Solutions 3

Module F13YT2

1.

(i) $\dot{\boldsymbol{x}} = \begin{pmatrix} -3 & 2 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = A\boldsymbol{x}.$ λ is an eigenvalue of A if and only if det $\begin{bmatrix} -3 - \lambda & 2 \\ -1 & -1 - \lambda \end{bmatrix} = 0$, i.e., $\lambda^2 + 4\lambda + 3 + 2 = 0$, i.e., $\lambda = \frac{-4 \pm \sqrt{16 - 20}}{2} = -2 \pm i$. $\begin{pmatrix} x \\ y \end{pmatrix} \text{ is an eigenvector corresponding to } \lambda = -2 + i \text{ if and only if} \\ -3x + 2y = -2x + ix, \quad \text{i.e., } (1+i)x = 2y \\ -x - y = -2y + iy, \quad \text{i.e., } x = (1-i)y, \quad \text{i.e., } (1+i)x = 2y. \\ \text{Thus } \begin{pmatrix} 2 \\ 1+i \end{pmatrix} \text{ is an eigenvector corresponding to } \lambda = -2 + i. \\ \text{Therefore the custom has solution} \end{cases}$ Therefore the system has solution $\boldsymbol{x}(t) = e^{(-2+i)t} \begin{pmatrix} 2\\ 1+i \end{pmatrix} = e^{-2t}(\cos(t) + i\sin(t)) \begin{pmatrix} 2\\ 1+i \end{pmatrix}$ i.e., system has solution $\boldsymbol{x}(t) = e^{-2t} \begin{pmatrix} 2\cos(t) + 2i\sin(t)\\ \cos(t) - \sin(t) + i(\cos(t) + \sin(t)) \end{pmatrix}$. Taking real and imaginary parts we obtain the solutions $e^{-2t} \left(\begin{array}{c} 2\cos(t) \\ \cos(t) - \sin(t) \end{array} \right)$ and $e^{-2t} \left(\begin{array}{c} 2\sin(t) \\ \cos(t) + \sin(t) \end{array} \right)$. $(ii) \quad \dot{\boldsymbol{x}} = \left(\begin{array}{ccc} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = A\boldsymbol{x}.$ λ is an eigenvalue of A if and only if det $\begin{bmatrix} 3-\lambda & 2 & 4\\ 2 & -\lambda & 2\\ 4 & 2 & 2 \\ \end{bmatrix} = 0,$ i.e., $(3 - \lambda)(\lambda^2 - 3\lambda - 4) - 2(-2 - 2\lambda) + 4(4 + 4\lambda) = 0$, i.e., $\lambda^3 - 6\lambda^2 - 15\lambda - 8 = 0$, i.e., $(\lambda + 1)(\lambda^2 - 7\lambda - 8) = 0$, i.e., $(\lambda + 1)(\lambda + 1)(\lambda - 8) = 0$, i.e., $\lambda = -1, 8$. $\begin{pmatrix} x \\ y \\ \tilde{x} \end{pmatrix}$ is an eigenvector corresponding to $\lambda = -1$ if and only if 3x + 2y + 4z = -x2x + 0y + 2z = -y i.e., if and only if 2x + y + 2z = 0. 4x + 2y + 3z = -zHence we have eigenvectors $\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$ and $\begin{pmatrix} 0\\2\\-1 \end{pmatrix}$ corresponding to $\lambda = -1$. $\begin{pmatrix} x \\ y \end{pmatrix}$ is an eigenvector corresponding to $\lambda = 8$ if and only if $\begin{array}{ll} 3x + 2y + 4z = 8x & \text{i.e.}, -5x + 2y + 4z = 0 \\ 2x + 0y + 2z = 8y & \text{i.e.}, 2x - 8y + 2z = 0 \\ 4x + 2y + 3z = 8z & \text{i.e.}, 4x + 2y - 5z = 0. \end{array}$

Using Gaussian elimination we have the arrays

$$\begin{pmatrix} -5 & 2 & 4 \\ 1 & -4 & 1 \\ 4 & 2 & -5 \end{pmatrix} \longrightarrow \begin{pmatrix} -5 & 2 & 4 \\ 0 & -18 & 9 \\ 0 & 0 & 18 & -9 \end{pmatrix} \longrightarrow \begin{pmatrix} -5 & 2 & 4 \\ 0 & -2 & 4 \\ 0 & 0 & 0 \end{pmatrix}$$

i.e., $\begin{pmatrix} x \\ y \\ z \\ \end{pmatrix}$ is an eigenvector if and only if $\begin{array}{c} -5x & +2y & +4z & = 0 \\ -2y & +z & = 0 \\ i.e., \text{ if } z = 2y \text{ and } 5x = 2y + 4z = 10y, \text{ i.e., } x = 2y.$
Hence $\begin{pmatrix} 2 \\ 1 \\ 2 \\ \end{pmatrix}$ is an eigenvector corresponding to $\lambda = 8$.
Thus the system has general solution
 $x(t) = e^{-t} [c_1 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}] + c_3 e^{8t} \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}.$
 $(iii) \quad \dot{x} = \begin{pmatrix} -4 & 1 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = Ax.$
 $\lambda \text{ is an eigenvalue of A if and only if det $\begin{bmatrix} -4-\lambda & 1 \\ -1 & -2-\lambda \end{bmatrix} = 0,$
i.e., $\lambda^2 + 6\lambda + 9 = 0, \text{ i.e., } (\lambda + 3)^2 = 0, \text{ i.e., } \lambda = -3.$
 $\begin{pmatrix} x \\ y \end{pmatrix}$ is an eigenvector corresponding to $\lambda = -3$ if and only if
 $-4x + y = -3x \quad \text{ i.e., } -x + y = 0.$
 $-x - 2y - -3y \quad \text{ i.e., } -x + y = 0.$
Thus $\begin{pmatrix} x \\ y \end{pmatrix}$ is an eigenvector corresponding to $\lambda = -3$ if and only if $\begin{pmatrix} x \\ y \end{pmatrix}$ is a multiple of
 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}.$
Then $x(t) = e^{-3t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is a solution of the system.
We seek another solution of the form $x(t) = te^{-3t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + e^{-3t}\mathbf{w}$,
i.e., $(A + 3I)\mathbf{w} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$
Suppose $\mathbf{w} = \begin{pmatrix} x \\ y \end{pmatrix}$. Then we require
 $-x + y = 1$ e.g., $x = 0, y = 1$
Thus we have second independent solution $x(t) = te^{-3t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + e^{-3t} \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$
Hence general solution is $x(t) = e^{-3t} [c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} t \\ t+1 \end{pmatrix}].$
 $\dot{x} - \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = Ax.$
 λ is an eigenvalue of A if and only if det $\begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} = 0,$
i.e., iff $(a - \lambda)(d - \lambda) - bc = 0$, i.e., iff $\lambda^2 - (a + d)\lambda + (ad - bc) = 0$,$

2.

i.e., iff $\lambda = \frac{a+d\pm\sqrt{(a+d)^2-4(ad-bc)}}{2}$. If a + d < 0 and ad - bc > 0, then either (i) both eigenvalues are real and negative or (ii) the eigenvalues are complex with negative real part. Since the corresponding solutions have factors $e^{(\operatorname{Re}\lambda)t}$, it follows that all solutions $\rightarrow 0$ as $t \rightarrow \infty$.

3. We can write in this way with

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a_1 & a_2 & a_3 \end{pmatrix}.$$

We have

$$(A - \lambda \mathbb{I}) = \begin{pmatrix} -\lambda & 1 & 0\\ 0 & -\lambda & 1\\ a_1 & a_2 & a_3 - \lambda \end{pmatrix}$$

and so $\det(A - \lambda \mathbb{I}) = a_1 + a_2\lambda + a_3\lambda^2 - \lambda^3$. Hence $\det(A - \lambda \mathbb{I}) = 0$ is equivalent to the characteristic equation given.

An eigenvector \boldsymbol{v} corresponding to λ obeys

$$\begin{aligned} -\lambda v_1 + bv_2 &= 0\\ -\lambda v_2 + v_3 &= 0\\ a_1 v_1 + a_2 v_2 + (a_3 - \lambda)v_3 &= 0. \end{aligned}$$

The 3rd equation follows from the other two and the characteristic equation. Hence we can choose

$$\boldsymbol{v} = \begin{pmatrix} 1 \\ \lambda \\ \lambda^2 \end{pmatrix}.$$

The general solution is then

$$\boldsymbol{x} = c_1 e^{\lambda_1 t} \begin{pmatrix} 1\\\lambda_1\\\lambda_1^2 \end{pmatrix} + c_2 e^{\lambda_2 t} \begin{pmatrix} 1\\\lambda_2\\\lambda_2^2 \end{pmatrix} + c_3 e^{\lambda_3 t} \begin{pmatrix} 1\\\lambda_3\\\lambda_3^2 \end{pmatrix}.$$

4. The eigenvalues and eigenvectos of the amtrix are -1, 2 and $\begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ respectively. Hence a FSS is given by

$$e^{-t}\begin{pmatrix} \frac{1}{2}\\ 1 \end{pmatrix}, \quad e^{2t}\begin{pmatrix} 2\\ 1 \end{pmatrix}.$$

The corresponding fundamental matrix is

$$Y(t) = \begin{pmatrix} \frac{1}{2}e^{-t} & 2e^{2t} \\ e^{-t} & e^{2t} \end{pmatrix}.$$

We find

$$Y(t)^{-1} = -\frac{2}{3} \begin{pmatrix} e^t & -2e^t \\ -e^{-2t} & \frac{1}{2}e^{-2t} \end{pmatrix}$$

Hence the solution is given by

$$\boldsymbol{x}(t) = Y(t)Y^{-1}(0) \begin{pmatrix} 1\\ 2 \end{pmatrix} = e^{-t} \begin{pmatrix} 1\\ 2 \end{pmatrix}.$$

Note that this isn't the easiest way of solving this equation!

5. There are 2 ways of solving this problem. First, the easier way: If we denote the matrix by A, the eigenvalues are given by the roots of

$$\det(A - \lambda \mathbb{I}) = \lambda^2 - 4 = 0, \text{ such that } \lambda = \pm 2.$$

The eigenvector $v^{(1)}$ corresponding to $\lambda = 2$ is given by the soln of

$$\begin{array}{rcl} v_1 + v_2 &=& 2v_1 \\ 3v_1 - v_2 &=& 2v_2 \end{array}$$

which reduce to the single equation $v_1 = v_2$. So we can choose $\boldsymbol{v}^{(1)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. The eigenvector \boldsymbol{v}_2 corresponding to $\lambda = 2$ is given by the soln of

$$\begin{aligned}
 v_1 + v_2 &= -2v_1 \\
 3v_1 - v_2 &= -2v_2
 \end{aligned}$$

which reduce to the single equation $3v_1 = -v_2$. So we can choose $v^{(2)} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$. Hence, the general solution of (2) is

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = c_1 e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 e^{-2t} \begin{pmatrix} 1 \\ -3. \end{pmatrix}$$

The solution of the initial value problem is obtained by choosing c_1 and c_2 to obey

$$\begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ -3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Solving, we find $c_1 = \frac{3}{4}$ and $c_2 = \frac{1}{4}$, and so

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \frac{3}{4}e^{2t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \frac{1}{4}e^{-2t} \begin{pmatrix} 1 \\ -3 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 3e^{2t} + e^{-2t} \\ e^{2t} - 3e^{-2t} \end{pmatrix}.$$

The marginally more complicated way involves finding the eigenvalues and eigenvectors as above; computing the fundamental matrix

$$Y(t) = \begin{pmatrix} e^{2t} & e^{-2t} \\ e^{2t} & -3e^{-2t} \end{pmatrix};$$

finding its inverse

$$Y(t)^{-1} = \frac{1}{4} \begin{pmatrix} 3e^{-2t} & e^{-2t} \\ e^{2t} & -e^{2t} \end{pmatrix}$$

and then using that

$$x(t) = Y(t)Y(0)^{-1} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{4}Y(t) \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 3e^{2t} + e^{-2t} \\ e^{2t} - 3e^{-2t} \end{pmatrix}.$$

6. If we denote the matrix by A, the eigenvalues are given by the roots of

$$det(A - \lambda \mathbb{I}) = \lambda^2 - 2\lambda + 5 = 0, \text{ such that } \lambda = 1 \pm 2i.$$

The eigenvector $\boldsymbol{v}^{(1)}$ corresponding to 1+2i is given by the soln of

$$v_1 + 2v_2 = (1+2i)v_1 -2v_1 + v_2 = (1+2i)v_2$$

which reduce to the single equation $v_2 = iv_1$. So we can choose $\boldsymbol{v}^{(1)} = \begin{pmatrix} 1 \\ i \end{pmatrix}$. The eigenvector $\boldsymbol{v}^{(2)}$ corresponding to $\lambda = 1 - 2i$ is the complex conjugate $\boldsymbol{v}^{(2)} = \begin{pmatrix} 1 \\ -i \end{pmatrix}$. We can find two real solutions by taking the real and imaginary parts of the complex solution

$$e^{(1+2i)t} \begin{pmatrix} 1\\i \end{pmatrix} = e^t (\cos(2t) + i\sin(2t)) \begin{pmatrix} 1\\i \end{pmatrix}$$
$$= e^t \begin{pmatrix} \cos(2t)\\-\sin(2t) \end{pmatrix} + ie^t \begin{pmatrix} \sin(2t)\\\cos(2t) \end{pmatrix}$$

Thus we have two solutions

$$\boldsymbol{x}^{(1)}(t) = e^t \begin{pmatrix} \cos(2t) \\ -\sin(2t) \end{pmatrix}, \quad \boldsymbol{x}^{(2)}(t) = e^t \begin{pmatrix} \sin(2t) \\ \cos(2t) \end{pmatrix}.$$