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1. Applications
• vision, deep learning, symbolic computing

2. Languages
• Functional programmer
• Develop high level parallel languages
• Formalisms with semantics & verification techniques

3. Heterogeneous architectures
• Multicore CPUs, GPUs, FPGAs, HPC

DSLs connect these naturally
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Automatically Programmed Tool (APT)

For numerically controlled cutting machine tools

Predecessor to Computer Aided Manufacturing (CAM) systems
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Semantics

Douglas T. Ross. “Origins of the APT Language for Automatically
Programmed Tools”. In: SIGPLAN Not. 13.8 (Aug. 1978), pp. 61–99.
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Future Proofing
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Domain specificity
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Declarative or Imperative?
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Nomenclature and program layout
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APT Vocabulary
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DSL design

Language design historically hard!

• Semantics
• Future proofing
• Domain specificity
• Declarative or imperative
• Ease of use

Hard in 1978 … still hard now!

These are not new questions to ask

Ross, “Origins of the APT Language for Automatically Programmed Tools”.
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Fast forward 43 years from 1978

PERL for text manipulation; VHDL for hardware description;
LATEXfor typesetting; HTML for document markup; SQL for
database transactions; Maple for symbolic computing; AutoCAD
for computer aided design; Prolog for logic …

Excel macros
for spreadsheets and many things never intended

– Hudak

Paul Hudak. “Domain Specific Languages”. In: ed. by Peter Salus. Vol. 3.
Handbook of Programming Languages, Little Languages and Tools.
MacMillan, Indiana, 1998. Chap. 3.
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This talk

• ”What” is a DSL
• ”Why” bother
• ”How” to build them
• Embedded DSLs
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Paul Hudak: ”A DSL is…”

• Programming language geared for application domain
• Capture semantics of a domain, no more no less
• User immersed in domain knows domain semantics
• Just need a notation to express those semantics

Hudak, “Domain Specific Languages”.
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DSL Design Guidelines

1. Choose a domain
2. Design DSL to capture semantics of domain
3. Use KISS (keep it simple, stupid) principle
4. “Little languages” are a Good Thing
5. Concentrate on domain semantics; not too much on syntax
6. Prototype your design, refine, iterate
7. Build tools to support the DSL
8. Develop applications with the DSL
9. Keep end user in mind; Success = A Happy Customer

Hudak, “Domain Specific Languages”.

16



Domain Specificity

DSLs ACM Computing Survey:

• Some say Cobol a DSL for business applications, others
say this pushes notion of application domain too far

• Think of DSLs in terms of a gradual scale: specialised DSLs
e.g. BNF on left and GPLs such as C++ on right

• Domain-specificity is a matter of degree

Marjan Mernik, Jan Heering, and Anthony M. Sloane. “When and how to
develop domain-specific languages”. In: ACM Comput. Surv. 37.4 (2005),
pp. 316–344.
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DSL Advantages

1. More concise: easy to look at, see, think about, show
2. Programmer productivity

• DSLs tend to be high level meaning shorter programs
3. Programs easier to maintain

• less code ==> less maintenance
4. Reasoning power

• express programs at level of problem domain
• domain knowledge conserved, validated, and reused

Debasish Ghosh. DSLs in Action. Greenwich, CT, USA: Manning Publications
Co., 2010.
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The DSL pay off

• Initial DSL costs high, but software development costs low
• Should eventually start saving time and money

Hudak, “Domain Specific Languages”.
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DSLs: Return On Investment

• Rhapsody: UML software modelling
• Philips had issues with Rhapsody (see paper)
• Dezyne another modelling language
• Dezyne verifies live-lock freedom and determinism
• Philips developed ComMA DSL

Mathijs Schuts, Jozef Hooman, and Paul Tielemans. “Industrial Experience
with the Migration of Legacy Models using a DSL”. In: Real World Domain
Specific Languages Workshop, Vienna, Austria, February 24. 2018, 1:1–1:10.
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DSLs: Return On Investment

• Manual: 576 hours (16 person weeks)
• manual transformation of 8 state machines

• Automated: 190 hours to develop automation
• 60 hours: Rhapsody input, Dezyne output with ComMA
• 15 hours: model learning, equivalence checking
• 25 hours: Visual Studio integration
• 90 hours: develop additional state machine support

ROI = gain from investment − cost of investment

cost of investment

ROI = (576 − 190)/190 ≈ 2

Schuts, Hooman, and Tielemans, “Industrial Experience with the Migration
of Legacy Models using a DSL”.
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Other motivations for DSLs

• Familiar notation for domain experts - SQL
• High level abstraction - Keras
• Speed - Halide
• Productivity - Halide
• Correctness - Ivory
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Speed and Productivity

Halide

• High performance C++ embedded image/array processing
• Separates algorithm from scheduling code
• ”Why DSL?” - programmer productivity

• Halide 24 lines, PyTorch 42 lines, CUDA 308 lines
• ”Why DSL?” - fast performance

• Halide 10x faster than CUDA, 20x faster than PyTorch

• Halide extensions: Automatic Differentiation, Scheduling

Jonathan Ragan-Kelley et al. “Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image processing
pipelines”. In: ACM SIGPLAN PLDI, Seattle, WA, USA, June. 2013, pp. 519–530.
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Func blur_3x3(Func input) {
Func blur_x, blur_y;
Var x, y, xi, yi;

// The algorithm - no storage or order
blur_x(x, y) = (input(x-1, y) + input(x, y) + input(x+1, y))/3;
blur_y(x, y) = (blur_x(x, y-1) + blur_x(x, y) + blur_x(x, y+1))/3;

// The schedule - defines order, locality; implies storage
blur_y.tile(x, y, xi, yi, 256, 32)

.vectorize(xi, 8).parallel(y);

// execute algorithm with the schedule
blur_x.compute_at(blur_y, x).vectorize(x, 8);
return blur_y;

}
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Productivity

Tzu-Mao Li et al. “Differentiable programming for image processing and
deep learning in halide”. In: ACM Trans. Graph. 37.4 (2018), 139:1–139:13.
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Correctness

• Ivory: safe systems programming
• Memory and type safety guarantees
• Uses host language’s type system
• Syntax is deeply embedded, from one AST:

• generates ”safe” C code
• SMT-based symbolic simulator
• Theorem-prover back-end

Industry strength EDSL:

• Boeing use Ivory to implement level-of-interoperability for
a NATO standard interface for Unmanned Control System
(UCS) & Unmanned Aerial Vehicle (UAV) interoperability

Trevor Elliott et al. “Guilt free ivory”. In: Proceedings of the 8th ACM
SIGPLAN Symposium on Haskell, Vancouver, BC, Canada, September 3-4, 2015.
2015, pp. 189–200. 27



Correctness: Ivory

fib_loop :: Def ('[Ix 1000] :-> Uint32)

• Def is Ivory procedure (aka C function)
• '[Ix 1000] :-> Uint32

• takes index argument n
• 0 =< n < 1000
• this procedure returns unsigned 32 bit integer

fib_loop = proc "fib_loop" $ \ n -> body $ do ...

• Ivory body func takes argument of type Ivory eff ()
• eff effect scope enforces type & memory safety
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Notice distinguishing feature?

• Internal DSLs
• Keras (Python)
• Frenetic (Python)
• Halide (C++)
• Ivory (Haskell)

• External DSLs
• SQL

Embedding of external languages too

e.g. Selda: a type safe SQL EDSL, Ivory, etc.

Anton Ekblad. “Scoping Monadic Relational Database Queries”. In:
Proceedings of the 12th ACM SIGPLAN International Symposium on Haskell.
Haskell 2019. Berlin, Germany, 2019, pp. 114–124.
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External DSLs

1. Parser + Interpreter interactive read–eval–print loop
2. Parser + Compiler DSL constructs to another language
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Reasons for externalising DSLs

Syntax

• Domain specific notation not constrained by host’s syntax
• Design Syntax notation familiar to domain experts

Domain reasoning

• Domain specific analysis, verification, optimisation,
parallelisation and transformation (AVOPT)

• Domain specific error messages
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Reasons against externalising

Large engineering effort

• Complex language processor must be implemented
• Parser, interpreter/compiler, debugging tools

”Correct” abstraction of domain

• DSLs from scratch often lead to incoherent designs
• DSL design is hard. Semantics or syntax first?
• Requires (1) domain and (2) language development
expertise. Few people have both.

• Mission creep: programmers want more features

Are we seriously proposing a new language for every domain?
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Embedded DSLs

Focus on semantics not syntax

Metaprogramming tools if you don’t want host language syntax

35



Reasons for internalising DSLs

• Modest development effort
• Rapid prototyping
• Many language processor features for free
• Host tooling (debugging, perf benchmarks, editors) for free
• Lower user training costs
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Reasons against internalising

Usability

• bad error reporting
• host syntax may be far from optimal
• cannot (easily) introduce arbitrary syntax

Performance

• difficult to implement domain specific code optimisations
• limited support for analysis, verification, optimisation,
parallelisation and transformation (AVOPT)

• cannot easily extend compiler

Mernik, Heering, and Sloane, “When and how to develop domain-specific
languages”.
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”You cannot easily extend compiler”…

But you can! With user defined rewrite rules

Compiler makes no attempt to…

• verify correctness of rules
• ensure rewrite produces more efficient code

blur5x5 :: Image -> Image
blur3x3 :: Image -> Image

{-# RULES
"blur5x5/blur3x3" forall image.

(blur3x3 (blur3x3 image)) = blur5x5 image
#-}
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”Embedded DSLs have bad error reporting”…

Not so! Modern language support customised error messages

3 + False

<interactive>:1:1 error:
• No instance for (Num Bool) arising from a use of `+'
• In the expression: 3 + False
In an equation for `it': it = 3 + False

George Wilson. “Functional Programming in Education”. YouTube. July 2019.
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Custom Error Message

import GHC.TypeLits

instance TypeError
(Text "Booleans are not numbers" :$$:
Text "so we cannot add or multiply them")

=> Num Bool where ...

3 + False

<interactive>:1:1 error:
• Booleans are not numbers

so we cannot add or multiple them
• In the expression: 3 + False

In an equation for `it': it = 3 + False
40



Building Embedded DSLs

Syntax

• Pre-processors e.g. macros
• Type embedding - domain types and operators over them

Meta-programming

• Runtime meta-programming e.g. MetaOCaml, Scala LMS
• Compile-time meta-programming e.g. Template Haskell

Custom compilation

• Syntax tree manipulation - deeply embedded compilers
• Extend a compiler for domain specific code generation
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Shallow embedding

• Design types to capture domain
• Implement operators over those domain types

In Haskell a monad might be the central construct

Other languages have other design patterns
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Shallow Embeddings
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Par monad - shallowly embedded for fork/join parallelism

newtype Par a
instance Monad Par
data IVar a

runPar :: Par a -> a
spawn :: NFData a => Par a -> Par (IVar a)
get :: IVar a -> Par a

• Shallow embedding: borrow host’s compiler and runtime
• Simple to implement
• Host compiler has no domain knowledge
• Relies on efficiency of host language’s backend codegen

Simon Marlow, Ryan Newton, and Simon L. Peyton Jones. “A monad for
deterministic parallelism”. In: Haskell Symposium. 2011, pp. 71–82.
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Repa - shallowly embedded array processing language

Goal: array fusion to remove memory IO

• map/map, permutation, replication, slicing, etc.

Implementation:

• types for array ”delayed” representations
• fuse function compositions over ”delayed” arrays

Performance:

• at mercy of GHC’s code generation capabilities

Ben Lippmeier et al. “Guiding parallel array fusion with indexed types”. In:
Proceedings of the 5th ACM SIGPLAN Symposium on Haskell, Haskell 2012,
Copenhagen, Denmark, 13 September 2012. 2012, pp. 25–36.
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gradientX :: Monad m => Image -> m Image
gradientX img = computeP

$ forStencil2 (BoundConst 0) img
[stencil2| -1 0 1

-2 0 2
-1 0 1 |]

gradientY :: Monad m => Image -> m Image
gradientY img = computeP

$ forStencil2 (BoundConst 0) img
[stencil2| 1 2 1

0 0 0
-1 -2 -1 |]

magnitude :: Float -> Float -> Float
magnitude x y = sqrt (x * x + y * y)

sobel img = do
gX <- gradientX img
gY <- gradientY img
zipWith magnitude gX gY
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Repa types and computeP executor
data family Array rep sh e
data instance Array D sh e = ADelayed sh (sh -> e)
data instance Array U sh e = AUnboxed sh (Vector e)

-- types for array representations
data D -- Delayed
data U -- Manifest, unboxed

computeP :: (Load rs sh e, Target rt e)
=> Array rs sh e
-> Array rt sh e
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Shallow Embeddings: Repa

Performance profiling: use host tooling

Is that good or bad?

Haskell is general purpose – suggests ”bad”?

but does have a parallel profiling tool threadscope! 49



Repa Implementation Considerations

• Good: GHC has good multicore/concurrency support
• Good: less engineering reuse GHC code generation
• Questionable: at mercy of GHC code generation

Question:
Can GHC Core be relied on for producing efficient high
performance numerical code? E.g inlining and con-
stant propagation for aggressive array fusion?

GHC Core is a SystemF language, not an array processing IR.
50



Parallel Shallow Embeddings
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Extend host compiler’s code generator…

Let’s look at three approaches:

1. Deeply embedded compiler
2. Compile time metaprogramming
3. Multi-Stage Programming
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Deep EDSL may be ”library + embedded compiler”

or

Deep EDSL may be ”library + embedded runtime system”

How?

Library functions return structures not values
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Accelerate

• Functional array language: map, zipWith, fold, …
• User programs generate CUDA/LLVM programs at runtime

dotp :: Num a => Vector a -> Vector a -> Acc (Scalar a)
dotp xs ys =

let
xs' = use xs
ys' = use ys

in
fold (+) 0 ( zipWith (*) xs' ys' )

• Acc is an Accelerate program, will produce value of type a
• run function generates code, compiles it, executes it

run :: Arrays a => Acc a -> a

Manuel M. T. Chakravarty et al. “Accelerating Haskell array codes with
multicore GPUs”. In: DAMP 2011, Austin, TX, USA, January 23, 2011. ACM, 2011,
pp. 3–14. 55



My function:

brightenBy :: Int -> Acc Image -> Acc Image
brightenBy i = map (+ (lift i))

The structure returned is:

Map (\x y -> PrimAdd `PrimApp` ...)

NOT computed values!

[ 23 98 245 148 198 101 11 3 240 239 201 188 ... ]
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Accelerate Internal IR

dotp :: Num a => Vector a -> Vector a -> Acc (Scalar a)
dotp xs ys =
let xs' = use xs

ys' = use ys
in fold (+) 0 ( zipWith (*) xs' ys' )

Becomes:

Fold add (Const 0) (ZipWith mul xs' ys')
where
add = Lam (Lam (Body (
PrimAdd (FloatingNumType (TypeFloat FloatingDict))

`PrimApp`
Tuple (NilTup `SnocTup` (Var (SuccIdx ZeroIdx))

`SnocTup` (Var ZeroIdx)))))
mul = -- same as add, but using PrimMul ...
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Benefits of preserving ASTs

Things you can do with an Accelerate program

1. Pretty print it
2. Interpret it
3. Optimise program AST at runtime
4. Generate & execute CUDA for GPUs
5. Generate & execute LLVM for CPUs/GPUs
6. Visualise program graph with GraphViz

let program = A.zip (f arr1) (g arr2)
print program -- show it
print print (A.run program) -- run it

58



LLVM/CUDA codegen at (host) runtime

Optimise with runtime knowledge

Similar idea to Multi-Stage Programming (later)

Chakravarty et al., “Accelerating Haskell array codes with multicore GPUs”.
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Template based skeleton compilation

Accelerate AST → LLVM IR

e.g. runtime compilation of map
mkMap aenv apply =

let
(arrOut, paramOut) = mutableArray @sh "out"
(arrIn, paramIn) = mutableArray @sh "in"
paramEnv = envParam aenv

in
makeOpenAcc "map" (paramOut ++ paramIn ++ paramEnv) $ do
start <- return (lift 0)
end <- shapeSize (irArrayShape arrIn)
imapFromTo start end $ \i -> do
xs <- readArray arrIn i
ys <- app1 apply xs
writeArray arrOut i ys

return_
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The embedded Haskell → LLVM IR compiler in Accelerate

run :: Arrays a => Acc a -> a
run a = unsafePerformIO (runIO a)

runIO :: Arrays a => Acc a -> IO a
runIO a = withPool defaultTargetPool (\target -> runWithIO target a)

runWithIO :: Arrays a => PTX -> Acc a -> IO a
runWithIO target a = execute

where
!acc = convertAcc a
execute = do

dumpGraph acc
evalPTX target $ do
build <- phase "compile" (compileAcc acc) >>= dumpStats
exec <- phase "link" (linkAcc build)
res <- phase "execute"

(evalPar (executeAcc exec >>= copyToHostLazy))
return res
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Accelerate’s use of host language

• GHC frontend: yes
• GHC code generator backend: no
• GHC runtime system: no

Has multiple backends from Accelerate AST

• LLVM IR
• CUDA
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Accelerate performance

Trevor L. McDonell et al. “Type-safe runtime code generation: Accelerate to
LLVM”. In: Proceedings of the 8th ACM SIGPLAN Symposium on Haskell,
Vancouver, BC, Canada, September 3-4, 2015. ACM, 2015, pp. 201–212.
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Accelerate → LLVM IR

Keep It Simple Stupid (KISS) principle

• Obscure LLVM code might rule out LLVM optimisations
• Generate ”simple” LLVM IR that LLVM will optimise well
• Accelerate tells LLVM exactly which CPU is being used
• LLVM which CPU being used
• LLVM will vectorise for specific CPU architecture

Don’t generate SIMD instructions

• Rely on LLVM auto-vectorisation
• vectorisation will happen if LLVM thinks it is beneficial
• Accelerate produces code it knows LLVM can vectorise well
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Repa Profiling

• Repa uses GHC runtime system
• Threadscope for profiling GHC generated parallel code
• Hence: Repa can inherit Threadscope profiling tool
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Accelerate Profiling

• Accelerate doesn’t generate parallel code via GHC
• Doesn’t have access to GHC tools e.g. Threadscope
• Use NVidia profiler GPU profiling tooling instead

Figure 4.2 from McDonell’s thesis.

Trevor L. McDonell. “Optimising Purely Functional GPU Programs”.
PhD thesis. University of New South Wales, Sydney, Australia, 2015. 66



Another deep embedding: hardware design

• Lava: strongly typed EDSL for describing hardware circuits
• Deeply embedded

• test circuit designs with GHCi (host language interpreter)
• generate VHDL to synthesise circuits to hardware

Following example from Andy Gill’s ACM Comms paper.

Andy Gill. “Domain-specific languages and code synthesis using Haskell”.
In: Commun. ACM 57.6 (2014), pp. 42–49.
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Counting Pulses Schematic

counter
:: (Rep a, Num a) => Signal Bool -> Signal Bool -> Signal a

counter restart inc = loop
where reg = register 0 loop

reg' = mux2 restart (0,reg)
loop = mux2 inc (reg' + 1, reg')
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Counting Pulses

Simulate with GHCi (shallow host language interpreter):

GHCi> counter low (toSeq (cycle [True,False,False]))
1 : 1 : 1 : 2 : 2 : 2 : 3 : 3 : 3 : ...

Reify counter to deep embedding:

GHCi> reify (counter (Var "restart") (Var "inc"))
[(0,MUX2 1 (2,3)),
(1,VAR "inc"),
(2,ADD 3 4),
(3,MUX2 5 (6,7)),
(4,LIT 1),
(5,VAR "restart"),
(6,LIT 0),
(7,REGISTER 0 0)]
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Deep: Translating Reified AST to VHDL

architecture str of counter is
signal sig_2_o0 : std_logic_vector(3 downto 0);
...

begin
sig_2_o0 <= sig_4_o0 when (inc = '1') else sig_6_o0;
sig_5_o0 <= stf_logic_vector(...);
sig_6_o0 <= "0000" when (restart = '1') else sig_10_o0;
sig_10_o0_next <= sig_2_o0;
proc14 : process(rst,clk) is
begin
if rst = '1' then

sig_10_o0 <= "0000";
elseif rising_edge(clk) then
if (clk_en = '1') then
sig_10_o0 <=sig_10_o0_next;

...
end architecture;
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What’s wrong with deeply embedded compilers?

• cannot access host language compiler’s optimisations!

Shallow embeddings don’t suffer this problem, but…

• no domain specific optimisations
• compiler optimisations are general purpose

For example GHC compiler:

• optimiser not designed to perform e.g. array fusion
• ”domain” of GHC simplifier is the lambda calculus

• common subexp elimination, unboxing, inlining..

Simon L. Peyton Jones and Simon Marlow. “Secrets of the Glasgow Haskell
Compiler inliner”. In: J. Funct. Program. 12.4&5 (2002), pp. 393–433.
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Compile time metaprogramming

Transforms code to syntactic structures

Host language → AST transformations → host language

All happens at (host) compile time

Sean Seefried, Manuel M. T. Chakravarty, and Gabriele Keller. “Optimising
Embedded DSLs Using Template Haskell”. In: GPCE 2004, Vancouver, Canada,
October 24-28, 2004. Proceedings. Springer, 2004, pp. 186–205.
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Compile time metaprogramming with Template Haskell

For a n × n matrix M ,

domain knowledge: M × M−1 = I

Host language compiler does not know this matrices property

Consider this Haskell code:

m * inverse m * n

How can we apply the M × M−1 = I domain knowledge?
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Meta-programming approach

1. reify code into an AST data structure
exp_mat = [| \m n -> m * inverse m * n |]

2. Apply the AST → AST transformation
This will apply the M × M−1 = I optimisation

3. reflect AST back into code (also called splicing)

Seefried, Chakravarty, and Keller, “Optimising Embedded DSLs Using
Template Haskell”.
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Apply the optimisation:

rmMatByInverse (InfixE (Just 'm) 'GHC.Num.*
(Just (AppE 'inverse 'm))) =

VarE (mkName "identity")

Otherwise apply optimisation into subexpressions…

Pattern match with λp.e

rmMatByInverse (LamE pats exp) =
LamE pats (rmMatByInverse exp)

Pattern match with f a

rmMatByInverse (AppE exp exp') =
AppE (rmMatByInverse exp) (rmMatByInverse exp')

And the rest

rmMatByInverse exp = exp
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Our computation:

\m n -> m * inverse m * n

Reify:

exp_mat = [| \m n -> m * inverse m * n |]

Splice this back into program:

$(rmMayByInverse exp_mat)

Becomes

\m n -> n

At compile time. Hurray! We optimised with M × M−1 = I
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Compile Time Metaprogramming
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Staged program = conventional program + staging annotations

Programmer delays evaluation of program expressions

A ”stage” is code generator that constructs next stage

Partial evaluation performs constant propagation

Produces intermediate code specialised to static inputs

Code generation at multiple stages during runtime
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Multi Stage Programming (MSP) with MetaOCaml

Brackets (.<..>.) around expression delays computation
# let a = 1+2;;
val a : int = 3
# let a = .<1+2>.;;
val a : int code = .<1+2>.

Escape (.~) splices in delayed values
# let b = .<.~a * .~a >. ;;
val b : int code = .<(1 + 2) * (1 + 2)>.

Run (.!) compiles and executes code
# let c = .! b;;
val c : int = 9

Walid Taha. “A Gentle Introduction to Multi-stage Programming”. In:
Domain-Specific Program Generation, Dagstuhl Castle, Germany, Revised
Papers. Springer, 2003, pp. 30–50.
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MetaOCaml Example

let rec power (n, x) =
match n with
0 -> 1 | n -> x * (power (n-1, x));;

# power (2,3);;
- : int = 9
# power (4,2);;
- : int = 16
# power (3,5);;
- : int = 125
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let slow_power2 = fun x -> power (2,x);;

slow_power2 3
=> power (2,3)
=> 3 * power (1,3)
=> 3 * (3 * power (0,3)
=> 3 * (3 * 1)
=> 9

3x calls to power
Memory for stack frames for recursive calls

(* what I really want is this *)
let fast_power2 = fun x -> x*x*1;;

# fast_power2 3;;
- : int = 9
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Specialising code with MetaOCaml

let rec power (n, x) =
match n with
0 -> .<1>. | n -> .<.~x * .~(power (n-1, x))>.;;

power function returns code of type integer, not integer value
escape of power splices in more code
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Compile power2 at runtime then execute generated code

let power2 = .! .<fun x -> .~(power (2,.<x>.))>.;;

generated code behaves just like:

fun x -> x*x*1;;

We can specialise power at runtime as needed

let power3 = .! .<fun x -> .~(power (3,.<x>.))>.;;
let power4 = .! .<fun x -> .~(power (4,.<x>.))>.;;

Zero cost abstraction without the code bloat of

let fast_power2 = fun x -> x*x*1;;
let fast_power3 = fun x -> x*x*x*1;;
let fast_power4 = fun x -> x*x*x*x*1;;
let fast_power5 = fun x -> x*x*x*x*x*1;;
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Compile time versus runtime meta-programming

MetaOCaml (staged interpreter) Template Haskell (templates)
.<E>. (bracket) [| E |] (quotation)
.~ (escape) $s (splice)
.<t>. (type for staged code) Q Exp (quoted values)
.! (run) none

Template Haskell: compile time, no runtime overhead

MetaOCaml: runtime code gen, some runtime overhead

Key idea of runtime meta-programming:
incremental compilation optimises away condition
checks, specialises functions.. speedups possible when
dynamic variables become static constant values.
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Imitation is the sincerest form of flattery

– Oscar Wilde
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Lightweight Modular Staging (LMS) in Scala

• L = lightweight, just a library
• M = modular, easy to extend
• S = staging

Types distinguish expressions evaluated

”execute now” has type:

T

”execute later” (delayed) has type:

Rep[T]

Tiark Rompf and Martin Odersky. “Lightweight modular staging: a
pragmatic approach to runtime code generation and compiled DSLs”. In:
Commun. ACM 55.6 (2012), pp. 121–130.
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Programmers want

• Higher order functions
• Partial application
• Polymorphism
• … reusable generic abstractions …

Usually programmers usually have to decide:

either performance or productivity

Multi-Stage Programming (MSP) provides zero cost abstraction
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Lightweight Modular Staging (LMS) in Scala

Scala:

def power(b: Double, p: Int): Double =
if (p==0) 1.0 else b * power(b, p - 1)

power(x,5)
=> x * power(x, 4)
=> x * x * power(x, 3)
=> x * x * x * power(x, 2)
=> x * x * x * x * power(x, 1)
=> x * x * x * x * x * power(x, 0)
=> x * x * x * x * x * 1.0
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Lightweight Modular Staging (LMS) in Scala

Scala LMS:
def power(b: Rep[Double], p: Int): Rep[Double] =
if (p==0) 1.0 else b * power(b, p - 1)

power(x,5)

def apply(x1: Double): Double = {
val x2 = x1 * x1
val x3 = x1 * x2
val x4 = x1 * x3
valx5 = x1 * x4
x5

}

Alexey Rodriguez Blanter et al. Concepts of Programming Design: Scala
and Lightweight Modular Staging (LMS). Universiteit Utrecht.
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LMS success study: Delite

Compiler framework & runtime for high performance EDSLs

DSLs developed with Delite

• OptiML: Machine Learning and linear algebra
• OptiQL: Collection and query operations
• OptiMesh: Mesh-based PDE solvers
• OptiGraph: Graph analysis

Hassan Chafi et al. “A domain-specific approach to heterogeneous
parallelism”. In: PPOPP. 2011, pp. 35–46.
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Summary of compiler embeddings

Approach Host frontend Host backend Optimise via
Embedded compiler yes no DSL transformation
Staged compiler no yes Delayed expressions
Ext. metaprogramming yes yes Host transformation

• Embedded compilers: Accelerate (Haskell)
• Extensional metaprogramming: Template Haskell
• Staged compilers: MetaOCaml, Scala LMS

Seefried, Chakravarty, and Keller, “Optimising Embedded DSLs Using
Template Haskell”.

92



93



1. Where’s the boundary between EDSL and host language?
2. When does a library become an EDSL?
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Where does EDSL stop and host start?

In February 2016 I asked on Halide-dev about my functions:

Image<uint8_t> blurX(Image<uint8_t> image);
Image<uint8_t> blurY(Image<uint8_t> image);
Image<uint8_t> brightenBy(Image<uint8_t> image, float);

Hi Rob,
You’ve constructed a library that passes whole images
across C++ function call boundaries, so no fusion can
happen, and so you’remissing out on all the benefits of
Halide. This is a long way away from the usage model
of Halide. The tutorials give a better sense of …

On [Halide-dev]:
https://lists.csail.mit.edu/pipermail/halide-dev/2016-February/002188.html
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Where does EDSL stop and host start?

Correct solution:

Func blurX(Func image);
Func blurY(Func image);
Func brightenBy(Func image, float);

Reason: Halide is a functional language embedded in C++

But my program compiled and was executed (slowly)

I discovered the error of my ways by:

1. Emailing Halide-dev
2. Reading Halide code examples

Why not a type error?
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Are EDSL just libraries?

• X is an EDSL for image processing
• Y is an EDSL for web programming
• Z is an EDSL for ….

When is a library not domain specific?

Are all libraries EDSLs?
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Subject: [Haskell-cafe] What *is* a DSL?
From: Günther_Schmidt <gue.schmidt () web ! de>
Date: 2009-10-07 15:10:58

Hi all,

for people that have followed my posts on the DSL subject this
question probably will seem strange, especially asking it now ..

Because out there I see quite a lot of stuff that is labeled as DSL,
I mean for example packages on hackage, quite useuful ones too,
where I don't see the split of assembling an expression tree from
evaluating it, to me that seems more like combinator libraries.

Thus:

What is a DSL?

Günther
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haskell-cafe mailing list
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A DSL is just a domain-specific language. It doesn’t
imply any specific implementation technique.
A shallow embedding of a DSL is when the ”evaluation”
is done immediately by the functions and combinators
of the DSL.
I don’t think it’s possible to draw a line between a com-
binator library and a shallowly embedded DSL.

– Emil Axelsson, Chalmers University.
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I’ve argued that every monad gives a DSL. They all
have the same syntax - do-notation, but each choice
of monad gives quite different semantics for this nota-
tion.

– Dan Piponi
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I’ve informally argued that a true DSL – separate from
a good API – should have semantic characteristics of a
language: binding forms, control structures, abstrac-
tion, composition. Some have type systems.
Basic DSLs may only have a few charateristics of lan-
guages though – a (partial) grammar. That’s closer to
a well-defined API in my books.

– Don Stewart
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Parsec, like most other parser combinator libraries, is a
shallowly embedded DSL… a Haskell function that does
parsing, i.e. a function of type
String -> Maybe (String, a)
You can’t analyse it further — you can’t transform it into
another grammar to optimise it or print it out — be-
cause the information about what things it accepts has
been locked up into a non-analysable Haskell function.
The only thing you can do with it is feed it input and
see what happens.

– Bob Atkey
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Library versus EDSL?

When does a library become an EDSL?

1. Well defined formal semantics of library functions?
2. Embedded compiler e.g. Accelerate
3. Language restriction library restricts expressivity of host?
4. Extends syntax library extends host’s syntax e.g.
quasi-quotating
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Library versus EDSL?

States R, S, T ::= S | T parallel composition
| ⟨M⟩p thread on node p, executing M

| ⟨⟨M⟩⟩p spark on node p, to execute M

| i{M}p full IVar i on node p, holding M

| i{⟨M⟩q}p empty IVar i on node p, supervising thread ⟨M⟩q

| i{⟨⟨M⟩⟩Q}p empty IVar i on node p, supervising spark ⟨⟨M⟩⟩q

| i{⊥}p zombie IVar i on node p

| deadp notification that node p is dead

⟨E[spawnM ]⟩p −→ νi.(⟨E[return i]⟩p | i{⟨⟨M >>= rput i⟩⟩{p}}p | ⟨⟨M >>= rput i⟩⟩p),
(spawn)

⟨E[spawnAt q M ]⟩p −→ νi.(⟨E[return i]⟩p | i{⟨M >>= rput i⟩q}p | ⟨M >>= rput i⟩q),
(spawnAt)

⟨⟨M⟩⟩p1 | i{⟨⟨M⟩⟩P }q −→ ⟨⟨M⟩⟩p2 | i{⟨⟨M⟩⟩P }q , if p1, p2 ∈ P (migrate)

⟨⟨M⟩⟩p | i{⟨⟨M⟩⟩P1 }q −→ ⟨⟨M⟩⟩p | i{⟨⟨M⟩⟩P2 }q , if p ∈ P1 ∩ P2 (track)
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Library versus EDSL?

Node A
supervisor

Node B
victim

Node C
thief

holds ..j
B ! FISH C

OnNode B FISH C

B ? FISH C

A ! REQ i r0 B C

REQ i r0 B C

A ? REQ i r0 B C

B ! AUTH i C

AUTH i C

InTransition B C B ? AUTH i C

C ! SCHEDULE ..j B

SCHEDULE ..j B

C ? SCHEDULE ..j B

A ! ACK i r0
ACK i r0

A ? ACK i r0

OnNode C

i{⟨⟨M⟩⟩{B}}A | ⟨⟨M⟩⟩B

y(track)

i{⟨⟨M⟩⟩{B,C}}A | ⟨⟨M⟩⟩By(migrate)

i{⟨⟨M⟩⟩{B,C}}A | ⟨⟨M⟩⟩Cy(track)

i{⟨⟨M⟩⟩{C}}A | ⟨⟨M⟩⟩C
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1. Formal operational semantics
2. Verified scheduler with model checking
3. In a monad
4. Uses GHC

• frontend
• backend
• runtime system

DSL or library?

Robert J. Stewart, Patrick Maier, and Phil Trinder. “Transparent fault
tolerance for scalable functional computation”. In: J. Funct. Program. 26
(2016), e5.
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