hence sketch a possible phase plane for the system.

Solution: (x, y) is an equilibrium point if

x(1− x− y) = 0

y(1
2
− 1

4
y − 3

4
x) = 0

Hence the equilibrium points are (0, 0), (0, 2), (1, 0) and (x, y) such that

x + y = 1
3
4
x + 1

4
y = 1

2

which has the solution (1
2
, 1

2
).

If f(x, y) = x(1− x− y), ∂f
∂x

= 1− 2x− y, ∂f
∂y

= −x

If g(x, y) = y(1
2
− 1

4
y − 3

4
x), ∂g

∂x
= −3

4
y, ∂g

∂y
= 1

2
− 1

2
y − 3

4
x

(i) The linearised equation at (0, 0) is

ẋ(t) =

(
1 0

0 1
2

)
x(t) = Ax(t)

The eigenvalues of A are λ = 1
2
, 1 and so (0, 0) is an unstable node.

(ii) The linearised equation at (0, 2) is

ẋ(t) =

(
−1 0

−3
2
−1

2

)
x(t) = Ax(t)

The eigenvalues of A are λ = −1,−1
2

and so (0, 2) is a stable node
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(iii) The linearised equation at (1, 0) is

ẋ(t) =

(
−1 −1

0 −1
4

)
x(t) = Ax(t)

The eigenvalues of A are λ = −1
4
,−1 and so (1, 0) is a stable node.

(iv) The linearised equation at (1
2
, 1

2
) is

ẋ(t) =

(
−1

2
−1

2

−3
8
−1

8

)
x(t) = Ax(t)

λ is an eigenvalue of A if (λ + 1
2
)(λ + 1

8
)− 3

16
= 0

i.e. λ2 + 5
8
λ− 1

8
= 0 , i.e. 8λ2 + 5λ− 1 = 0 , i.e. λ = −5±√57

16

Hence (1
2
, 1

2
) is a saddle point.

A possible phase plane is

x

y

T

Remark

If x(0) lies above T , x(t)→ (0, 2), i.e. x species dies out.

If x(0) lies below T , x(t)→ (1, 0), i.e. y species dies out.

If x(0) lies exactly on T (which is very unlikely), x(t) → (1
2
, 1

2
), and neither

species dies out.

8.2.2 Predator- Prey Equations

Now suppose that the x species (say rabbits) is preyed on by the y species (say foxes).

Then the presence of y will decrease the growth rate of x (y eats x).

The presence of x will increase the growth rate of y (x is eaten by y).

We also assume that prey population has positive growth rate in absence of preda-

tors, and that the predator population has negative growth rate in absence of prey.

Thus growth rate of prey = a− αy and

growth rate of predators = −b + βx.
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Thus we obtain equations

dx

dt
= ax− αxy (prey)

dy

dt
= −by + βxy (predator)

(x, y) is an equilibrium point if

x(a− αy) = 0

y(−b + βx) = 0

Hence equilibrium points are (0, 0) and ( b
β
, a

α
).

If f(x, y) = x(a− αy), ∂f
∂x

= a− αy, ∂f
∂y

= −αx

If g(x, y) = y(−b + βx), ∂g
∂x

= βy, ∂g
∂y

= −b + βx

The linearised equation at (0, 0) is

ẋ(t) =

(
a 0

0 −b

)
x(t) = Ax(t)

Eigenvalues of A are λ = −b, a and so (0, 0) is a saddle point.

x

y

The linearised equation at ( b
β
, a

α
) is

ẋ(t) =

(
0 −αb

β
βa
α

0

)
x(t) = Ax(t)

λ is an eigenvalue of A if λ2 + ab = 0 , i.e. λ = ±i
√

ab.

Thus the linearised equation has a centre at (0, 0), but we can draw no firm conclusion

about the nature of the equilibrium point ( b
β
, a

α
) of the original equation.

However, we can find the equations of the trajectories in the phase plane explicitly.

We have
dy

dx
=

dy
dt
dx
dt

=
y(−b + βx)

x(a− αy)

Thus
∫

a−αy
y

dy =
∫ −b+βx

x
dx
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Integrating, we find that −a ln y − b ln x + αy + βx = constant

The function (x, y) 7→ −a ln y − b ln x + αy + βx has a minimum at (x, y) = ( b
β
, a

α
)

(check this by the 2nd derivative test).

The trajectories −a ln y− b ln x + αy + βx = constant are level curves for the function

- they are closed curves surrounding ( b
β
, a

α
).

Hence the phase plane is of the form

x

y

1

2

3

4

Remarks

(a) According to this model populations vary in a periodic manner.

(b) There is a difference of 1
4

period between the behaviour of the predator and prey

populations.

1
t

1
2 3 4 1

x prey

y predator

i.e. prey achieves maximum at (1) , predator at (2).

prey achieves minimum at (3) , predator at (4).
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8.3 Lyapunov Functions

Consider the non-linear system

ẋ(t) = f(x(t), y(t))

ẏ(t) = g(x(t), y(t))

}
(N)

with equilibrium point x0.

If the linearised equation at x0, i.e.

ẋ(t) =

(
∂f
∂x

(x0)
∂f
∂y

(x0)
∂g
∂x

(x0)
∂g
∂y

(x0)

)
x(t) = Ax(t) (L)

is such that an eigenvalue for A has zero real part, or eigenvalues are equal, we cannot

conclude that x0 is the same sort of equilibrium point for (N) as (0, 0) is for (L).

Example 8.6.

ẋ = −x3

ẏ = −y3

}
(N)

The linearised equation of (N) at (0, 0) is

ẋ =

(
0

0

)
.

Thus the eigenvalue is λ = 0, and we can say nothing about this equilibrium point.

However, we can compute the trajectories directly from

dy

dx
=

ẏ

ẋ
=

y3

x3
.

Integrating, we find that the trajectories are y2 = x2/(1 + cx2) and (N) has the phase

plane

x

y
c=0

(0, 0) is a stable equilibrium point.
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Example 8.7.

ẋ = y − x
√

x2 + y2

ẏ = −x− y
√

x2 + y2

}
(N)

The linearised equation at (0, 0) is

ẋ = y

ẏ = −x

}
(L)

i.e.

ẋ(t) =

(
0 1

−1 0

)
x(t) = Ax(t) (L)

λ is an eigenvalue of A⇔ λ2 + 1 = 0 i.e. λ = ±i.

Hence (0, 0) is a centre for the linearised equation and so we can draw no conclusion

about (N).

Suppose we think about distance squared (x2 +y2) from (0, 0) of a solution of (N). We

have

ẋx = xy − x2
√

x2 + y2

ẏy = −xy − y2
√

x2 + y2

and hence d
dt

(x2 + y2) = 2ẋx + 2ẏy = −2(x2 + y2)
3
2 < 0

⇒ x2 + y2 =
1

(t + c)2

{
dV

dt
= −2V

3
2 ⇒ −1

2

dV

dt
= V

3
2 ⇒

∫
−1

2
V − 3

2 dV =

∫
dt⇒ V =

1

(t + c)2

}

Thus if x is any solution of (N), x2 + y2 is a decreasing function of t, and so if x(0) is

close to (0, 0), then x(t) gets closer to (0, 0) for all t, i.e. (0, 0) is a stable equilibrium

point of (N).

Example 8.8.

ẋ = y + x
√

x2 + y2

ẏ = −x + y
√

x2 + y2

}
(N)
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Repeating the above analysis we obtain

d

dt
(x2 + y2) = 2(x2 + y2)

3
2 > 0

and so (0, 0) is an unstable equilibrium point.

The above technique is often useful in establishing whether an equilibrium point is

stable or not. The function x2 + y2 can be replaced by any function V with similar

properties.

Theorem 8.9. Consider the system

ẋ(t) = F (x(t)) (N)

with equilibrium point x0. Let U be an open set containing x0 and let V : U → R be a

smooth function such that

(i) x0 is a minimum point for V

(ii) d
dt

(V (x(t))) ≤ 0 whenever x is a solution of N

Then x0 is a stable equilibrium point.

Proof. Since x0 is a local minimum for V , the level curves of V , i.e., curves with

equations of the form V (x, y) = c, form a system of closed curves surrounding x0.

When c = V (x0) the level curves reduces to the point x0, and as c increases the level

curve moves further from x0.

x0

V = c1

V = c2

c2 > c1 > V (x0)

Since
d

dt
(V (x(t))) ≤ 0, if x(0) lies inside V (x) = c, i.e., if V (x(0)) < c, then V (x(t)) <

c for all t > 0. Hence, the trajectory will stay inside V (x) = c for all t > 0. It follows

that x0 is a stable equilibrium point.

Remarks

(a) If condition (ii) in the statement of the theorem is changed to d
dt

(V (x(t)) < 0 for

every solution x(t), then the conclusion becomes x0 is an asymptotically stable

equilibrium point.
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(b) If condition (ii) in the statement of the theorem is changed to d
dt

(V (x(t)) > 0 for

every solution x(t), then the conclusion becomes x0 is an unstable equilibrium

point.

The functions V above are called Lyapunov functions - they provide the means of

determining the stability of an equilibrium point when the Linearisation theorem (con-

nection between (N) and (L)) cannot be applied.

In general it is difficult to find a Lyapunov function for a given equation - however

it is sometimes possible.

Example 8.10.

(i) To see if V (x, y) = x2 + y2 is a Lyapunov function for

ẋ = f(x, y)

ẏ = g(x, y)

Compute dV
dt

= 2xf(x, y) + 2yg(x, y). We need this to be always positive, always neg-

ative, or zero.

See examples above.

(ii) If the equations of the trajectories can be found explicitly these may give Lyapunov

functions.

e.g. Consider the pendulum equation ẍ + sin(x) = 0.

The equivalent system is

ẋ = y

ẏ = − sin(x)

The trajectories are given by

1

2
y2 − cos x = constant.

(This equation has the interpretation of ‘total energy = kinetic energy + potential

energy = constant’.)

Let V (x, y) = 1
2
y2 − cos x. Clearly, V has a minimum at (x, y) = (0, 0).

Also
d

dt
(V (x(t), y(t))) =

∂V

∂x

dx

dt
+

∂V

∂y

dy

dt

= sin x× y + y × (− sin x) = 0
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Hence (0, 0) is a stable equilibrium point.

(iii) Consider the system

ẋ(t) = −x− 2y2

ẏ(t) = xy − y3

}
(N)

The corresponding linearised equation at (0, 0) is

ẋ = −x

ẏ = 0

}
(L)

i.e.

ẋ(t) =

(
−1 0

0 0

)
x(t) = Ax(t) (L)

and so the Linearisation theorem linking (N) and (L) does not apply.

We seek a Lyapunov function of the form V (x, y) = ax2 + by2 where a and b are

positive constants.

Then V has a minimum at (0, 0)

d

dt
V (x(t), y(t)) =

∂V

∂x

dx

dt
+

∂V

∂y

dy

dt

= 2ax(−x− 2y2) + 2by(xy − y3)

= −2ax2 + (2b− 4a)xy2 − 2by4

If we choose a = 1, b = 2 we obtain

d

dt
V (x(t), y(t)) = −2x2 − 4y4 < 0 (x(t) 6= (0, 0))

Hence V (x, y) = x2 + 2y2 is a Lyapunov function and (0, 0) is an asymptotically stable

equilibrium point.


