Non-local Currents, Quantum Groups and Discrete Holomorphicity

Robert Weston

Heriot-Watt University, Edinburgh

CRM, 13/07/15

Plan

- Non-local Currents and Quantum Groups
- 2 Discrete Holomorphicity
- The Chiral Potts Model
- 4 DH Relations and Perturbed CFT
- Conclusions

[Ref: Y. Ikhlef, RW, M. Wheeler and P. Zinn-Justin, J. Phys. A 46 (2013) arxiv:1302.4649; Y. Ikhlef and RW, J. Phys. A 48 (2015) arxiv:1502.04944]

Non-local conserved currents and quantum groups

• Consider a quantum group (aka quasi-triangular Hopf algebra) A which includes elements i, t with

$$\Delta(j) = j \otimes 1 + t \otimes j, \quad \Delta(t) = t \otimes t$$

ullet Represent action on rep of ${\cal A}$ as

$$j = \langle \rangle$$
, $t = \langle \rangle \langle \rangle$,

Acting on tensor product of reps

$$\Delta(j) = \langle b \rangle + \langle b \rangle + \langle b \rangle = \langle b \rangle + \langle b \rangle + \langle b \rangle = \langle b \rangle + \langle b \rangle + \langle b \rangle = \langle b \rangle + \langle b \rangle$$

• with obvious extensions to $\Delta^{(N-1)}(j) \in \mathcal{A}^{\otimes N}$:

$$\Delta^{(N-1)}(j) = \sum_{i} \sim \sim \rightarrow \sim$$

Commutation with the R-matrix

• With $\check{R}:V_1\otimes V_2 o V_2\otimes V_1$ $\stackrel{\downarrow}{\longleftarrow}$ \leftarrow 2 , $\check{R}\Delta(x)=\Delta(x)\check{R}$ is

$$\begin{array}{ccc} & & & & \\ & & & \\ & & & \\ (t \otimes t) \, \check{R} & = & \check{R} \, (t \otimes t) \end{array}$$

5 / 21

Non-local currents

• A current j(x, y) is an insertion of j at posn (x, y) with an attached t 'tail' heading towards a fixed point on boundary.

We have

$$\left\langle j(x,y-\frac{1}{2})\right\rangle =$$

• Commutation around vertex (x, y) leads to

$$\left\langle j(x-\frac{1}{2},y)-j(x+\frac{1}{2},y)+j(x,y-\frac{1}{2})-j(x,y+\frac{1}{2})\right\rangle =0$$

QG **DH** CP pert CFT Conclusions

Discrete Holomorphicity

• Λ a planar graph in \mathbb{R}^2 , embedded in complex plane. Let f be a complex-valued fn defined at midpoint of edges

Discrete Holomorphicity

- Λ a planar graph in \mathbb{R}^2 , embedded in complex plane. Let f be a complex-valued fn defined at midpoint of edges
- f said to be DH if it obeys lattice version of $\oint f(z)dz = 0$ around any cycle.

Around elementary plaquette, we use:

 z_0

$$f(z_{01})(z_1-z_0)+f(z_{12})(z_2-z_1)+f(z_{23})(z_3-z_2)+f(z_{30})(z_0-z_3)=0$$

$$z_3 z_2$$

$$z_{ij}=(z_i+z_j)/2$$

Discrete Holomorphicity

- Λ a planar graph in \mathbb{R}^2 , embedded in complex plane. Let f be a complex-valued fn defined at midpoint of edges
- f said to be DH if it obeys lattice version of $\oint f(z)dz = 0$ around any cycle.

Around elementary plaquette, we use:

 z_0

$$f(z_{01})(z_1-z_0)+f(z_{12})(z_2-z_1)+f(z_{23})(z_3-z_2)+f(z_{30})(z_0-z_3)=0$$

$$z_3 z_2$$

$$z_{ij}=(z_i+z_j)/2$$

• Can be written for this cycle as

$$\frac{f(z_{23}) - f(z_{01})}{z_2 - z_1} = \frac{f(z_{12}) - f(z_{30})}{z_1 - z_0}, \quad \text{a discrete C-R reln } \bar{\partial} f = 0$$

QG **DH** CP pert CFT Conclusions

What is use of DH in SM/CFT?

- For review see [S. Smirnov, Proc. ICM 2006, 2010]
- DH of observables has been as a key tool in rigorous proof of existence and uniqueness of scaling limit to particular conformal field theories, e.g.,
 - planar Ising model [S. Smirnov, C. Hongler D. Chelkak . . . , 2001-] convergence of interfaces to SLE(3)
 - site percolation on triangular lattice Cardy's crossing formula and reln to SLE(6) [S. Smirnov: 2001]
- We find DH condition also useful in identifying the particular integrable CFT perturbation to which SM lattice model corresponds

DH and Integrability

- Observed by [Ikhlef, Cardy (09); de Gier, Lee, Rasmussen (09); Alam, Batchelor (12,14)] that candidate operators in various lattice models obey DH in the case when R-matrix obeys Yang-Baxter
- Our construction explains connection by building in terms of non-local conserved currents.

$$\left\langle j(x,y-\frac{1}{2})\right\rangle =$$

$$\left\langle j(x-\frac{1}{2},y)-j(x+\frac{1}{2},y)+j(x,y-\frac{1}{2})-j(x,y+\frac{1}{2})\right\rangle =0$$

Examples

- Three examples considered:
 - Dense $(U_q(\widehat{sl}_2))$ and dilute loop models $(U_q(A_2^{(2)}))$: [Ikhlef, RW, Wheeler, Zinn-Justin (13)]
 - Chiral Potts $(U_q(\widehat{sl}_2))$: [Iklef, RW (15)]
- 4 term relns in massless case give DH relns discrete version of $\partial_{\bar{z}}\Psi(z,\bar{z})=0$
- 4 terms relns in massive case are of form $\partial_{\bar{z}}\Psi(z,\bar{z})=\sum_{i}\chi_{i}(z,\bar{z})$ where in CFT

$$\Psi(z)\Phi_i^{pert}(w,\bar{w}) = \cdots + \frac{\chi_i(w,\bar{w})}{z-w} + \cdots$$

- The point:
 - Can identify the CFT perturbing fields
 - Obtain new parafermionic algebraic structures
 - Hopefully useful in rigorous proof of scaling limit

The Integrable Z(N) Chiral Potts Model

• See [B. McCoy, Advanced Statistical Mech, OUP, 2010]

11 / 21

The Integrable Z(N) Chiral Potts Model

• See [B. McCoy, Advanced Statistical Mech, OUP, 2010]

• Heights $a \in \{0,1,\cdots,N-1\}$ on vertices:

The Integrable Z(N) Chiral Potts Model

• See [B. McCoy, Advanced Statistical Mech, OUP, 2010]

- Heights $a \in \{0,1,\cdots,N-1\}$ on vertices:
- Boltzmann weights are

$$W_{rs}(a-b) = a \circ b$$
, $\overline{W}_{rs}(a-b) = r \circ b$.

• Rapidities r, s in $W_{rs}(a - b)$ are points on algebraic curve C_k :

$$x^{N} + y^{N} = k(1 + x^{N}y^{N}), \quad \mu^{N} = \frac{k'}{1 - kx^{N}} = \frac{1 - ky^{N}}{1 - kx^{N}}$$

Robert Weston (Heriot-Watt)

CP Representation Theory

• The CP models can be understood in terms of N dim. cyclic representations V_{rs} of $U_q(\widehat{\mathfrak{sl}}_2)$ at $q=-e^{i\pi/N}$, where $r,s\in\mathcal{C}_k$ [Bazhanov and Stroganov (90); Date, Jimbo, Miki, Miwa (1991)]

CP Representation Theory

- The CP models can be understood in terms of N dim. cyclic representations V_{rs} of $U_q(\widehat{\mathfrak{sl}}_2)$ at $q=-e^{i\pi/N}$, where $r,s\in\mathcal{C}_k$ [Bazhanov and Stroganov (90); Date, Jimbo, Miki, Miwa (1991)]
- $\widetilde{U}_a(\widehat{\mathfrak{sl}}_2)$ has generators $e_i, f_i, t_i^{\pm 1}, z_i, (i = 0, 1)$

CP Representation Theory...

ullet R-matrix $\check{R}(rr',ss'):V_{rr'}\otimes V_{ss'} o V_{ss'}\otimes V_{rr'}$ is of form:

$$\check{R}(\mathit{rr}',\mathit{ss}')(v_a\otimes v_b) = \sum_{c,d} \check{R}(\mathit{rr}',\mathit{ss}')^{ab}_{cd}(v_d\otimes v_c),$$

where
$$\check{R}(rr',ss')^{ab}_{cd}=W_{r's}(d-c)\overline{W}_{r's'}(a-d)\overline{W}_{rs}(b-c)W_{rs'}(a-b).$$

CP Representation Theory...

• R-matrix $\check{R}(rr',ss'):V_{rr'}\otimes V_{ss'}\to V_{ss'}\otimes V_{rr'}$ is of form:

$$\check{R}(rr',ss')(v_a\otimes v_b)=\sum_{c,d}\check{R}(rr',ss')^{ab}_{cd}(v_d\otimes v_c),$$

where
$$\check{R}(rr',ss')_{cd}^{ab} = W_{r's}(d-c)\overline{W}_{r's'}(a-d)\overline{W}_{rs}(b-c)W_{rs'}(a-b).$$

• Associating $V_{rr'}$ with $\bigvee_{r}^{r'} \bigvee_{r}^{r'}$, we can represent $\check{R}(rr',ss')^{ab}_{cd}$ by

where the CP weights are represented by

$$W_{rs}(a-b) = \underbrace{a \bullet b}_{rs}, \quad \overline{W}_{rs}(a-b) = \underbrace{a \bullet b}_{rs},$$

Non-local currents

• The $\mathcal{A}=\widetilde{U}_q(\widehat{\mathfrak{sl}}_2)$ elements $j=\bar{e}_0=t_0f_0$ and $t=t_0z_0^{-1}$ have the required:

$$\Delta(j) = j \otimes 1 + t \otimes j, \quad \Delta(t) = t \otimes t$$

• The (diagonal) four term relation

factorizes into relns around the four CP components

• Can express in terms of CP plaquette:

where:

 $\sigma = \blacksquare$ returns value $e^{2\pi i \text{height}/N}$ and disorder operator μ is

$$\frac{f_s}{f_r}W_{rs}(a-b-1) = a + \frac{f_r}{f_s}W_{rs}(a-b+1) = a$$

$$\frac{1}{f_r f_s} \overline{W}_{rs}(a-b-1) = \bigoplus_{b}^{a} f_r f_s \overline{W}_{rs}(a-b+1) = \bigoplus_{b}^{a} f_r f_s \overline{W}_{rs}(a-b+1) = \bigoplus_{b}^{a} f_s \overline{W}_{rs}$$

• Now define $\mathcal{O}(w)$ to be the operator

$$\mathcal{O}((w_1 + w_2)/2)) = \exp(-is \operatorname{Arg}(w_1 - w_2)) T(\mu(w_2)\sigma(w_1))$$

where

- $\sigma(w_1)$ is $X = \blacksquare$ at CP site w_1
- $\mu(w_2)$ is disorder operator ending at dual CP site w_2

$$w_2 \circ (w_1 + w_2)/2$$

- T is time ordering (largest $Im(w_i)$ to right)
- Arg(w) is principal argument of w
- 'spin' s = (1 1/N)

• Now define $\mathcal{O}(w)$ to be the operator

$$\mathcal{O}((w_1 + w_2)/2)) = \exp(-is \operatorname{Arg}(w_1 - w_2)) T(\mu(w_2)\sigma(w_1))$$

where

- $\sigma(w_1)$ is $X = \blacksquare$ at CP site w_1
- $\mu(w_2)$ is disorder operator ending at dual CP site w_2

$$w_2 \circ (w_1 + w_2)/2$$

- T is time ordering (largest $Im(w_i)$ to right)
- Arg(w) is principal argument of w
- 'spin' s = (1 1/N)
- There is a natural embedding such that 4 term reln becomes

$$z_{1} \underset{*}{\cancel{\nearrow}} \underset{*}{\cancel{\nearrow}} z_{4}$$

$$e^{i\phi_{r}/N} \delta z_{1} \mathcal{O}(z_{1}) + e^{i\phi_{s}/N} \delta z_{2} \mathcal{O}(z_{2})$$

$$+ e^{-i\phi_{r}/N} \delta z_{3} \mathcal{O}(z_{3}) + e^{-i\phi_{s}/N} \delta z_{4} \mathcal{O}(z_{4}) = 0$$

where $x/y = e^{i(2\phi - \pi)/N}$.

CFT interpretation

Want to interprete the 'twisted' DH cond

$$e^{i\phi_r/N}\delta z_1\mathcal{O}(z_1) + e^{i\phi_s/N}\delta z_2\mathcal{O}(z_2) + e^{-i\phi_r/N}\delta z_3\mathcal{O}(z_3) + e^{-i\phi_s/N}\delta z_4\mathcal{O}(z_4) = 0$$
around
$$\underbrace{z_1}_{z_2} * z_3$$

CFT interpretation

Want to interprete the 'twisted' DH cond

$$e^{i\phi_r/N}\delta z_1\mathcal{O}(z_1) + e^{i\phi_s/N}\delta z_2\mathcal{O}(z_2) + e^{-i\phi_r/N}\delta z_3\mathcal{O}(z_3) + e^{-i\phi_s/N}\delta z_4\mathcal{O}(z_4) = 0$$

around
$$z_1 \times z_2 \times z_3$$

- 1. Critical Fateev-Zamolodchikov case
- We have $\phi_r = \phi_s = k = 0$ and $\mathcal{O}(z)$ is known Z(N) F-Z lattice model parafermion with DH condition [Rajabpour & Cardy 07]

$$\delta z_1 \mathcal{O}_1 + \delta z_2 \mathcal{O}_2 + \delta z_3 \mathcal{O}_3 + \delta z_4 \mathcal{O}_4 = 0$$

which is discrete version of $\bar{\partial}\mathcal{O}=0$

Described by CFT: c = 2(N-1)/(N+2), $\mathcal{O} = \text{fund. spin } s = 1 - 1/N \text{ parafermion.}$

2. General N > 2 Case

• Cardy (93), Watts (98) predict integrable CP identifiable as

$$S = S_{\rm FZ} + \int d^2r \left[\delta_+ \Phi_+(z,\bar{z}) + \delta_- \Phi_-(z,\bar{z}) + \tau \varepsilon(z,\bar{z}) \right]$$

- spin 0 energy operator arepsilon has conf. dim. $(h_arepsilon,h_arepsilon)$ with $h_arepsilon=2/(N+2)$
- spin ± 1 Φ_{\pm} have conf. dim $(h_{\varepsilon}+1,h_{\varepsilon})$ and $(h_{\varepsilon},h_{\varepsilon}+1)$

2. General N > 2 Case

• Cardy (93), Watts (98) predict integrable CP identifiable as

$$S = S_{\rm FZ} + \int d^2r \left[\delta_+ \Phi_+(z, \bar{z}) + \delta_- \Phi_-(z, \bar{z}) + \tau \varepsilon(z, \bar{z}) \right]$$

- spin 0 energy operator ε has conf. dim. $(h_{\varepsilon},h_{\varepsilon})$ with $h_{\varepsilon}=2/(N+2)$
- spin ± 1 Φ_\pm have conf. dim $(h_\varepsilon+1,h_\varepsilon)$ and $(h_\varepsilon,h_\varepsilon+1)$
- CFT argument then implies

$$\bar{\partial}\mathcal{O}(z,\bar{z}) = \pi \Big(\delta_+ \ \chi_+(z,\bar{z}) + \delta_- \ \chi_-(z,\bar{z}) + \tau \ \chi_0(z,\bar{z})\Big)$$

where

$$\mathcal{O}(z)\Phi_{\pm}(w,\bar{w}) = + \cdots \frac{\chi_{\pm}(w,\bar{w})}{z-w} + \cdots; \text{ spin}(\chi_{\pm}) = s+1 \mp 1$$

$$\mathcal{O}(z)\varepsilon(w,\bar{w}) = + \cdots \frac{\chi_{0}(w,\bar{w})}{z-w} + \cdots; \text{ spin}(\chi_{0}) = s-1$$

By expanding around FZ point our DH condition

$$e^{i\phi_r/N}\delta z_1\mathcal{O}(z_1) + e^{i\phi_s/N}\delta z_2\mathcal{O}(z_2) + e^{-i\phi_r/N}\delta z_3\mathcal{O}(z_3) + e^{-i\phi_s/N}\delta z_4\mathcal{O}(z_4) = 0$$

can be described precisely in this way as discrete version of

$$\bar{\partial}\mathcal{O}(z,\bar{z}) = \pi \Big(\delta_+ \ \chi_+(z,\bar{z}) + \delta_- \ \chi_-(z,\bar{z}) + \tau \ \chi_0(z,\bar{z})\Big)$$

with χ_{\pm} and χ_{0} identified in terms of correct-spin lattice operators and parameters $(\delta_{+}, \delta_{-}, \tau)$ given in terms of (r, s).

QG DH CP **pert CFT** Conclusion

CFT interpretation . . .

3. The Ising Case

- In general case, we find parafermions associated with $\bar{e}_1=t_1f_1$ also gives DH condition
- Those associated with e_0 and e_1 give parafermionic currents with are discretely antiholomorphic

3. The Ising Case

- In general case, we find parafermions associated with $\bar{e}_1=t_1f_1$ also gives DH condition
- Those associated with e₀ and e₁ give parafermionic currents with are discretely antiholomorphic
- Combining DH relations for \bar{e}_0 and \bar{e}_1 in Ising case gives a discrete version of

$$\bar{\partial}\Psi = -im\bar{\Psi}$$

where Ψ and $\bar{\Psi}$ are two spin $\pm 1/2$ components of Ising fermions

QG DH CP **pert CFT** Conclusions

CFT interpretation . . .

3. The Ising Case

- ullet In general case, we find parafermions associated with $ar{e}_1=t_1f_1$ also gives DH condition
- ullet Those associated with e_0 and e_1 give parafermionic currents with are discretely antiholomorphic
- Combining DH relations for \bar{e}_0 and \bar{e}_1 in Ising case gives a discrete version of

$$\bar{\partial}\Psi = -im\bar{\Psi}$$

where Ψ and $\bar{\Psi}$ are two spin $\pm 1/2$ components of Ising fermions

ullet Combing DAH relations for e_0 and e_1 gives discrete version of

$$\partial \bar{\Psi} = im\Psi$$

• Together = Dirac eqn - seen in Ising by [Riva & Cardy (06)]

Conclusions

 Quantum group currents give operators with 4 term relns which become condition

$$\delta z_1 \mathcal{O}_1 + \delta z_2 \mathcal{O}_2 + \delta z_3 \mathcal{O}_3 + \delta z_4 \mathcal{O}_4 = 0$$

or a perturbation of it.

- Works for a range of models: dilute and dense loop models [IWWZ (13)] and CP [IW (15)]
- 4 term relns tell us about underlying CFT and the perturbations of CFT our lattice model corresponds to
- Hopefully useful in establishing rigourous scaling limits to CFT (i.e., the Smirnov programme) - but need missing half of DH conditions.