Solutions 1: First Order Ordinary Differential Equations

Module F13YT2

1. (i) y(x) = % In(3 + 6e%) + C (ii) y(x) = —x?cosx + 2xrsinx + 2cosx + C.

d 2 1 1 2

2. (i) —y:£<:>ydy:x2dx<:> =234 0=y =2+ K.
dx Y 2 3 3

.. dy —2z : 3

(i) T +3y=xz+e : Integrating factor = exp(f 3dx) = e’”.
T

Equation may be rewritten as d%(e‘gxy) = xe’? 4 e”.
Hence €37y = [2e3* + [e” = Lze3® — 1e3 + €7 + C and so
y=tx—fF+e 2+ Ce

. : dy y _
(17i) Equation may be rewritten as mto= cos(2x).

xr oz

Integrating factor = exp( [ df) =exp(lnz) = x.
Equation may be rewritten as %(wy) = z cos(2x).
Hence zy = [z cos(2z) dz = 2z sin(2z) + 1 cos(2z) + C and so
y = 1sin(2z) + L cos(2z) + %

(1v) @ = m; equation is of homogeneous type.
dx x2
Let u = ¥; then y = ux and &y :u—l—x@.
dx dx
Therefore u + xg—; = u? + 2u and so ug:‘iu = df
Hence (1 — 14+u) du = % and so In(47) = In(z) + C.
Therefore ;%3 = Kz and so % = Kz. Thus y = %
dy

(v) 2y? — 2+ (22y + y)% =0.
If we write the equation as a(z, y)% + b(x,y) = 0, then % = 2zy = g—z and so the equation
is exact.
Thus the equation has solution ¢(x,y) = ¢ where

%:xyz—x (1) and g—z:ny—i—y (2)
(1) is satisfied if ¢(z,y) = 322y — 222 + f1(y).
(2) is satisfied if ¢(z,y) = 3229 + 5% + fo(2).
Hence, choosing f1(y) = %yQ and fo(z) = —%1‘2, we obtain the solution

1,22 1,2 1,2
5T°Y° — 5T +35y° =c

d
(vi) (ze¥ + 2y)% +e¥=0.

d
If we write the equation as a(w,y)d—y + b(x,y) = 0, then % =e¥ = g_zl; and so the equation
x
is exact.
Thus the equation has solution ¢(x,y) = ¢ where
0 0
8—15 =e! (1) and 0—(5 =xe? +2y  (2)



(1) is satisfied if ¢(z,y) = xze¥ + f1(y).
(2) is satisfied if ¢(x,y) = ze¥ + y? + fa(x).
Thus, choosing f1(y) = y? and fa(x) = 0, we obtain solution ze¥ + y? = c.

(vii) is an exact eqn since

9 Yy — g w_ 9 s 2y
ax(cos(a:)+2ace ) = —sin(z) + 2e _8y(1 ysin(x) + e?Y).

The equation can be written in the form

— = 0, with soln ¥(z,y) =C
where
P(x,y) = /(COS(:U) + 2ze®)dy = ycos(x) + ze* + f(z), f(z) arbitrary,

= /(1 — ysin(z) + e*¥)dx = x + ycos(x) + ze® + g(y), g(y) arbitrary.

Compeatibility requires
U(z,y) =z + ycos(z) + ze?,

and so the solution is given implicitly by

x + ycos(z) + ze?¥ = C.

(viii) is of Bernoulli type. Let u = y~2, and note that

du _ady

S T =

dt Yo
Multiplying both side of (b) by —2y~3 then gives

L
a

This is linear; multiplying by an integrating factor e 2! gives

%(ue_%) = 42,

Integrating gives
ue 2 =2e72' 4 ¢, such that u=1y"2 = (2+ce?)
Hence
2 _ 1
Y T o e

1/2

N _ 1
3. (1)£:y1/2<:>y 120y = do = 2y ::U+c<:>yzz(a:+c)2.

Since y(0) = 0, we require ¢ = 0.

Noting that the above argument works only when = > 0, we obtain the solution y(x)



0 ife<0’
Equation also has solution y(z) = 0.

The hypotheses of Picard’s Theorem are not satisfied as y — y
tinuous derivative at y = 0.

{ixz ifx>0

1/2 does not have a con-

d 1 1
) yd—y =z << ydy =zrdr < 53/2: §m2+c<:>y2=x2+K.
x

Since y(0) = 0, we require K = 0 and so > = 22, i.e., y = +x. Thus the equation has distinct
solutions y(z) = = and y(z) = —=.

The hypotheses of Picard’s Theorem are not satisfied as the equation may be rewritten

dy «x . .
as — = — and y — y isnot a smooth function at y = 0.

Yy

dx

d
4. Equation may be rewritten as d—y =1—9>%
x

For constant solutions 1 — y? =0, i.e., (1 —y)(1+y) =0, i.e., y = *1.
Hence constant solutions are y(z) =1 and y(z) = —1.
d d
Ify>1, 4 <0if -1<y<1, el > 0; if y < —1, then & < 0. For sketch of solutions see
dz dx dx
Maple print out.
dy 2
5, —=y* —=.
dx v
d d d
& _ 0 when y? = ; d_y > 0 when 3% > z; d—y < 0 when 32 < x. For sketch of solution
x x x
see Maple print out.

6. Clearly the points satistfying (7), (ii), (i4¢) are those for which y =z, y >z, y < x.
The direction field, and solution satisfying the initial condition are
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