Solutions 12

Module F13YT2/YF3

2006

1 (i) Corresponding linear system is $\frac{dx}{dt} = x - y$; $\frac{dy}{dt} = x + y$, i.e., $\frac{d\boldsymbol{x}}{dt} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \boldsymbol{x} = A\boldsymbol{x}$. λ is an eigenvalue of A iff $\begin{vmatrix} 1 - \lambda & -1 \\ 1 & 1 - \lambda \end{vmatrix} = 0$,

i.e., iff $(\lambda - 1)^2 + 1 = 0$, i.e., iff $\lambda - 1 = \pm i$, i.e., iff $\lambda = 1 \pm i$. Hence (0,0) is an unstable spiral point.

(ii) Corresponding linear system is $\frac{dx}{dt} = x$; $\frac{dy}{dt} = x - 2y$,

i.e.,
$$\frac{dx}{dt} = \begin{pmatrix} 1 & 0 \\ 1 & -2 \end{pmatrix} x = Ax$$

i.e., $\frac{d\mathbf{x}}{dt} = \begin{pmatrix} 1 & 0 \\ 1 & -2 \end{pmatrix} \mathbf{x} = A\mathbf{x}$. λ is an eigenvalue of A iff $\begin{vmatrix} 1 - \lambda & 0 \\ 1 & -2 - \lambda \end{vmatrix} = 0$,

i.e., iff $(1-\lambda)(-2-\lambda)=0$, i.e., iff $\lambda=1$,

Hence (0,0) is a saddle point.

 $\begin{array}{ll} 2 \ (i) & \frac{dx}{dt} = 1 - xy; & \frac{dy}{dt} = (x-1)y. \\ (x,y) \ \text{is an equilibrium point iff} \end{array}$

$$\begin{array}{rcl}
 1 - xy & = 0 & (1) \\
 (x - 1)y & = 0 & (2)
 \end{array}$$

(2) is satisfied iff x = 1 or y = 0.

If y = 0, then (1) cannot hold.

If x = 1, then (1) is satisfied when y = 1.

Hence system has unique equilibrium point (1,1).

If f(x,y) = 1 - xy, $\frac{\partial f}{\partial x}(x,y) = -y$, $\frac{\partial f}{\partial y}(x,y) = -x$ and so $\frac{\partial f}{\partial x}(1,1) = -1$ and $\frac{\partial f}{\partial y}(1,1) = -1$. If g(x,y) = (x-1)y, $\frac{\partial g}{\partial x}(x,y) = y$, $\frac{\partial g}{\partial y}(x,y) = x-1$ and so $\frac{\partial g}{\partial x}(1,1) = 1$ and $\frac{\partial g}{\partial y}(1,1) = 0$. 2 (i)(ctd)

Hence we have linearized equation $\dot{\boldsymbol{x}}(t) = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix} \boldsymbol{x} = A\boldsymbol{x}.$

 λ is an eigenvalue of A iff $\left| egin{array}{cc} -1-\lambda & -1 \ 1 & -\lambda \end{array}
ight|=0,$

i.e., iff $\lambda(\lambda+1)+1=0$, i.e., iff $\lambda^2+\lambda+1=0$, i.e., iff $\lambda=\frac{-1\pm\sqrt{3}i}{2}$.

Hence (0,0) is a stable spiral point for the linearized equation and so (1,1) is a stable spiral point for the original equation.

(ii) $\frac{dx}{dt} = x + y^2$; $\frac{dy}{dt} = x + y$. (x, y) is an equilibrium point iff

$$x + y^2 = 0$$
 (1)
 $x + y = 0$ (2)

(2) is satisfied iff x = -y and then (1) is satisfied iff $x + x^2 = 0$, i.e., iff x = 0, -1.

Hence system has equilibrium points (0,0) and (-1,1).

If
$$f(x,y) = x + y^2$$
, $\frac{\partial f}{\partial x}(x,y) = 1$ and $\frac{\partial f}{\partial y}(x,y) = 2y$.

If
$$g(x,y)=x+y$$
, $\frac{\partial g}{\partial x}(x,y)=1$ and $\frac{\partial g}{\partial y}(x,y)=1$.

Hence linearized equation at (0,0) is $\dot{\boldsymbol{x}}(t) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \boldsymbol{x} = A\boldsymbol{x}$.

Hence A has eigenvalues $\lambda = 1, 1$.

Thus (0,0) is an unstable node of the linearized equation and so is either an unstable node or an unstable spiral point of the original equation.

Also linearized equation at (-1,1) is $\dot{\boldsymbol{x}}(t) = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \boldsymbol{x} = A\boldsymbol{x}$.

 λ is an eigenvalue of A iff $\begin{vmatrix} 1-\lambda & 2\\ 1 & 1-\lambda \end{vmatrix} = 0$,

i.e., iff $(\lambda - 1)^2 = 2$, i.e., iff $\lambda = 1 \pm \sqrt{2}$.

Hence (0,0) is a saddle point for the linearized equation and so (-1,1) is a saddle point for the original equation. 3. Equation can be written as the system $\dot{x} = y$;

(x,y) is an equilibrium point if y=0 and $x^3-x=0$, i.e., $x=0,\pm 1$.

Hence the equilibrium points are (0,0), (1,0) and (-1,0). If f(x,y)=y, $\frac{\partial f}{\partial x}(x,y)=0$ and $\frac{\partial f}{\partial y}(x,y)=1$.

If
$$g(x,y) = x^3 - x$$
, $\frac{\partial g}{\partial x}(x,y) = 3x^2 - 1$ and $\frac{\partial g}{\partial y}(x,y) = 0$.

Hence linearized equation at (0,0) is $\dot{\boldsymbol{x}} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \boldsymbol{x} = A\boldsymbol{x}$.

The eigenvalues of A are $\lambda = \pm i$ and so (0,0) is a centre for the linearized equation; we cannot immediately conclude that (0,0) is a centre for the original equation but in fact this is the case. (see tutorial sheet on phase planes question 2(iii)).

The linearized equation at (1,0) is $\dot{\boldsymbol{x}} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \boldsymbol{x} = A\boldsymbol{x}$.

The eigenvalues of A are $\lambda = \pm \sqrt{2}$ and so (1,0) is a saddle point.

An identical argument shows that (-1,0) is also a saddle point.

4. (a) $\frac{dx}{dt} = x(1-x-y);$ $\frac{dy}{dt} = y(\frac{3}{2}-y-x).$ (x,y) is an equilibrium point iff

$$x(1-x-y) = 0$$

 $y(\frac{3}{2}-y-x) = 0.$

Equilibrium points are (0,0), $(0,\frac{3}{2})$, (1,0). (Clearly it is impossible that both 1-x-y=0 and $\frac{3}{2} - y - x = 0$ hold for the same values of x and y and so there are no equilibrium points with both $x \neq 0$ and $y \neq 0$).

If
$$f(x,y) = x(1-x-y)$$
, $\frac{\partial f}{\partial x}(x,y) = 1-2x-y$ and $\frac{\partial f}{\partial y}(x,y) = -x$.

If
$$g(x,y)=y(\frac{3}{2}-y-x)$$
, $\frac{\partial g}{\partial x}(x,y)=-y$ and $\frac{\partial g}{\partial y}(x,y)=\frac{3}{2}-2y-x$.

Hence linearized equation at (0,0) is $\dot{\boldsymbol{x}}=\left(\begin{array}{cc} 1 & 0 \\ 0 & \frac{3}{\pi} \end{array}\right)\boldsymbol{x}=A\boldsymbol{x}.$

Eigenvalues of A are $\lambda = 1, \frac{3}{2}$ and so (0,0) is an unstable node. 4(a) (ctd) Linearized equation at $(0,\frac{3}{2})$ is $\dot{\boldsymbol{x}}=\left(egin{array}{cc} -rac{1}{2} & 0 \ -rac{3}{2} & -rac{3}{2} \end{array}
ight)\boldsymbol{x}=A\boldsymbol{x}.$

Eigenvalues of A are $\lambda = -\frac{1}{2}, -\frac{3}{2}$ and so $(0, \frac{3}{2})$ is a stable node.

Linearized equation at (1,0) is $\dot{\boldsymbol{x}} = \begin{pmatrix} -1 & -1 \\ 0 & \frac{1}{2} \end{pmatrix} \boldsymbol{x} = A\boldsymbol{x}$.

Eigenvalues of A are $\lambda = -1, \frac{1}{2}$ and so (1,0) is a saddle point. Possible phase plane is

(b) $\frac{dx}{dt} = x(\frac{3}{2} - x - \frac{1}{2}y);$ $\frac{dy}{dt} = y(2 - y - \frac{3}{4}x).$ (x,y) is an equilibrium point iff

$$\begin{array}{ll} x(\frac{3}{2} - x - \frac{1}{2}y) & = 0 \\ y(2 - y - \frac{3}{4}x) & = 0 \end{array}.$$

Hence we have equilibrium points are (0,0), (0,2), $(\frac{3}{2},0)$ and (x,y) where

$$\begin{array}{ll} x + \frac{1}{2}y & = \frac{3}{2} \\ \frac{3}{4}x + y & = 2 \end{array},$$

i.e., where $(x,y) = (\frac{4}{5}, \frac{7}{5})$.

If $f(x,y) = x(\frac{3}{2} - x - \frac{1}{2}y)$, $\frac{\partial f}{\partial x}(x,y) = \frac{3}{2} - 2x - \frac{1}{2}y$ and $\frac{\partial f}{\partial y}(x,y) = -\frac{1}{2}x$. If $g(x,y) = y(2-y-\frac{3}{4}x)$, $\frac{\partial g}{\partial x}(x,y) = -\frac{3}{4}y$ and $\frac{\partial g}{\partial y}(x,y) = 2-2y-\frac{3}{4}x$.

If
$$g(x,y)=y(2-y-\frac{3}{4}x)$$
, $\frac{\partial g}{\partial x}(x,y)=-\frac{3}{4}y$ and $\frac{\partial g}{\partial y}(x,y)=2-2y-\frac{3}{4}x$.

Hence linearized equation at (0,0) is $\dot{\boldsymbol{x}} = \begin{pmatrix} \frac{3}{2} & 0 \\ 0 & 2 \end{pmatrix} \boldsymbol{x} = A\boldsymbol{x}$.

Eigenvalues of A are $\lambda = \frac{3}{2}$, 2 and so (0,0) is an unstable node.

Linearized equation at (0,2) is $\dot{\boldsymbol{x}} = \begin{pmatrix} \frac{1}{2} & 0 \\ -\frac{3}{2} & -2 \end{pmatrix} \boldsymbol{x} = A\boldsymbol{x}$. Eigenvalues of A are $\lambda = -2$, $\frac{1}{2}$ and so (0,2) is a saddle point. 4(b) (ctd) Linearized equation at $(0,rac{3}{2}) ext{ is } \dot{m{x}} = \left(egin{array}{cc} -rac{3}{2} & -rac{3}{4} \ 0 & rac{7}{6} \end{array}
ight)m{x} = Am{x}.$

Eigenvalues of A are $\lambda = -\frac{3}{2}, \frac{7}{8}$ and so $(\frac{3}{2}, 0)$ is a saddle point.

Linearized equation at
$$(\frac{4}{5}, \frac{7}{5})$$
 is $\dot{\boldsymbol{x}} = \begin{pmatrix} \frac{3}{2} - \frac{8}{5} - \frac{7}{10} & -\frac{2}{5} \\ -\frac{21}{20} & 2 - \frac{14}{5} - \frac{3}{5} \end{pmatrix} \boldsymbol{x} = \begin{pmatrix} -\frac{4}{5} & -\frac{2}{5} \\ -\frac{21}{20} & -\frac{7}{5} \end{pmatrix} \boldsymbol{x} = A\boldsymbol{x}.$

 λ is an eigenvalue of A iff $\begin{vmatrix} -\frac{4}{5} - \lambda & -\frac{2}{5} \\ -\frac{21}{20} & -\frac{7}{5} - \lambda \end{vmatrix} = 0$, i.e., iff $(\lambda + \frac{4}{5})(\lambda + \frac{7}{5}) - \frac{21}{50} = 0$, i.e., iff $\lambda^2 + \frac{11}{5}\lambda + \frac{7}{10} = 0$,

i.e., iff
$$(\lambda + \frac{4}{5})(\lambda + \frac{7}{5}) - \frac{21}{50} = 0$$
, i.e., iff $\lambda^2 + \frac{11}{5}\lambda + \frac{7}{10} = 0$,

i.e., iff
$$\lambda = \left[-\frac{11}{5} \pm \sqrt{\frac{121}{25} - \frac{28}{10}} \right] / 2 = \frac{-11 \pm \sqrt{51}}{10}$$
.

Hence both eigenvalues of A are negative and so $(\frac{4}{5}, \frac{7}{5})$ is a stable node.

5.
$$\frac{dx}{dt} = x(\frac{3}{2} - \frac{1}{2}y);$$
 $\frac{dy}{dt} = y(-\frac{1}{2} + x).$

Equilibrium points are (0,0) and $(\frac{1}{2},3)$.

Since we have a standard predator prey system, (0,0) is a saddle point and $(\frac{1}{2},3)$ is a centre and all trajectories in the first quadrant are closed curves centred at $(\frac{1}{2},3)$. Hence the phase plane is

Equation of the trajectory y = y(x) is given by

$$\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt} = \frac{y(x - \frac{1}{2})}{x(\frac{3}{2} - \frac{1}{2}y)}.$$

Hence $(\frac{3}{2} \cdot \frac{1}{y} - \frac{1}{2}) dy = (1 - \frac{1}{2} \cdot \frac{1}{x}) dx$ and so $\frac{3}{2} \ln(y) - \frac{1}{2}y - x + \frac{1}{2} \ln(x) = \text{constant}.$

6. $\frac{dx}{dt} = x(1 - \frac{1}{2}x - \frac{1}{2}y);$ $\frac{dy}{dt} = y(-\frac{1}{4} + \frac{1}{2}x).$ Equilibrium points are (0,0), (2,0), $(\frac{1}{2},\frac{3}{2}).$

If $f(x,y)=x(1-\frac{1}{2}x-\frac{1}{2}y)$, $\frac{\partial f}{\partial x}(x,y)=1-x-\frac{1}{2}y$ and $\frac{\partial f}{\partial y}(x,y)=-\frac{1}{2}x$. If $g(x,y)=y(-\frac{1}{4}+\frac{1}{2}x)$, $\frac{\partial g}{\partial x}(x,y)=\frac{1}{2}y$ and $\frac{\partial g}{\partial y}(x,y)=-\frac{1}{4}+\frac{1}{2}x$.

(i) Linearized equation at (0,0) is $\dot{\boldsymbol{x}} = \begin{pmatrix} 1 & 0 \\ 0 & -\frac{1}{4} \end{pmatrix} \boldsymbol{x} = A\boldsymbol{x}$.

Eigenvalues of A are $\lambda = 1, -\frac{1}{4}$ and so (0,0) is a saddle point.

(ii) Linearized equation at (2,0) is $\dot{\boldsymbol{x}} = \begin{pmatrix} -1 & -1 \\ 0 & \frac{3}{4} \end{pmatrix} \boldsymbol{x} = A\boldsymbol{x}$. Eigenvalues of A are $\lambda = -1$, $\frac{3}{4}$ and so (2,0) is a saddle point.

(iii) Linearized equation at $(\frac{1}{2}, \frac{3}{2})$ is $\dot{\boldsymbol{x}} = \begin{pmatrix} -\frac{1}{4} & -\frac{1}{4} \\ \frac{3}{4} & 0 \end{pmatrix} \boldsymbol{x} = A\boldsymbol{x}$.

 $\begin{array}{l} \lambda \text{ is an eigenvalue of } A \text{ iff } \left| \begin{array}{cc} -\frac{1}{4} - \lambda & -\frac{1}{4} \\ \frac{3}{4} & -\lambda \end{array} \right| = 0, \\ \text{i.e., iff } \lambda(\lambda + \frac{1}{4}) + \frac{3}{16} = 0, \quad \text{i.e., iff } 16\lambda^2 + 4\lambda + 3 = 0, \quad \text{i.e., iff } \lambda = \frac{-4 \pm \sqrt{16 - 196}}{32}. \\ \text{Hence } (\frac{1}{2}, \frac{3}{2}) \text{ is a stable spiral and we have phase plane} \end{array}$

