Module F13YT2/YF3

2006

1. (i) $x' = x - x^2$.

Equilibrium points occur where $x - x^2 = 0$, i.e., x = 0, 1.

(ii) $x' = \sin(x).$

Equilibrium points occur where $\sin(x) = 0$, i.e., $x = 0, \pm \pi, \pm 2\pi, \dots$

2. (a) $x'' = -x^2$

The equation may be written as the system x' = y; $y' = -x^2$. Clearly (0,0) is the only equilibrium point of the system.

Any trajectory of the form y=y(x) must satisfy $\frac{dy}{dx}=\frac{dy}{dt}/\frac{dx}{dt}=-\frac{x^2}{y}$, i.e., $y\,dy=-x^2\,dx$, i.e., $y^2=-\frac{2}{3}x^3+c$.

Let us consider the trajectories through some representative points.

The trajectory through the equilibrium point (0,0) has the equation $y^2 = -\frac{2}{3}x^3$, i.e., $y = \pm \sqrt{-\frac{2}{3}x^3}$ for x < 0.

Hence we have the trajectories (noting that $\lim_{x\to 0} \frac{dy}{dx} = 0$).

Suppose a > 0 and consider the trajectory passing through (0, a), i.e., $y^2 = -\frac{2}{3}x^3 + a^2$.

As x increases from 0, y decreases until it reaches 0 when $x = b := (3a^2/2)^{1/3}$. As x decreases from 0, y increases and $y \to \infty$ as $x \to -\infty$.

Hence we have the trajectory (noting that $\lim_{x\to 0}\frac{dy}{dx}=0$, and $\frac{dy}{dx}\to -\infty$ as $y\to 0$).

The trajectory is symmetric with respect to y and so we have

Clearly, we don't yet have enough trajectories to fill the phase plane, and we should consider a trajec-

tory through the point (b < 0, 0), i.e., $y^2 = -\frac{2}{3}x^3 + \frac{2}{3}b^3$. As x decreases from b, $y = \pm \sqrt{-\frac{2}{3}x^3 + \frac{2}{3}b^3}$, and as x increases their is no real y solution.

Hence, we have trajectories (noting that $\frac{dy}{dx} \to -\infty$ as $y \to 0$).

Hence we have the phase plane

The points (0,1) and (1,0) both lie on a trajectory of the form

Hence we obtain solutions

(ii) $x'' = x^3$

The equation may be written as the system x' = y; $y' = x^3$.

Clearly (0,0) is the only equilibrium point of the system.

Any trajectory of the form y=y(x) must satisfy $\frac{dy}{dx}=\frac{dy}{dt}/\frac{dx}{dt}=\frac{x^3}{y}$, i.e., $y\,dy=x^3\,dx$, i.e., $y^2=\frac{1}{2}x^4+c$.

Trajectories approaching (0,0) have the equation $y^2 = \frac{1}{2}x^4$, i.e., $y = \pm \frac{1}{\sqrt{2}}x^2$.

Consider the trajectory passing through (0, a > 0), i.e., $y^2 = \frac{1}{2}x^4 + a^2$. As x increases into the first quadrant y also increases and $y \to \infty$ as $x \to \infty$.

By symmetry we also obtain

The trajectory passing through (b>0,0) is $y^2=\frac{1}{2}x^4-\frac{1}{2}b^4$. As y increases into the first quadrant x also increases and $x\to\infty$ as $y\to\infty$. There is no real

solution y for x < b.

Hence the phase plane is

Hence we obtain solutions

(iii) $x'' = x^3 - x$.

The equation may be written as the system x' = y; $y' = x^3 - x$.

Since $x^3 - x = 0$ if and only if x = 0, 1, -1, the equilibrium points of the system are (0, 0), (1, 0) and (-1, 0).

Any trajectory of the form y = y(x) must satisfy $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt} = \frac{x^3 - x}{y}$, i.e., $y \, dy = (x^3 - x) \, dx$, i.e., $y^2 = \frac{1}{2}x^4 - x^2 + c$.

Let $f(x) = \frac{1}{2}x^4 - x^2$. Then $f'(x) = 2x^3 - 2x = 2x(x^2 - 1)$. Hence f(0) = 0, f is decreasing for 0 < x < 1, $f(1) = -\frac{1}{2}$, f is increasing for x > 1 and $f(\sqrt{2}) = 0$. The graph is of the form

We may write the equation of trajectories as $y^2 = f(x) + c$.

Consider the trajectory passing through (0, a > 0), i.e., $y^2 = f(x) + a^2$.

As x increases into the first quadrant, f(x) and hence y are decreasing for 0 < x < 1. The situation then depends upon whether y reaches 0 or not. There are 3 possibilities:

- (i) If $a^2 + f(1) < 0$, then there exists $x_0 \in (0,1)$ such that $f(x_0) = -a^2$ and $y(x_0) = 0$.
- (ii) If $a^2 + f(1) = 0$, then (1,0) lies on the curve, i.e., the trajectory approaches the equilibrium point (1,0).
- (iii) If $a^2 + f(1) > 0$, y is decreasing for 0 < x < 1, y > 0 when x = 1. When x increases beyond 1, f(x) and hence y are increasing.

Hence we obtain the following trajectories

By symmetry we obtain the trajectories

Consider the trajectory passing through (a,0) where $a \ge 1$,

i.e., $y^2 = f(x) - f(a)$. As x increases from a, f(x) and and y^2 increase. When x < a there is no real y solution.

Thus we have the trajectory

and by symmetry we obtain the trajectories

Hence phase plane is

To consider the solutions note that $1^2 + f(1) = 1/2 > 0$. Hence we obtain solutions

Note that $a^2 + f(1) \le 0$ if and only if $a < \frac{1}{\sqrt{2}}$, in which case we would also have solutions like

 $x'' + e^x = a.$ 3.

The equation may be written as the system x' = y; $y' = a - e^x$.

Supposing (i) a > 0, the system has an equilibrium point at $(\ln(a), 0)$. Any trajectory of the form y = y(x) must satisfy $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt} = \frac{a - e^x}{y}$, i.e., $y \, dy = (a - e^x) \, dx$, i.e., $y^2 = 2(ax - e^x) + c.$

Let $f(x) = 2(ax - e^x)$. Then $f'(x) = 2(a - e^x)$. Hence f is increasing for $x < \ln(a)$ and decreasing for $x > \ln(a)$ and $f(x) \to -\infty$ as $x \to \pm \infty$.

Clearly the equation of the trajectory can be written as $y^2 = f(x) + c$.

Consider the trajectory through $(x_0, 0)$, where $x_0 < \ln(a)$,

i.e., $y^2 = f(x) - f(x_0)$.

If $y^2 > 0$ on this trajectory, then $f(x) > f(x_0)$ and so we must have $x_0 < x < x_1$ where $x_1 > \ln(a)$ and $f(x_1) = f(x_0)$. As x increases from x_0 to $\ln(a)$, f(x) increases and so y^2 increases; then as x increases from ln(a) to x_1, y^2 decreases to 0 again.

If (ii) $a \leq 0$, then the system has no equilibrium points and $f(x) = 2(ax - e^x)$ is a strictly decreasing function such that $f(x) \to \mp \infty$ as $x \to \pm \infty$.

Consider the trajectory through $(x_0, 0)$, i.e., $y^2 = f(x) - f(x_0)$.

At all points on this trajectory we must have $f(x) \ge f(x_0)$ and so $x \le x_0$. Also as x decreases from x_0 , y^2 increases and $y^2 \to \infty$ as $x \to -\infty$.

Hence we have the trajectory

and so the phase plane is

