
Solutions 5

Module F13YT2

1. We may write (1) as L[y] = f(x).
Then u2 − u1 and u3 − u2 are solutions of L[y] = 0, i.e., ex and 1 are solutions of L[y] = 0.
Since u1(x) is a particular solution of L[y] = f , any solution of L[y] = f can be written as
y(x) = x + c1e

x + c2 × 1.
Since y(0) = 1, we require 1 = 0 + c1 + c2 , i.e., c1 + c2 = 1.
Also y′(x) = 1 + c1e

x. Hence, as y′(0) = 3, we require 3 = 1 + c1.
Thus c1 = 2 and c2 = −1 and so the required solution is y(x) = x + 2ex − 1.

2. (i) Let z = dy
dx and consider z as a function of y.

Then d2y
dx2 = z dz

dy and equation becomes z dz
dy = 3y2.

Hence z dz = 3y2 dy and so 1
2z2 = y3 + c1.

Since y(0) = 2 and y′(0) = 4, z = 4 when y = 2 and so c1 = 0.
Hence 1

2z2 = y3, i.e., ( dy
dx)2 = 2y3. Thus, as dy

dx(0) = 4 > 0, we must solve dy
dx = +

√
2y

3
2 .

Hence y−
3
2 dy =

√
2dx ⇒ −2y−

1
2 =

√
2x + c2.

Since y(0) = 2, c2 = −√2.
Hence −2y−

1
2 =

√
2x−√2 and so y(x) = 2

(1−x)2
.

(ii) Equation may be written as z dz
dx = x where z = dy

dx .
Thus z dz = x dx and so z2 = x2 + c1.
Since z = 1 when x = 1, c1 = 0 and so we must have ( dy

dx)2 = x2. Since dy
dx(1) = 1 > 0, we

must solve dy
dx = x. Hence y = 1

2x2 + c2. Since y(1) = 2, c2 = 3
2 and so y(x) = 1

2x2 + 3
2 .

3. This equation is of Euler form. After the substitution u = ln(x), we get

d2y

du2
+ 2

dy

du
− 3y = 0.

The characteristic equation λ2 + 2λ − 3 = (λ + 3)(λ − 1) has roots −3, 1. Thus the general
solution is

y(x) = Ax−3 + Bx.

4. (a) We seek a solution of the form y(x) = ax2 + bx + c.
Then y′(x) = 2ax + b and y′′(x) = 2a.
Thus we require 2a + 4(2ax + b) + 4(ax2 + bx + c) = x2,
i.e., 4a = 1, 8a + 4b = 0, 2a + 4b + 4c = 0, i.e., a = 1

4 , b = −1
2 , c = 3

8 .
Thus y(x) = 1

8(2x2 − 4x + 3) is a particular solution.

(b) Since k = 1 is a solution of the characteristic equation, we seek a solution of the form
y(x) = kxex.
Then y′(x) = kex + kxex and y′′(x) = 2kex + kxex.
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Thus we require [2k + kx− 4(k + kx) + 3kx]ex = 2ex, i.e., −2k = 2,
i.e., k = −1.
Thus y(x) = −xex is a particular solution.

(c) Equation can be written as y′′ + 2y′ + 5y = Re(e2ix).
We seek a particular solution of the form y(x) = ce2ix.
Then y′(x) = 2ice2ix and y′′(x) = −4ce2ix.
Thus we require (−4c + 4ic + 5c)e2ix = e2ix, i.e., (1 + 4i)c = 1 and so c = 1

1+4i = 1
17(1− 4i).

Thus complex equation has part. soln. y(x) = 1
17(1− 4i)(cos(2x) + i sin(2x)).

Taking real part we obtain the part. soln. y(x) = 1
17(cos(2x) + 4 sin(2x)).

(d) y′′+y = 0 has fundamental set of solutions y(1)(x) = sin(x), y(2)(x) = cos(x). The Wron-
skian W (y(1), y(2)) = −1. The method of variation of parameters tells us that a particular
solution is given by

y(x) = c1(x) sin(x) + c2(x) cos(x).

where

c1(x) =
∫

cos(x) sec(x)dx = x

c2(x) = −
∫

sin(x) sec(x)dx = −
∫

tan(x)dx = ln(cos(x)).

Thus a particular solution is

y(x) = x sin(x) + ln(cos(x)) cos(x).

5. (i) The characteristic equation is

λ2 + 3λ + 2 = (λ + 2)(λ + 1)

with roots −2,−1. Thus e−2t is a solution of the homogenous equation and we need to try a
particular solution of the form yp(x) = cte−2t. Substituting into the equation, we find

ce−2t(4t− 4 + 3(1− 2t) + 2t) = 5e−2t.

Thus c = −5, and a particular solution is

yp(t) = −5te−2t

. The general solution is therefore

y(t) = −5te−2t + Ae−2t + Be−t.

(ii) The method of variation of parameter tells us that

yp(t) = c1(t)e−2t + c2(t)e−t.

The Wronksian is given by

W (e−2t, e−t) = e−3t,
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and hence the coefficients are

c1(t) = −
∫

e−te3t5e−2tdt = −
∫

5dt = −5t

c2(t) =
∫

e−2te3t5e−2tdt =
∫

5e−tdt = −5e−t

Thus a particular solution is

yp(t) = −5te−2t − 5e−2t,

and the general solution is

y(t) = −5te−2t + Ae−2t + Be−t.

6. By inspection y(x) = x is a solution. We seek another solution of the form

y(x) = xc(x).

Then y′ = c + xc′ and y′′ = 2c′ + xc′′. Thus substituting into the equation we obtain

(1 + x2)(2c′ + xc′′)− 2x(c + xc′) + 2xc = x(1 + x2)c′′ + 2c′ = 0.

Hence, letting u = c′, we get

x(1 + x2)u′ + 2u = 0,

i.e.,

u′ +
2

x(1 + x2)
u = 0.

This is a separable equation; separating variables we find∫
du

u
= −

∫
2

x(1 + x2)
dx = −

∫
(
2
x
− 2x

1 + x2
) dx = −2 ln(x) + ln(1 + x2)

i.e.,

u(x) =
A(1 + x2)

x2

for some constant A. Thus we may choose

u(x) =
1
x2

+ 1

and so c(x) is determined by

c′(x) = 1 +
1
x2

,

which is solved by

c(x) = x− 1
x

.

Thus we obtain another solution

y(x) = xc(x) = x2 − 1

and so a fundamental set of solutions is

{x, x2 − 1}.

3


