Problem Sheet 9

Module F13YT2

- 1. Find the eigenvalues and eigenfunctions for the following boundary value problems: (i) $-y'' = \lambda y;$ y'(0) = 0, y'(1) = 0;(ii) $-y'' = \lambda y;$ y(0) = 0, y'(1) = 0.
- 2. Find the Fourier cosine series and the Fourier sine series for the function

$$f(x) = \begin{cases} 1 \text{ if } 0 < x < 1\\ 0 \text{ if } 1 \le x < 2. \end{cases}$$

3. Suppose $\alpha \in \mathbf{R}$ and consider the boundary value problem

$$-y'' = \lambda y, \quad \alpha y(0) + y'(0) = 0, \quad y(1) = 0.$$

- (i) Show that for all values of α there are infinitely many positive eigenvalues.
- (ii) If $\alpha < 1$, show that there are no negative eigenvalues.
- (iii) If $\alpha > 1$, show that there is a negative eigenvalue.
- (iv) Show that $\lambda = 0$ is an eigenvalue if and only if $\alpha = 1$.
- 4. Find the eigenfunction expansion $\sum_{n=1}^{\infty} a_n \phi_n$ of the function $f(x) = x, \ 0 < x < 1$ using the eigenfunctions of (a) question 1 (i) and (b) question 1 (ii)
- 5. Consider the boundary value problem

$$-y'' = \lambda y, \quad y(0) = 0, \quad y(\pi) + y'(\pi) = 0.$$

Show that there exist infinitely many eigenvalues λ_n and find the corresponding eigenfunctions.

Show that an eigenfunction expansion for f(x) = 1, $0 < x < \pi$ in terms of these eigenfunctions is given by $\sum_{n=1}^{\infty} a_n \sin(\sqrt{\lambda_n} x)$ where

$$a_n = \frac{2(1 - \cos(\sqrt{\lambda_n}\pi))}{\sqrt{\lambda_n}(\pi + \cos^2(\sqrt{\lambda_n}\pi))}.$$

2006