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1. (i) − y′′ = λy; y′(0) = 0, y′(1) = 0.
Suppose λ < 0; then we may write λ = −k2 where k > 0.
Then y′′ = k2y has general solution y = Acosh(kx) + Bsinh(kx).
We have y′ = Aksinh(kx) + Bkcosh(kx).
y′(0) = 0 ⇐⇒ Bk = 0 =⇒ B = 0. Hence
y′(1) = 0 ⇐⇒ Aksinh(k) = 0, i.e., A = 0.
Thus we must have A = B = 0.
Hence, if λ < 0, y ≡ 0 is the only solution, i.e., λ is not an eigenvalue.

Suppose λ = 0; then equation becomes y′′ = 0 which has general solution y = Ax + B.
Now y′(0) = y′(1) = 0 ⇐⇒ A = 0.
Thus y(x) ≡ B is a solution for any constant B and so λ = 0 is an eigenvalue.

Suppose λ > 0; then we may write λ = k2 where k > 0.
Then y′′ = −k2y has general solution y = A cos(kx) + B sin(kx).
We have y′ = −kA sin(kx) + kB cos(kx).
y′(0) = 0 ⇐⇒ Bk = 0, i.e., B = 0. Hence
y′(1) = 0 ⇐⇒ −kA sin(k) = 0 ⇐⇒ A = 0 or sin(k) = 0
⇐⇒ A = 0 or k = nπ where n > 0 is an integer.
Thus y = cos(nπx) is a nonzero solution corresponding to λ = n2π2.
So eigenvalues are 0, π2, 4π2, . . . with eigenfunctions 1, cos(πx), cos(2πx), ..

(ii) − y′′ = λy; y(0) = 0, y′(1) = 0.
Suppose λ < 0; then we may write λ = −k2 where k > 0.
Then y′′ = k2y has general solution y = Acosh(kx) + Bsinh(kx).
We have y′ = Aksinh(kx) + Bkcosh(kx).
y(0) = 0 ⇐⇒ A = 0. Hence
y′(1) = 0 ⇐⇒ Bkcosh(k) = 0, i.e., B = 0.
Thus we must have A = B = 0.
Hence, if λ < 0, y ≡ 0 is the only solution, i.e., λ is not an eigenvalue.

Suppose λ = 0; then equation becomes y′′ = 0 which has general solution y = Ax + B.
Now y(0) = 0 ⇐⇒ B = 0; y′(0) = 0 ⇐⇒ A = 0.
Thus y ≡ 0 is the only solution and so λ = 0 is not an eigenvalue. Suppose λ > 0; then we may write
λ = k2 where k > 0.
Then y′′ = −k2y has general solution y = A cos(kx) + B sin(kx).
y(0) = 0 ⇐⇒ A = 0. Hence
y′(1) = 0 ⇐⇒ kB cos(k) = 0 ⇐⇒ B = 0 or cos(k) = 0
⇐⇒ B = 0 or k = π

2 + nπ for n = 0, 1, 2 . . .
Therefore y = sin[(π

2 + nπ)x] is a nonzero solution corresponding to λ = (π
2 + nπ)2.

Hence eigenvalues are π2

4 , 9π2

4 , 25π2

4 , . . . corresponding to the eigenfunctions sin(πx
2 ), sin(3πx

2 ), sin(5πx
2 ), . . . .

2. The Fourier cosine series of f is given by a0 +
∑∞

n=1 an cos(nπx
2 ) where

a0 =
1
4

∫ 2

−2
f(x) dx =

1
2

∫ 2

0
f(x) dx =

1
2

∫ 1

0
dx =

1
2
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and
an = 1

2

∫ 2
−2 f(x) cos(nπx

2 ) dx =
∫ 1
0 cos(nπx

2 ) dx = 2
nπ sin(nπx

2 )|10

= 2
nπ sin(nπ

2 ) =




0 if n is even
2

nπ if n = 4k + 1
− 2

nπ if n = 4k + 3.

Hence, the Fourier cosine series is

1
2

+
2
π
{cos(

πx

2
)− 1

3
cos(

3πx

2
) +

1
5

cos(
5πx

2
)− . . . }.

The Fourier sine series of f is given by
∑∞

n=1 bn sin(nπx
2 ) where

bn = 1
2

∫ 2
−2 f(x) sin(nπx

2 ) dx =
∫ 1
0 sin(nπx

2 ) dx = − 2
nπ cos(nπx

2 )|10

= 2
nπ (1− cos(nπ

2 )) =




2/nπ if n is odd
0 if n = 4k
4/nπ if n = 4k + 2.

Hence the Fourier sine series is

2
π
{sin(

πx

2
) +

2
2

sin(
2πx

2
) +

1
3

sin(
3πx

2
) + sin(

5πx

2
) +

2
6

sin(
6πx

2
) + . . . }.

3. (i) −y′′ = λy; αy(0) + y′(0) = 0, y(1) = 0
(i) First we investigate the existence of positive eigenvalues.
Suppose λ > 0; λ = k2 say.
Then −y′′ = k2y has general solution y = A cos(kx) + B sin(kx).
αy(0) + y′(0) = 0 ⇐⇒ αA + kB = 0 ⇐⇒ B = −α

k A. Hence
y(1) = 0 ⇐⇒ A cos(k)− α

k A sin(k) = 0
⇐⇒ A = 0 or k cos(k)− α sin(k) = 0.

If α = 0, we obtain eigenvalues when cos(k) = 0,
i.e., when k = π

2 + nπ, n = 0, 1, 2, . . . , i.e., λ = π2

4 , 9π2

4 , 25π2

4 , . . . .

If α 6= 0, then k cos(k)− α sin(k) = 0 ⇐⇒ tan(k) = k
α .

The line k → k
α intersects infinitely many of the branches of k → tan(k) and so there are infinitely

many eigenvalues.

> 0 < 0α α

(ii) and (iii) We now investigate the existence of negative eigenvalues.
Suppose λ < 0; λ = −k2 say.
Then y′′ = k2y has general solution y = Acosh(kx) + Bsinh(kx).
Then αy(0) + y′(0) = 0 ⇐⇒ αA + kB = 0. (1)
Also
y(1) = 0 ⇐⇒ Acosh(k) + Bsinh(k) = 0 ⇐⇒ A = −tanh(k)B. (2)
Hence we must have −α tanh(k)B + kB = 0 ⇐⇒ B = 0 or k

α = tanh(k).
Hence we obtain a negative eigenvalue if and only if the straight line k → k

α intersects the graph
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α α< 0 > 10 < α < 1

of k → tanh(k) at points k > 0. The graphs below show that this does not occur if α < 0 or if
0 < α < 1 but does occur when α > 1.
If α = 0, it follows easily from equations (1) and (2) above that A = B = 0, i.e., there is no negative
eigenvalue.

(iv) Finally we investigate the case where λ = 0.
Then y′′ = 0 has general solution y = Ax + B. Hence
αy(0) + y′(0) = 0 ⇐⇒ αB + A = 0. (1).
y(1) = 0 ⇐⇒ A + B = 0. (2)
(1) and (2) have a nonzero solution if and only if α = 1.
Thus λ = 0 is an eigenvalue if and only if α = 1.
If α = 1, then (1) and (2) have a solution A = 1 and B = −1 and so we have the eigenfunction x−1.

4. (a)
∫ 1
0 1 dx = 1,

∫ 1
0 cos2(nπx) dx = 1

2

∫ 1
0 [1 + cos(2nπx)] dx = 1

2 .

Hence eigenfunction expansion is f(x) ∼ a0 +
∑∞

n=1 an cos(nπx) where
a0 =

∫ 1
0 1 . x dx = 1

2
and
an = 2

∫ 1
0 x cos(nπx) dx = 2

nπx sin(nπx)|10 − 2
nπ

∫ 1
0 sin(nπx) dx

= 2
nπ

1
nπ cos(nπx)|10 =

{
0 if n is even
− 4

n2π2 if n is odd.
Hence eigenfunction expansion is
f(x) ∼ 1

2 − 4
π2 {cos(πx) + 1

9 cos(3πx) + 1
25 cos(5πx) + . . . }.

(b)
∫ 1
0 sin2(nπx

2 ) dx = 1
2

∫ 1
0 [1− cos(nπx)] dx = 1

2 .
Hence eigenfunction expansion is f(x) ∼ ∑∞

n=1 cn sin(nπx
2 ) where

cn = 2
∫ 1
0 x sin(nπx

2 ) dx = −2x 2
nπ cos(nπx

2 |10 + 4
nπ

∫ 1
0 cos(nπx

2 ) dx
= − 4

nπ cos(nπ
2 ) + 4

nπ
2

nπ sin(nπx
2 ) |10 = − 4

nπ cos(nπ
2 ) + 8

n2π2 sin(nπ
2 )

=




−4/nπ if n = 4k
8/n2π2 if n = 4k + 1
4/nπ if n = 4k + 2
−8/n2π2 if n = 4k + 3.

Thus eigenfunction expansion is

8
π2 {sin(πx

2 )− 1
9 sin(3πx

2 ) + 1
25 sin(5πx

2 ) + . . . }+ 4
π{1

2 sin(πx)− 1
4 sin(2πx)

+ 1
6 sin(3πx)− . . . }.

5. −y′′ = λy; y(0) = 0, y(π) + y′(π) = 0.

Suppose λ < 0, i.e., λ = −k2 say.
Then y′′ = k2y has general solution y(x) = Acosh(kx) + Bsinh(kx).
y(0) = 0 ⇐⇒ A = 0. Hence
y(π) + y′(π) = 0 ⇐⇒ B sinh(kπ) + Bk cosh(kπ) = 0
⇐⇒ B = 0 or sinh(kπ) + k cosh(kπ) = 0 ⇐⇒ B = 0.
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Hence, if λ < 0, y ≡ 0 is the only solution, i.e., λ is not an eigenvalue.

Suppose λ = 0, i.e., equation becomes y′′ = 0 which has general solution y = Ax + B.
y(0) = 0 ⇐⇒ B = 0. Hence
y(π) + y′(π) = 0 ⇐⇒ Aπ + A = 0 ⇐⇒ A = 0.
Hence y ≡ 0 is the only solution and so λ = 0 is not an eigenvalue.

Suppose λ > 0, i.e., λ = k2 say.
Then y′′ = k2y has general solution y(x) = A cos(kx) + B sin(kx).
y(0) = 0 ⇐⇒ A = 0. Hence
y(π) + y′(π) = 0 ⇐⇒ B sin(kπ) + Bk cos(kπ) ⇐⇒ B = 0 or k = −tan(kπ).
The graph below shows that k = −tan(kπ) has infinitely many positive solutions k1, k2, . . . corre-
sponding to eigenvalues λ1 = k2

1, λ2 = k2
2, . . . .

The corresponding eigenfunctions are sin(
√

λnx).
We now find the eigenfunction expansion of f(x) = x in terms of these eigenfunctions.∫ π
0 sin2(

√
λnx) dx = 1

2

∫ π
0 [1− cos(2

√
λnx)] dx = π

2 − 1
4
√

λn
sin(2

√
λnx)|π0

= π
2 − 1

4
√

λn
sin(2

√
λnπ) = π

2 − 1
2
√

λn
sin(

√
λnπ) cos(

√
λnπ)

= 1
2(π + cos2(

√
λn) (as sin(

√
λnπ) +

√
λn cos(

√
λnπ) = 0 and so

sin(
√

λnπ) = −√λn cos(
√

λnπ)).
Hence eigenfunction expansion is f(x) ∼ ∑∞

n=1 an sin(
√

λnx) where

an = 2
π+cos2(

√
λnπ)

∫ π
0 sin(

√
λnx) dx = 2

π+cos2(
√

λnπ)
. − 1√

λn
cos(

√
λnx)|π0

= 2√
λn(π+cos2(

√
λnπ))

(1− cos(
√

λnπ)).
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