
RIPL: An Efficient Image Processing DSL for FPGAs

Robert Stewart & Greg Michaelson
Mathematical & Computer Sciences

Heriot-Watt University
Edinburgh, UK

{R.Stewart,G.Michaelson}@hw.ac.uk

Deepayan Bhowmik & Andrew Wallace
Engineering & Physical Sciences

Heriot-Watt University
Edinburgh, UK

{D.Bhowmik,A.M.Wallace}@hw.ac.uk

Abstract—Field programmable gate arrays (FPGAs)
can accelerate image processing by exploiting fine-
grained parallelism opportunities in image operations.
FPGA language designs are often subsets or extensions
of existing languages, though these typically lack suit-
able hardware computation models so compiling them
to FPGAs leads to inefficient designs. Moreover, these
languages lack image processing domain specificity. Our
solution is RIPL1, an image processing domain specific
language (DSL) for FPGAs. It has algorithmic skeletons
to express image processing, and these are exploited
to generate deep pipelines of highly concurrent and
memory-efficient image processing components.

I. Introduction

FPGAs can be configured directly with hardware de-
scription languages, though these require hardware exper-
tise and come with the cost of long debugging stages to
remove design errors. Alternatives include high level syn-
thesis tools to compile existing imperative languages, and
dataflow languages that abstract the highly concurrent na-
ture of FPGA hardware. However, the absence of suitable
hardware to support the imperative model make compiling
them to FPGAs very inefficient, and dataflow languages
burden programmers with wiring together computations
explicitly.

RIPL abstracts dynamic dataflow process networks
(DPNs) by hiding actors and wires, and inherits DPN
hardware abstractions of clocks, signals, registers and
memory. The RIPL programmer uses a collection of built
in image processing skeletons, and the compiler automat-
ically extracts parallelism from the program, to generate
deeply pipelined and memory efficient FPGA designs.

II. Design

A. Requirements & Constraints

Higher order computer vision algorithms are composed
of lower level image operations. Prototypical image pro-
cessing operations can be classified in terms of the locality
of their data access requirements: pixel to pixel functions
on points, neighbourhood pixels to pixel functions on
regions, and global operations on entire images.

The memory constraints of FPGAs mean that many
CPU & GPU methods for parallel image processing cannot
be adopted for FPGA image processing implementations.

1Rathlin Image Processing Language

Software techniques often store arrays whose sizes matches
complete images, and apply data-parallel kernels in a vec-
torised single instruction multiple data (SIMD) or coarse
grained single instruction multiple threads (SIMT) fashion.
These image processing models are prohibitive for FPGA
implementations, because on-chip memory is a very scarce
resource, and the global shared memory model is not
suitable for the inherently fine grained concurrent nature of
FPGAs. Modern CPUs have access to around 2MB cache
and 64GB of RAM, which are treated as a large shared
memory block. In contrast for example, a modern Virtex
7 FPGA has a total of just 8.5MB of available on-chip
block RAM (BRAM) memory.

B. RIPL Overview

RIPL is a functional language with single assignment
semantics. It comprises domain specific image processing
types, functions and algorithmic skeletons [1]. RIPL’s
algorithmic skeletons are reusable parameterised descrip-
tions of task-specific image processing architectures and
are exploited to generate pipelines of image operations.
The skeletons process pixel vectors in rows, columns and
regions with computation kernels, which are lightweight
functions that traverse over images.

An illustration of pipelined skeleton composition is in
Figure 1. The RIPL skeletons API is shown in Figure 2,
using standard notation for function type signatures, e.g.
mapRow takes as arguments: an M × N image, a function
from a vector of A pixels to a vector of A pixels, and
returns an M × N image. The map skeletons are element
or column/row wise mappings from pixels to pixels. The
zipWith skeleton takes two images and merges them into
a single stream with some user defined merging function.
The combine skeleton takes entire rows or columns from
two images and merges them into a single stream with
built-in RIPL operator, such as append. The convolve
skeleton is parameterised by a window dimension and
computes pixel values from a neighbourhood of pixels.
The fold skeleton is parameterised by an initial value
and applies global operations over an image and returns a
scalar value or a vector.

RIPL uses index types to impose the constraint that all
skeletons operate on images with bounded shapes known
at compile time. For example, an inferred indexed data
type Im(50,40) is an image of width 50 and height 40,
and [P ]8 is a vector of 8 pixels. This allows the RIPL
compiler to generate actors with static arrays from these



indexed data structures, enabling HDL synthesis tools to
make optimal memory implementation choices about static
structures, i.e. look-up tables (LUTs) for small arrays or
with combined BRAM blocks for larger arrays.

Fig. 1. Pipelining skeleton compositions

mapRow : Im(M,N) → ([P ]A → [P ]A) → Im(M,N)

mapCol : Im(M,N) → ([P ]A → [P ]A) → Im(M,N)

concatMapRow : Im(M,N) → ([P ]A → [P ]B) → Im(B/A∗M,N)

concatMapCol : Im(M,N) → ([P ]A → [P ]B) → Im(M,B/A∗N)

zipW ithRow : Im(M,N) → Im(M,N) → (P → P → P ) → Im(M,N)

zipW ithCol : Im(M,N) → Im(M,N) → (P → P → P ) → Im(M,N)

combineRow : Im(M,N) → Im(M,N)

→ ([P ]A → [P ]A → [P ]B) → Im(B/A∗M,N)

combineCol : Im(M,N) → Im(M,N)

→ ([P ]A → [P ]A → [P ]B) → Im(M,B/A∗N)

convolve : Im(M,N) → (a, b) : (Int, Int)
→ ([P ]a∗b → P ) → Im(M,N)

foldV ector : Im(M,N) → Int → s : Int

→ (P → [Int] → [Int]) → [Int]s
foldScalar : Im(M,N) → Int → (P → Int → Int) → Int

Fig. 2. RIPL skeletons API

III. Implementation

A. RIPL to Dataflow

The RIPL compiler uses the dynamic dataflow process
network (DPN) model as an intermediate representation
between the DSL and FPGA implementations. To address
FPGA memory limitations, the compiler eliminates inter-
mediate image arrays by feeding rows and columns through
concurrent phases of a pipeline. The kernel at each phase
is provided only the pixel values they need to execute.
Costly intermediate arrays are therefore avoided for local
and regional data access patterns with RIPL skeletons.

Thanks to RIPL’s single assignment semantics, implicit
data dependencies in skeleton compositions are exploited
to generate deeply pipelined graphs from RIPL programs.
The vertices (actors) represent image operations and the
edges (wires) represent dataflow between composed opera-
tions. Transposition actors are added whenever a row wise
skeleton is composed with a column wise skeleton, and vice
versa. Informally, the mapping from skeletons to graphs is
as follows. A skeleton instance maps to one actor. The
arity of a skeleton maps to the number of input ports the
corresponding actor has. The number of output ports of an

actor is dictated by the number of other skeletons that use
the output image of the skeleton. Implicit dataflow in the
composition of skeletons is lifted to explicit wires between
actors. The user defined function to a skeleton becomes a
fireable rule inside the actor. The graph is mapped onto
FPGAs to exploit two kinds of pipelined parallelism: 1)
to feed the rows/columns of an image through different
pipeline stages, and 2) to feed multiple video frames into
the FPGA fabric concurrently.

B. Dataflow to FPGAs
The generated dataflow graph is expressed with the

CAL actor language [2]. An existing CAL to Verilog
compiler [3] is used to add an interface protocol for actor
interconnects and an explicit clock to all actor components,
then lowers the graph to an FPGA abstraction adding
signals, registers, FIFOs and shared memories. Generic
memories are used for arithmetic operations, registers and
actor interconnects, allowing HDL synthesisers to choose
from LUT or BRAM instantiations, depending on holistic
memory requirements and on the FIFO depths needed to
support implicit dataflow dependencies in RIPL programs.

IV. Discussion & Conclusion
In this abstract we present RIPL, a high level im-

age processing DSL for FPGAs. It has high level image
processing skeletons familiar to software programmers,
which are exploited to generate deep pipelines of memory-
efficient image processing operations. RIPLs underlying
dynamic dataflow model supports different image data
access patterns using skeletons. The aim of RIPL is to
maximise clock frequency to increase throughput, and
to minimise BRAM use to fit complex algorithms onto
FPGAs. RIPL has been used to implement image wa-
termarking and multi-dimensional subband decomposition
algorithms. We believe that RIPLs underlying dynamic
DPN semantics provides greater levels of expressivity
compared to other image processing FPGA languages.
Ongoing work includes evaluating the expressivity of RIPL
with a comprehensive collection of case studies. We plan
on integrating RIPL with a performance guided dataflow
transformations framework we are developing [4].

Acknowledgements
We acknowledge the support of the Engineering and Physical

Research Council, grant references EP/K009931/1 (Programmable
embedded platforms for remote and compute intensive image pro-
cessing applications).

References
[1] M. Cole, Algorithmic Skeletons: Structured Management of Par-

allel Computation. Cambridge, MA, USA: MIT Press, 1991.
[2] J. Eker and J. W. Janneck, “CAL Language Report Specification

of the CAL Actor Language,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/ERL M03/48, 2003.

[3] E. Bezati, “High-Level Synthesis of Dataflow Programs for Het-
erogeneous Platforms: Design Flow Tools and Design Space
Exploration,” Ph.D. dissertation, School of Engineering, Ecole
Polytechnique Federale de Lausanne, Switzerland, April 2015.

[4] R. Stewart, D. Bhowmik, G. Michaelson, and A. Wallace, “Pro-
file Guided Dataflow Transformation for FPGAs & CPUs,”
Dataflow special issue in the Journal of Signal Processing Sys-
tems, August 2015.


	Introduction
	Design
	Requirements & Constraints
	RIPL Overview

	Implementation
	RIPL to Dataflow
	Dataflow to FPGAs

	Discussion & Conclusion
	References

