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1 An Introduction to Differential Equations

1.1 General remarks

The study of differential equations occupies a central place in both applied and pure

mathematics. It is fair to say that the subject is the most important part of mathemat-

ics for understanding the physical sciences. Applications also abound in other fields,

such as engineering, biology and economics. The questions encountered in studying

differential equations have in turn inspired many key ideas and concepts in pure math-

ematics, in particular in analysis. Examples include the theory of Fourier series and

Hilbert spaces.

A differential equation is an equation involving a function and its derivatives. If the

function depends on one variable only we call it an ordinary differential equation. If

it depends on several variables we call it a partial differential equation. In both cases,

the order of the differential equation is the order of the highest derivative occurring in

it.

Example 1.1.

dy

dx
− xy = 0 is a first order ordinary differential equation.

d2y

dx2
− (

dy

dx
)3 = 3 is a second order ordinary differential equation.

∂u

∂t
=

∂2u

∂x2
is a second order partial differential equation.

In this course we are only concerned with ordinary differential equations, which I

will call ODEs for brevity.

1.2 1st order ODEs

The most general first order ODE is of the form

F (x, y,
dy

dx
) = 0. (1.1)

The function y(x) is a solution of (1.1) if

F (x, y(x),
dy

dx
(x)) ≡ 0. (1.2)

We call a first order ODE explicit if it is of the form

dy

dx
= f(x, y). (1.3)

Otherwise the ODE is called implicit.
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Example 1.2.

dy

dx
= 6y + 3x2 is explicit,

2y(
dy

dx
)2 + 7x2 dy

dx
+ 3y = 4 is implicit.

Before we try to understand the general case, we consider some examples where

solutions can be found by elementary methods.

1.2.1 Separable equations

The simplest example of a separable differential equation is of the elementary form

dy

dx
= f(x). (1.4)

The solution is (by definition) by integration

y(x) =

∫
f(x)dx. (1.5)

Note that the right hand side is an indefinite integral - determined only up to a constant.

As we shall see, solutions of first order differential equations are only determined up

to one arbitrary constant.

The solution of an general order ODE containing the maximum number of arbitrary

constants is called the general solution, and a solution with no arbitrary constants

is call a particular solution.

Let us compute the general solution of the following slightly more complicated

equation:

dy

dx
= 2xy2 (1.6)

It can be solved by separating the variables, i.e. by bringing all x-dependence to one

side and all y-dependence to the other:∫
1

y2
dy =

∫
2xdx

Integrating once yields

−1

y
= x2 + c,

where c is an arbitrary real constant. Hence, the general solution of (1.6) is

y = − 1

x2 + c
. (1.7)

The constant c is determined if we give the value of y at one point, e.g. at x = 0.

Note: In dividing by y we have “lost” one solution: y ≡ 0 also solves (1.6), but it is

not included in the general family (1.7).
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Any equation of the form

dy

dx
= f(x)g(y) (1.8)

can be solved by separating the variables - at least in principle. The solution y(x) is

determined implicitly by ∫
1

g(y)
dy =

∫
f(x)dx. (1.9)

In practice it may not be possible to express the integrals in terms of elementary

functions and to solve explicitly for y.

1.2.2 Linear equations

A first order explicit equation that can be written in the form

dy

dx
+ a(x)y = b(x), (1.10)

is called a linear equation.

Consider the following example where, for a change, we have denoted the indepen-

dent variable by t:

dy

dt
+ 2ty = t. (1.11)

First order linear equations can always be solved by using an integrating factor. In the

above example, we multiply both sides by exp(t2) to obtain

et2 dy

dt
+ 2tet2y = tet2 . (1.12)

Now the LHS has become a derivative:

d

dt
(et2y) = tet2 . (1.13)

This is of the elementary form (1.4). Integrating once yields

et2y =
1

2
et2 + c

so that the general solution is

y(t) =
1

2
+ ce−t2 . (1.14)

More generally, equations of the form

dy

dt
+ a(t)y = b(t), (1.15)
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where a and b are arbitrary functions of t, can be solved using the integrating factor

I(t) = exp(

∫
a(t)dt). (1.16)

Since the indefinite integral
∫

a(t)dt is only determined up to an additive constant,

the integrating factor is only determined up to a multiplicative constant: if I(t) is an

integrating factor, so is C ·I(t). Multiplying (1.15) by I(t) we obtain

d

dt
(I(t)y(t)) = I(t)b(t). (1.17)

Now integrate and solve for y(t) to find the general solution.

1.2.3 Change of variables

Sometimes ODEs can be simplified and solved by changing variables. We illustrate

how this works by considering two important classes of ODEs

a)Homogeneous equations

These are equations of the form

dy

dx
= f(

y

x
) (1.18)

such as a

dy

dx
=

2xy

x2 + y2
=

2( y
x
)

1 + ( y
x
)2

. (1.19)

If we define u = y
x

then y = xu and using the product rule we obtain

dy

dx
= u + x

du

dx
(1.20)

Hence the equation (1.18) can be rewritten as

x
du

dx
= f(u)− u (1.21)

which is separable and hence solvable. In our example (1.19) we obtain the following

equation for u:

x
du

dx
=

2u

1 + u2
− u (1.22)

which becomes, after separating variables∫
1 + u2

u(1− u)(1 + u)
du =

∫
1

x
dx (1.23)

Using partial fractions

1 + u2

u(1− u)(1 + u)
=

1

u
+

1

1− u
− 1

1 + u
(1.24)
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we deduce that u is determined as a function of x by

u

1− u2
= cx (1.25)

where c is an arbitrary constant. The general solution is thus given implicitly by

y = c(x2 − y2). (1.26)

b) Bernoulli equations (Jakob Bernoulli, 1654-1705)

These are equations of the form

dy

dx
+ a(x)y = b(x)yα, (1.27)

where α is a real number not equal to 1. Let u = y1−α. Then

du

dx
=

du

dy

dy

dx
= (1− α)y−α dy

dx
. (1.28)

Therefore, (1.27) becomes, after multiplying by (1− α)y−α,

du

dx
+ (1− α)a(x)u = (1− α)b(x). (1.29)

This is linear and can be solved by finding an integrating factor

Example 1.3. The equation
dy

dx
+ y = y4 becomes a linear equation for u = y−3:

du

dx
− 3u = −3 (1.30)

which we can solve using the integrating factor exp(−3x).

1.2.4 Exact equations

Consider the following equation

(ln x− 2)
dy

dx
+

y

x
+ 6x = 0. (1.31)

If we define

ψ(x, y) = y ln x− 2y + 3x2 (1.32)

then (1.31) can be written

d

dx
ψ(x, y(x)) = 0 (1.33)

and thus solved by

ψ(x, y(x)) = c (1.34)
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for some constant c. Equations which can be written in the form (1.33) for some

function ψ are called exact. It is possible to determine whether a general equation of

the form

a(x, y)
dy

dx
+ b(x, y) = 0 (1.35)

is exact as follows. Suppose the above equation were exact. Then we should be able

to write it in the form (1.33) for some ψ : R
2 → R. However, (1.33) is equivalent to

∂ψ

∂y

dy

dx
+

∂ψ

∂x
= 0. (1.36)

Thus (1.35) is exact if

a(x, y) =
∂ψ

∂y
(x, y) and b(x, y) =

∂ψ

∂x
(x, y) (1.37)

for some function ψ. A necessary condition for the existence of such a function is

therefore

∂a

∂x
=

∂b

∂y
(since

∂2ψ

∂x∂y
=

∂2ψ

∂y∂x
). (1.38)

ψ is then given by integration, i.e., we have both

ψ(x, y) =

∫
a(x, y) dy + g(x) and ψ(x, y) =

∫
b(x, y) dx + h(y)

where g(x) and h(y) are arbitrary functions. They are fixed up to an overall constant

by requiring compatibility of the two expressions for ψ(x, y).

Example 1.4. (x + cos y)
dy

dx
+ y = 0 is exact because

∂

∂x
(x + cos y) =

∂y

∂y
. (1.39)

The function ψ(x, y) is given by requiring both

ψ(x, y) =

∫
(x + cos(y)) dy + g(x) = xy + sin(y) + g(x) and

ψ(x, y) =

∫
dx + h(y) = xy + h(y).

Thus we can choose ψ(x, y) = xy + sin(y) and the general solution of the ODE is

xy + sin(y) = c.

Note that it is sometimes possible to make a non-exact equation exact by multi-

plying with a suitable integrating factor. However, it is only possible to give a recipe

for computing the integrating factor in the linear case. In general one has to rely on

inspired guesswork.
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1.2.5 Existence and uniqueness of solution

Most of the differential equations one encounters in applications cannot be solved by

the elementary methods described so far. However, even in the most general case

one would still like to know whether a solution exists and whether it is unique. Our

experience so far suggest that solutions exist and are unique once we specify the value

of the unknown function at one point. We could therefore ask whether the equations

dy

dx
= f(x, y), y(x0) = α (1.40)

has a unique solution. The two equations together are called an initial value prob-

lem. An important theorem by C.E. Picard (1856-1914) says that, under fairly mild

assumption on f , initial value problems have unique solutions, at least locally.

Theorem 1.5. Suppose f : R
2 → R is continuous in some rectangle |x − x0| ≤

a, |y − α| ≤ b and that the partial derivative ∂f
∂y

is also continuous there. Then there

is an interval |x − x0| ≤ h ≤ a in which the initial value problem (1.40) has a unique

solution.

Remarks

1. Although Picard’s theorem guarantees the existence of a solution for a large class

of equations, it is not generally possible to find an explicit form of the solution

in terms of elementary functions. For example

dy

dx
= sin(xy), y(0) = 1

satisfies the condition of Picard’s theorem but no explicit formula is known for

the solution.

2. If f is not continuous then (1.40) may not have a solution. For example

f(x, y) =

{
1 if x ≥ 0

0 if x < 0
and y(0) = 0.

This would imply that y(x) = x for x ≥ 0 and y(x) = 0 for x < 0, which is not

differentiable at x = 0.

3. If f does not have a continuous first order partial derivative (1.40) may have

more than one solution. For example

dy

dx
= y

1
3 , y(0) = 0

is solved by

y(x) =

{
(2

3
(x− c))

3
2 for x ≥ c ≥ 0

0 for x < c

for any c ≥ 0. y(0) = 0 gives another solution.
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4. Picard’s theorem guarantees a solution for x close to x0, but this solution may

not exist for all x ∈ R:
dy

dx
= 2xy2, y(0) = 1

has the solution

y(x) =
1

1− x2

which tends to infinity as x → ±1.

5. Very straightforward looking equations may have no solution:

x
dy

dx
+ y = x, y(0) = 1.

Writing the equation as d
dx

(yx) = x we deduce y(x) = x/2 + c/x, which is

incompatible with y(0) = 1. Why does Picard’s theorem not apply?

1.2.6 Direction fields

For explicit first order equations of the form

dy

dt
= f(t, y) (1.41)

a geometrical viewpoint is helpful for understanding general properties of solutions.

Suppose we have a solution curve y(t) and draw its graph in the (t, y)-plane. Then

equation (1.41) tells us that the gradient at a point (t, y) on the solution curve is given

by f(t, y). To understand the general nature of all solutions it is therefore helpful to

draw a short line segment through a number of points (t, y) with slope f(t, y). The

collection of all such line segments is called the direction field of the differential

equation (1.41). Any solution curve must be tangential to the direction field at every

point.

Example 1.6. Sketch the direction field for the differential equation

dy

dx
= y(y − 1) (1.42)

and hence sketch the solutions with initial conditions (i) y(0) = 0.5, (ii) y(0) = 1.1.

The simplest way to start is to find the values of x and y for which
dy

dx
= 0,

dy

dx
> 0,

dy

dx
< 0. In this question these are respectively y = 0, 1, y > 1 or y < 0, and 0 < y < 1.

Example 1.7. Sketch the direction field for the differential equation

dy

dx
= x2 + y2 (1.43)

and hence sketch the solutions with initial conditions (i) y(0) = 0.

For more examples of direction fields and methods of sketching them, see the maple

worksheet.
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Figure 1.1: Direction field for (1.42)
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Figure 1.2: Direction field for (1.43)


