Non-local Currents, Quantum Groups and Discrete Holomorphicity

Robert Weston

Heriot-Watt University, Edinburgh

CRM, 13/07/15

Plan

(1) Non-local Currents and Quantum Groups
(2) Discrete Holomorphicity
(3) The Chiral Potts Model
(4) DH Relations and Perturbed CFT
(5) Conclusions
[Ref: Y. Ikhlef, RW, M. Wheeler and P. Zinn-Justin, J. Phys. A 46 (2013) arxiv:1302.4649; Y. Ikhlef and RW, J. Phys. A 48 (2015) arxiv:1502.04944]

Non-local conserved currents and quantum groups

- Consider a quantum group (aka quasi-triangular Hopf algebra) \mathcal{A} which includes elements j, t with

$$
\Delta(j)=j \otimes 1+t \otimes j, \quad \Delta(t)=t \otimes t
$$

- Represent action on rep of \mathcal{A} as

- Acting on tensor product of reps

$$
\Delta(j)=\left.\leadsto\right|_{j \otimes 1} \mid+m \rightarrow \infty
$$

- with obvious extensions to $\Delta^{(N-1)}(j) \in \mathcal{A}^{\otimes N}$:

$$
\Delta^{(N-1)}(j)=\sum_{i} \text { mpspon|i } \mid
$$

Commutation with the R-matrix

- With $\check{R}: V_{1} \otimes V_{2} \rightarrow V_{2} \otimes V_{1} \quad \begin{aligned} & 1 \\ & \psi_{\leftarrow} \\ & \leftarrow 2, \quad \check{R} \Delta(x)=\Delta(x) \check{R} \text { is }\end{aligned}$

$$
\check{R}(j \otimes 1)+\check{R}(t \otimes j)=(j \otimes 1) \check{R} \quad+\quad(t \otimes j) \check{R}
$$

$(t \otimes t) \check{R} \quad=\quad \check{R}(t \otimes t)$

Non-local currents

- A current $j(x, y)$ is an insertion of j at posn (x, y) with an attached t 'tail' heading towards a fixed point on boundary.
- We have

$$
\left\langle j\left(x, y-\frac{1}{2}\right)\right\rangle=\begin{array}{l|l|l|l|l|l}
& & & & & \\
\hline \cdots y & & & & \\
\hline & \langle & M & & & \\
\hline & & \xi & & & \\
\hline & & \ddots & \bullet & \\
\hline & & & & &
\end{array}
$$

- Commutation around vertex (x, y) leads to

$$
\left\langle j\left(x-\frac{1}{2}, y\right)-j\left(x+\frac{1}{2}, y\right)+j\left(x, y-\frac{1}{2}\right)-j\left(x, y+\frac{1}{2}\right)\right\rangle=0
$$

Discrete Holomorphicity

- Λ a planar graph in \mathbb{R}^{2}, embedded in complex plane. Let f be a complex-valued fn defined at midpoint of edges

Discrete Holomorphicity

- Λ a planar graph in \mathbb{R}^{2}, embedded in complex plane. Let f be a complex-valued fn defined at midpoint of edges
- f said to be DH if it obeys lattice version of $\oint f(z) d z=0$ around any cycle.

Around elementary plaquette, we use:

$$
f\left(z_{01}\right)\left(z_{1}-z_{0}\right)+f\left(z_{12}\right)\left(z_{2}-z_{1}\right)+f\left(z_{23}\right)\left(z_{3}-z_{2}\right)+f\left(z_{30}\right)\left(z_{0}-z_{3}\right)=0
$$

$$
z_{i j}=\left(z_{i}+z_{j}\right) / 2
$$

Discrete Holomorphicity

- Λ a planar graph in \mathbb{R}^{2}, embedded in complex plane. Let f be a complex-valued fn defined at midpoint of edges
- f said to be DH if it obeys lattice version of $\oint f(z) d z=0$ around any cycle.

Around elementary plaquette, we use:

$$
f\left(z_{01}\right)\left(z_{1}-z_{0}\right)+f\left(z_{12}\right)\left(z_{2}-z_{1}\right)+f\left(z_{23}\right)\left(z_{3}-z_{2}\right)+f\left(z_{30}\right)\left(z_{0}-z_{3}\right)=0
$$

- Can be written for this cycle as

$$
\frac{f\left(z_{23}\right)-f\left(z_{01}\right)}{z_{2}-z_{1}}=\frac{f\left(z_{12}\right)-f\left(z_{30}\right)}{z_{1}-z_{0}}, \quad \text { a discrete C-R reln } \bar{\partial} f=0
$$

What is use of DH in SM/CFT?

- For review see [S. Smirnov, Proc. ICM 2006, 2010]
- DH of observables has been as a key tool in rigorous proof of existence and uniqueness of scaling limit to particular conformal field theories, e.g.,
- planar Ising model [S. Smirnov, C. Hongler D. Chelkak ..., 2001-] convergence of interfaces to $\operatorname{SLE}(3)$
- site percolation on triangular lattice - Cardy's crossing formula and reln to SLE(6) [S. Smirnov: 2001]
- We find DH condition also useful in identifying the particular integrable CFT perturbation to which SM lattice model corresponds

DH and Integrability

- Observed by [lkhlef, Cardy (09); de Gier, Lee, Rasmussen (09); Alam, Batchelor $(12,14)]$ that candidate operators in various lattice models obey DH in the case when R-matrix obeys Yang-Baxter
- Our construction explains connection by building in terms of non-local conserved currents.

$$
\left.\left\langle j\left(x, y-\frac{1}{2}\right)\right\rangle=\begin{array}{l|l|l|l}
& & & \\
\hline
\end{array} \right\rvert\, \begin{array}{ll}
\\
\hline & \\
& \\
& \\
\hline
\end{array}
$$

$$
\left\langle j\left(x-\frac{1}{2}, y\right)-j\left(x+\frac{1}{2}, y\right)+j\left(x, y-\frac{1}{2}\right)-j\left(x, y+\frac{1}{2}\right)\right\rangle=0
$$

Examples

- Three examples considered:
- Dense $\left(U_{q}\left(\widehat{s}_{2}\right)\right)$ and dilute loop models $\left(U_{q}\left(A_{2}^{(2)}\right)\right)$:
[lkhlef, RW, Wheeler, Zinn-Justin (13)]
- Chiral Potts $\left(U_{q}\left(\widehat{s}_{2}\right)\right)$: [Iklef, RW (15)]
- 4 term relns in massless case give DH relns - discrete version of $\partial_{\bar{z}} \Psi(z, \bar{z})=0$
- 4 terms relns in massive case are of form $\partial_{\bar{z}} \Psi(z, \bar{z})=\sum_{i} \chi_{i}(z, \bar{z})$ where in CFT

$$
\Psi(z) \Phi_{i}^{\text {pert }}(w, \bar{w})=\cdots+\frac{\chi_{i}(w, \bar{w})}{z-w}+\cdots
$$

- The point:
- Can identify the CFT perturbing fields
- Obtain new parafermionic algebraic structures
- Hopefully useful in rigorous proof of scaling limit

The Integrable $Z(N)$ Chiral Potts Model

- See [B. McCoy, Advanced Statistical Mech, OUP, 2010]

The Integrable $Z(N)$ Chiral Potts Model

- See [B. McCoy, Advanced Statistical Mech, OUP, 2010]
- Heights $a \in\{0,1, \cdots, N-1\}$ on vertices:

The Integrable $Z(N)$ Chiral Potts Model

- See [B. McCoy, Advanced Statistical Mech, OUP, 2010]
- Heights $a \in\{0,1, \cdots, N-1\}$ on vertices:

- Boltzmann weights are

$$
W_{r s}(a-b)=a \cdot s
$$

- Rapidities r, s in $W_{r s}(a-b)$ are points on algebraic curve \mathcal{C}_{k} :

$$
x^{N}+y^{N}=k\left(1+x^{N} y^{N}\right), \quad \mu^{N}=\frac{k^{\prime}}{1-k \bar{x}^{N}}=\frac{1-k y^{N}}{k^{\prime}}
$$

CP Representation Theory

- The CP models can be understood in terms of N dim. cyclic representations $V_{r s}$ of $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$ at $q=-e^{i \pi / N}$, where $r, s \in \mathcal{C}_{k}$ [Bazhanov and Stroganov (90); Date, Jimbo, Miki, Miwa (1991)]

CP Representation Theory

- The CP models can be understood in terms of N dim. cyclic representations $V_{r s}$ of $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$ at $q=-e^{i \pi / N}$, where $r, s \in \mathcal{C}_{k}$ [Bazhanov and Stroganov (90); Date, Jimbo, Miki, Miwa (1991)]
- $\widetilde{U}_{q}\left(\widehat{\mathfrak{s}}_{2}\right)$ has generators $e_{i}, f_{i}, t_{i}^{ \pm 1}, z_{i},(i=0,1)$

CP Representation Theory...

- R-matrix $\check{R}\left(r r^{\prime}, s s^{\prime}\right): V_{r r^{\prime}} \otimes V_{s s^{\prime}} \rightarrow V_{s s^{\prime}} \otimes V_{r r^{\prime}}$ is of form:

$$
\check{R}\left(r r^{\prime}, s s^{\prime}\right)\left(v_{a} \otimes v_{b}\right)=\sum_{c, d} \check{R}\left(r r^{\prime}, s s^{\prime}\right)_{c d}^{a b}\left(v_{d} \otimes v_{c}\right),
$$

where $\check{R}\left(r r^{\prime}, s s^{\prime}\right)_{c d}^{a b}=W_{r^{\prime} s}(d-c) \bar{W}_{r^{\prime} s^{\prime}}(a-d) \bar{W}_{r s}(b-c) W_{r s^{\prime}}(a-b)$.

CP Representation Theory...

- R-matrix $\check{R}\left(r r^{\prime}, s s^{\prime}\right): V_{r r^{\prime}} \otimes V_{s s^{\prime}} \rightarrow V_{s s^{\prime}} \otimes V_{r r^{\prime}}$ is of form:

$$
\check{R}\left(r r^{\prime}, s s^{\prime}\right)\left(v_{a} \otimes v_{b}\right)=\sum_{c, d} \check{R}\left(r r^{\prime}, s s^{\prime}\right)_{c d}^{a b}\left(v_{d} \otimes v_{c}\right),
$$

where $\check{R}\left(r r^{\prime}, s s^{\prime}\right)_{c d}^{a b}=W_{r^{\prime} s}(d-c) \bar{W}_{r^{\prime} s^{\prime}}(a-d) \bar{W}_{r s}(b-c) W_{r s^{\prime}}(a-b)$.

- Associating $V_{r r^{\prime}}$ with $\downarrow \downarrow$, we can represent $\check{R}\left(r r^{\prime}, s s^{\prime}\right)_{c d}^{a b}$ by

$$
W_{r s}(a-b)=a \bullet c
$$

where the CP weights are represented by

Non-local currents

- The $\mathcal{A}=\widetilde{U}_{q}\left(\widehat{\mathfrak{s}}_{2}\right)$ elements $j=\bar{e}_{0}=t_{0} f_{0}$ and $t=t_{0} z_{0}^{-1}$ have the required:

$$
\Delta(j)=j \otimes 1+t \otimes j, \quad \Delta(t)=t \otimes t
$$

- The (diagonal) four term relation

factorizes into relns around the four CP components

- Can express in terms of CP plaquette:

where:
$\sigma=\llbracket$ returns value $e^{2 \pi \text { iheight } / N}$ and disorder operator μ is

$\frac{1}{f_{r} f_{s}} \bar{W}_{r s}(a-b-1)=$ 色
- Now define $\mathcal{O}(w)$ to be the operator

$$
\left.\mathcal{O}\left(\left(w_{1}+w_{2}\right) / 2\right)\right)=\exp \left(-i s \operatorname{Arg}\left(w_{1}-w_{2}\right)\right) T\left(\mu\left(w_{2}\right) \sigma\left(w_{1}\right)\right)
$$

where

- $\sigma\left(w_{1}\right)$ is $X=\square$ at CP site w_{1}
- $\mu\left(w_{2}\right)$ is disorder operator ending at dual CP site w_{2}
- T is time ordering (largest $\operatorname{Im}\left(w_{i}\right)$ to right)
- $\operatorname{Arg}(w)$ is principal argument of w
- 'spin' $s=(1-1 / N)$
- Now define $\mathcal{O}(w)$ to be the operator

$$
\left.\mathcal{O}\left(\left(w_{1}+w_{2}\right) / 2\right)\right)=\exp \left(- \text { is } \operatorname{Arg}\left(w_{1}-w_{2}\right)\right) T\left(\mu\left(w_{2}\right) \sigma\left(w_{1}\right)\right)
$$

where

- $\sigma\left(w_{1}\right)$ is $X=\square$ at CP site w_{1}
- $\mu\left(w_{2}\right)$ is disorder operator ending at dual CP site w_{2}

$$
{ }^{w_{2} Q^{*} \underset{w_{1}}{*}\left(w_{1}+w_{2}\right) / 2}
$$

- T is time ordering (largest $\operatorname{Im}\left(w_{i}\right)$ to right)
- $\operatorname{Arg}(w)$ is principal argument of w
- 'spin' $s=(1-1 / N)$
- There is a natural embedding such that 4 term reln becomes

$$
\begin{gathered}
e^{i \phi_{r} / N} \delta z_{1} \mathcal{O}\left(z_{1}\right)+e^{i \phi_{s} / N} \delta z_{2} \mathcal{O}\left(z_{2}\right) \\
+e^{-i \phi_{r} / N} \delta z_{3} \mathcal{O}\left(z_{3}\right)+e^{-i \phi_{s} / N} \delta z_{4} \mathcal{O}\left(z_{4}\right)=0
\end{gathered}
$$

where $x / y=e^{i(2 \phi-\pi) / N}$.

CFT interpretation

- Want to interprete the 'twisted' DH cond

$$
e^{i \phi_{r} / N} \delta_{z_{1}} \mathcal{O}\left(z_{1}\right)+e^{i \phi_{s} / N} \delta z_{2} \mathcal{O}\left(z_{2}\right)+e^{-i \phi_{r} / N} \delta z_{3} \mathcal{O}\left(z_{3}\right)+e^{-i \phi_{s} / N} \delta z_{4} \mathcal{O}\left(z_{4}\right)=0
$$

CFT interpretation

- Want to interprete the 'twisted' DH cond

$$
e^{i \phi_{r} / N} \delta z_{1} \mathcal{O}\left(z_{1}\right)+e^{i \phi_{s} / N} \delta z_{2} \mathcal{O}\left(z_{2}\right)+e^{-i \phi_{r} / N} \delta z_{3} \mathcal{O}\left(z_{3}\right)+e^{-i \phi_{s} / N} \delta z_{4} \mathcal{O}\left(z_{4}\right)=0
$$

around

1. Critical Fateev-Zamolodchikov case

- We have $\phi_{r}=\phi_{s}=k=0$ and $\mathcal{O}(z)$ is known $Z(N)$ F-Z lattice model parafermion with DH condition [Rajabpour \& Cardy 07]

$$
\begin{aligned}
& \delta z_{1} \mathcal{O}_{1}+\delta z_{2} \mathcal{O}_{2}+\delta z_{3} \mathcal{O}_{3}+\delta z_{4} \mathcal{O}_{4}=0 \\
& \text { which is discrete version of } \bar{\partial} \mathcal{O}=0
\end{aligned}
$$

Described by CFT: $c=2(N-1) /(N+2), \mathcal{O}=$ fund. spin $s=1-1 / N$ parafermion.

CFT interpretation

2. General $N>2$ Case

- Cardy (93), Watts (98) predict integrable CP identifiable as

$$
S=S_{F Z}+\int d^{2} r\left[\delta_{+} \Phi_{+}(z, \bar{z})+\delta_{-} \Phi_{-}(z, \bar{z})+\tau \varepsilon(z, \bar{z})\right]
$$

- $\operatorname{spin} 0$ energy operator ε has conf. dim. $\left(h_{\varepsilon}, h_{\varepsilon}\right)$ with $h_{\varepsilon}=2 /(N+2)$
- $\operatorname{spin} \pm 1 \Phi_{ \pm}$have conf. $\operatorname{dim}\left(h_{\varepsilon}+1, h_{\varepsilon}\right)$ and $\left(h_{\varepsilon}, h_{\varepsilon}+1\right)$

CFT interpretation

2. General $N>2$ Case

- Cardy (93), Watts (98) predict integrable CP identifiable as

$$
S=S_{F Z}+\int d^{2} r\left[\delta_{+} \Phi_{+}(z, \bar{z})+\delta_{-} \Phi_{-}(z, \bar{z})+\tau \varepsilon(z, \bar{z})\right]
$$

- spin 0 energy operator ε has conf. dim. $\left(h_{\varepsilon}, h_{\varepsilon}\right)$ with $h_{\varepsilon}=2 /(N+2)$
- $\operatorname{spin} \pm 1 \Phi_{ \pm}$have conf. $\operatorname{dim}\left(h_{\varepsilon}+1, h_{\varepsilon}\right)$ and $\left(h_{\varepsilon}, h_{\varepsilon}+1\right)$
- CFT argument then implies

$$
\bar{\partial} \mathcal{O}(z, \bar{z})=\pi\left(\delta_{+} \chi_{+}(z, \bar{z})+\delta_{-} \chi_{-}(z, \bar{z})+\tau \chi_{0}(z, \bar{z})\right)
$$

where

$$
\begin{aligned}
\mathcal{O}(z) \Phi_{ \pm}(w, \bar{w}) & =+\cdots \frac{\chi_{ \pm}(w, \bar{w})}{z-w}+\cdots ; \operatorname{spin}\left(\chi_{ \pm}\right)=s+1 \mp 1 \\
\mathcal{O}(z) \varepsilon(w, \bar{w}) & =+\cdots \frac{\chi_{0}(w, \bar{w})}{z-w}+\cdots ; \operatorname{spin}\left(\chi_{0}\right)=s-1
\end{aligned}
$$

CFT interpretation

- By expanding around FZ point our DH condition
$e^{i \phi_{r} / N} \delta z_{1} \mathcal{O}\left(z_{1}\right)+e^{i \phi_{s} / N} \delta z_{2} \mathcal{O}\left(z_{2}\right)+e^{-i \phi_{r} / N} \delta z_{3} \mathcal{O}\left(z_{3}\right)+e^{-i \phi_{s} / N} \delta z_{4} \mathcal{O}\left(z_{4}\right)=0$
can be described precisely in this way as discrete version of

$$
\bar{\partial} \mathcal{O}(z, \bar{z})=\pi\left(\delta_{+} \chi_{+}(z, \bar{z})+\delta_{-} \chi_{-}(z, \bar{z})+\tau \chi_{0}(z, \bar{z})\right)
$$

with $\chi_{ \pm}$and χ_{0} identified in terms of correct-spin lattice operators and parameters $\left(\delta_{+}, \delta_{-}, \tau\right)$ given in terms of (r, s).

CFT interpretation

3.The Ising Case

- In general case, we find parafermions associated with $\bar{e}_{1}=t_{1} f_{1}$ also gives DH condition
- Those associated with e_{0} and e_{1} give parafermionic currents with are discretely antiholomorphic

CFT interpretation

3.The Ising Case

- In general case, we find parafermions associated with $\bar{e}_{1}=t_{1} f_{1}$ also gives DH condition
- Those associated with e_{0} and e_{1} give parafermionic currents with are discretely antiholomorphic
- Combining DH relations for \bar{e}_{0} and \bar{e}_{1} in Ising case gives a discrete version of

$$
\bar{\partial} \Psi=-i m \bar{\Psi}
$$

where Ψ and $\bar{\Psi}$ are two spin $\pm 1 / 2$ components of Ising fermions

CFT interpretation

3.The Ising Case

- In general case, we find parafermions associated with $\bar{e}_{1}=t_{1} f_{1}$ also gives DH condition
- Those associated with e_{0} and e_{1} give parafermionic currents with are discretely antiholomorphic
- Combining DH relations for \bar{e}_{0} and \bar{e}_{1} in Ising case gives a discrete version of

$$
\bar{\partial} \Psi=-i m \bar{\Psi}
$$

where Ψ and $\bar{\Psi}$ are two spin $\pm 1 / 2$ components of Ising fermions

- Combing DAH relations for e_{0} and e_{1} gives discrete version of

$$
\partial \bar{\Psi}=i m \psi
$$

- Together $=$ Dirac eqn - seen in Ising by [Riva \& Cardy (06)]

Conclusions

- Quantum group currents give operators with 4 term relns which become condition

$$
\delta z_{1} \mathcal{O}_{1}+\delta z_{2} \mathcal{O}_{2}+\delta z_{3} \mathcal{O}_{3}+\delta z_{4} \mathcal{O}_{4}=0
$$

or a perturbation of it.

- Works for a range of models: dilute and dense loop models [IWWZ (13)] and CP [IW (15)]
- 4 term relns tell us about underlying CFT and the perturbations of CFT our lattice model corresponds to
- Hopefully useful in establishing rigourous scaling limits to CFT (i.e., the Smirnov programme) - but need missing half of DH conditions.

